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PREFACE 

The two papers in this volume compute the components of the space of pseudo-

isotopies of a compact manifold of dimension at least seven and the main result can 

be viewed as a third step in relating differential topology to algebraic K-theory. 

Historically, the first step was Whitehead's theory of simple homotopy types, the 

Franz-Reidemeister torsion invariant, and then later Smale's h-cobordism theorem 

and its generalization to the non-simply connected case ; namely, the s-cobordism 

theorem of Barden-Mazur-Stallings, which showed how the Whitehead group measured 

the obstruction to putting a product structure on an h-cobordism. Next, work of 

Browder-Levine-Livesay followed by work of Siebenmann, of Golo, and of Wall in the 

non-simply connected case showed how the Grothendieck group of the category of 

finitely generated, projective modules gave the obstructions to putting a boundary 

on an open manifold. On the algebraic side Serre showed that algebraic vector bundles 

over an affine variety correspond to finitely generated projective modules over its 

coordinate ring. Then Swan showed that the Atiyah-Hirzebruch group of virtual vector 

bundles over a compact space was just for the ring of continuous functions on 

that space. Bass studied the functor on rings, of which the Whitehead group is 

a suitable quotient, and showed how to fit and into an exact sequence si­

milar to the one in the Atiyah-Hirzebruch K-theory. Consequently, a feeling emerged 

that there must be an "algebraic" K-theory concerned with an appropriate sequence 

of functors K^, K^ , K^, etc. Such a theory has recently been developed and is an 

active area of research. The third step began on the geometric side with C e r f s 

theorem that pseudo-isotopy implies isotopy in the simply connected case in dimen­

sions at least five. Just as the s-cobordism theorem was related to the uniqueness 

of putting a boundary on an open manifold, the pseudo-isotopy problem measures the 
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uniqueness of a product structure on a trivial h-cobordism and it seemed natural 

that a non-simply connected version of C e r f s result would be related to a functor 

K^. Around 1967 Milnor defined a group along the lines of Steinberg's work on 

universal coverings of Chevalley groups and this turned out to be what was needed. 

However, unlike the previous two geometric problems corresponding to and 

the non-simply connected pseudo-isotopy theorem requires a second obstruction which 

depends not only on the fundamental group but on the second homotopy group as well. 

For a precise statement of the result see the Introduction to Part I of this volume. 
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PREFACE (*)v 1 

Les deux articles ici réunis aboutissent à la détermination complète de 

l'ensemble des composantes connexes de l'espace des pseudo-isotopies de toute va­

riété compacte de dimension au moins sept ; le résultat final peut être considéré 

comme établissant la troisième relation connue entre la topologie différentielle et 

la K-théorie algébrique. 

Historiquement, la première étape fut constituée par la théorie du type 

d'homotopie simple de Whitehead, la définition de l'invariant de torsion par Franz 

et Reidemeister, puis beaucoup plus tard le théorème du h-cobordisme de Smale et sa 

généralisation au cas non simplement connexe, appelée "théorème du s-cobordisme de 

Barden-Mazur-Stallings" ; ce théorème montrait comment le groupe de Whitehead mesu­

rait l'obstruction à munir un h-cobordisme d'une structure de produit. 

Seconde étape, des travaux de Browder-Levine-Livesay, puis de Siebenmann, 

Golo, et Wall dans le cas non simplement connexe, montrèrent comment le groupe de 

Grothendieck K Q de la catégorie des modules projectifs de type fini fournissait 

les obstructions à munir d'un bord une variété ouverte. Du côté de l'algèbre, Serre 

montra que les fibres vectoriels algébriques sur une variété affine correspondaient 

aux modules projectifs de type fini sur l'anneau de coordonnées de la variété. Puis 

Swan montra que le groupe d'Atiyah-Hirzebruch des fibres vectoriels virtuels de base 

un espace compact n'était autre que le K Q de l'anneau des fonctions continues sur 

cet espace. Bass étudia le foncteur »ur les anneaux (le groupe de Whitehead 

d'un groupe w est un certain quotient du de l'anneau z[7r]) et montra comment 

(*) Version française de la "Preface" des auteurs. 

- 5 -



faire entrer K 0 et k1 dans une suite exacte analogue à celle de la K-théorie d' 

Atiyah-Hirzebruch. A la suite de ces travaux l'impression se fit jour qu'il devait 

exister une "K-théorie algébrique" qui traitât d'une certaine suite de foncteurs K 0 , 

Kj , K^, ... , etc. Une telle théorie s'est en effet développée ces dernières an­

nées, et elle est actuellement la matière d'activés recherches. 

La troisième étape débuta du côté de la géométrie par le théorème de Cerf 

d'après lequel "pseudo-isotopie entraîne isotopie" dans le cas des variétés simple­

ment connexes de dimension au moins cinq. De même que le théorème du s-cobordisme 

résoud le problème d'unicité correspondant au problème de "munir d'un bord une va­

riété ouverte" , de même le problème de la pseudo-isotopie est celui de l'unicité de 

la structure de produit sur un h-cobordisme trivial. Il semblait donc naturel qu'une 

version "non-simplement connexe" du résultat de Cerf mît en jeu un foncteur K^ . 

Vers 1967, Milnor, s'inspirant des travaux de Steinberg sur le revêtement universel 

des groupes de Chevalley, définissait un groupe K , et cette notion se révéla par 

la suite être exactement celle dont on avait besoin. Mais contrairement au cas des 

deux problèmes géométriques précédents, qui correspondent au K Q et au K^ , l'énon­

cé du théorème de pseudo-isotopie dans le cas non simplement connexe fait intervenir, 

outre le K^ , une "seconde obstruction", laquelle dépend non seulement du groupe 

fondamental mais aussi du second groupe d'homotopie. Pour un énoncé précis du résul­

tat, le lecteur se reportera à l'Introduction de la première partie de ce volume. 
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Introduction and summary of results. 

Let (M,3M) be a smooth, compact, C°° manifold of dimension 

n. A pseudo-isotopy of (M,3M) is a diffeomorphism 

f: (M,3M) x I + (M,3M) x I such that f restricted to M x o is 

the identity and f restricted to 3M x I is an isotopy (i.e. 

it preserves projection onto I). Let <P = ^(M,9M) denote the group 

of pseudo-isotopies of (M,3M) where the multiplication is composi­

tion and we give <P the C°° topology. The problem is to compute 

7rQ(<P). See the introduction to [3] and Sections 4 and 5 of [12] 

for applications of such a computation. 

Here are the algebraic K-theory functors we will need: 

Following [19] let A be any associative ring with unit and 

define the Steinberg group St(A) to be the free group generated 

by symbols x^(A) where 1 < i, j < °°> i ^ j 9 and X G A, 

modulo the relations 

(i) x i^(X)»x ij(y) = x i^(X+y) 

(ii) [xi;j(X), x k £(y)] = 1 for i i I and j i k 

(iii) [x ij(X), xj] c^)3 = * i k(Xy) f ° r distinct. 

Sometimes we write x* . for x..(X). Let GL(A) = lim GL (A) 
1 3 n-*» n 

be the infinite general linear group and E(A) C GL(A) be the 

subgroup generated by the elementary matrices e^j , where e^j 

is the identity on the diagonal, has X as the (i,j) t n entry, 

and is zero elsewhere. 

The correspondence x^j •> e ^ defines a surjective homomor-

phism 

TT: S t ( A ) E(A) 
- 9 -



and Milnor defines the functor K 2 in [19] as 

K 2(A) = kernel of TT. 

The group K 2 is abelian because it is the center of St(A). See 

[19]. Now let A = Z [ T T 1 M ] , the integral group ring of T ^ M . Let 

W ( ± T T ^ ) C St(A) denote the subgroup generated by words w^j(±g) of 

the form x ^ ( ±g) -x^C +g" 1) •x^ ( ±g) for g G ir̂ M. Let 

W Q C I I ^ ) = K 2(A) n WCi^) and define 

Wh 2(Tr 1M) = K 2 ( Z [ T T 1 M ] ) mod W ^ i i ^ M ) 

This is the first obstruction group for measuring T T Q C ^ ) . 

To define the second part let ( Z 2 x T ^ M K T ^ M ] denote the 

group of all functions f: TT^M Z 2 X T ^ M which are zero except 

on f i n i t e l y many e l e m e n t s of TT^M; that i s , ( Z 2 x T T ^ M H T T - ^ M ] is 

the direct sum of | TT-^M | many copies of Z 2 x T T 2 M. Any element 

of ( Z 2 x ir 2 M)[7T^M] can be written as a finite formal sum 

Ça^a^ where a i e Z 2 x ÏÏ2M a n d a i e L e t a c t trivially 

on Z 2 and let it act in the usual way on T T 2 M. If a G Z 2 x T T 2 M 

and T G ir̂ M> denote the action of T on a as a T. Define 

Wh 1(ir 1M ;Z 2 x T T 2 M ) 

to be ( Z 2 x T T 2 M ) [ T T 1 M ] modulo the subgroup generated by 

T -1 

a*a - a #xax and 3*1 for a, ̂  x T ^ M and a , T £ ir̂ M. 

Here 1 denotes the identity of i ^ M . See [12] for a more conceptual 

definition of this group. 
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The main result is 

Theorem. For any connected, compact, C°° manifold ( M ^ a M 1 1 ) there  

are homomorphisms 

Z : T T 0 ( < P ) + Wh2(ïï1M) 

and 

e : i r 0 ( t f > ) + W hi^ i ri M» Z2 x ÏÏ2M)  

such that both are surjective for n > 5 and whenever n > 7 ( * ) 

Z + 6:TT 0 (<P) •> W h 2 ( T r 1 M ) $ W J ^ C i ^ M ; ^ x T T 2 M ) 

is an isomorphism. 

The homomorphism E was constructed and its kernel identified 

geometrically by both of the authors working independently. See 

[ 1 1 ] and [ 2 8 ] . The homomorphism 0 was constructed by the first 

author in [ 1 2 ] , which is Part II of this volume. In Part I we 

shall prove the main theorem except for giving the construction of 

6. This theorem has also been announced by I.A. Volodin in [35]. 

When TT^M = 0 the group W h ^ T ^ M ) vanishes because K 2(Z) a Z 2 

with the generator being w 1 2(l) . See [ 1 9 ] . Also Wh 1(l;Z 2 x T T 2 M ) 

vanishes as one sees directly from the definition above. Although 

in the general case E + 0 is injective for n > 7 , in the simply 

connected case our methods work when n > 5 to recover Cerfs 

theorem [3] that TT q(^) = 0. 

(*) Note added in proof : In fact n > 6 is sufficient. See p.VII.11. 
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Here is some information presently known about Wh 2 ( TT) . 

(a) I f ir is finite, then Wh^ir) is probably finite. See [7], [8] . 

(b) Wh 2(Z 2 Q) has at least order 5 (Milnor). 

<c) Wh 2 ( 7 r x Z) = Wh2(ir) e w h ^ T r ) 0 (?) 

Here Wh-̂ Cïï) is the usual Whitehead group. See [29]; This 

algebraic result was suggested by geometric examples in [22]. 

(d) Wh 2(free abelian group) = 0. This follows from (c) and the 

fact recently proved by Quillen that for a left regular ring 

A there are isomorphisms K 2(A) s K 2(A[t]) and 

K 2(A[t,t"
1]) = K 2(A) eK^CA). Compare [29], [1, Chap. XII] 

or [9]. 

(e) Wh 2(free group) = 0 (Swan and Gersten using methods of 

Quillen). 

The formula in (c) is related to pseudo-isotopies on M x S 1 

where ir = TT.JM. Using geometric arguments Wu-chung Hsiang has 

recently in [32] given a description of (?), showing in 

3 
particular that (?) is not finitely generated for ir = Z 2 x z 

P 

where p is an odd prime. Pseudo-isotopies on a manifold which is 

the connected sum of X N and Y N with TT-^X = A and TÏ^Y - B are related 

to the computation of Wh 2(A*B). In [24] it was shown that 

Wh 1(A*B) = Wh x(A) e w h 1 ( B ) . Is the same true for Wh 2? Note that 

W h 1 ( T r 1 ; Z 2 x T T 2) behaves badly with respect to connected sum. For 

example, when TT-^X = TT-^Y - Z 2 and T T 2 X = ÏÏ2Y = 0 we have Wh^(Z 2;Z 2) - Z 2 

while Wh 1(Z 2 i f cZ 2;Z 2) is not finitely generated. 

Beyond this volume, there is the problem of computing the 

higher homotopy groups ^ C * 7 ) for k > 1. The techniques used 

here and those of [13] indicate that thesç groups will probably 
- 12 -



depend more and more on the tangential homotopy type of M as k 

gets large. Part of should however depend only on 

and there should be higher algebraic K-theory functors Wh^^Cn^M) 

together with surjections Wh k + 2(T T - J M) . Compare [33], [34],[35], 

and [36]. One problem in studying with Cerf * s approach [3] of 

using the stratification of the space of smooth real valued 

functions on M x I is that continuous moduli appear in smooth 

singularities of high codimension. However, Mather*s work on 

singularities shows there are only finitely many singularity types 

up to piecewise linear equivalence in a given codimension. Thus may­

be the piecewise-linear case is easier to handle. Coincidentally 

Burghelea and Lashof have shown recently that the space P ^ of 

piecewise-linear pseudo-isotopies has the same number of components 

as the space &^ff of smooth pseudo-isotopies. However, the map-

^l^diff ïïi^p i ^ s n o t a n isomorphism (n large). See [35], [36], 

Here is how Part I is organized: In Chapter I we explain 

Cerf 1s approach to the pseudo-isotopy problem using one parameter 

families in the space of C°° functions on M x I and then 

introduce the space of gradient-like vector fields. The key 

concepts are the graphic of a k-parameter family, the stratifica­

tion of ffi nice gradient-like families of vector fields, i/.. 

intersections of trajectories, general position of a family of 

gradient-like vector fields, independence of trajectories, sus­

pension, and one and two parameter ordering. See the tables 

"9^ graphics" and "3^ graphics" in §2 for a summary of how one 

and two parameter families of functions behave. Section 8 discusses 

one and two parameter ordering and shows how to deform one and two 

parameter families using essentially only general position methods 
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into families with a graphic that is relatively simple, i.e., 

ordered. In later parts of the paper we usually just start with 

ordered families. 

Chapter II shows how the geometry of the i/^ crossings in 

certain one-parameter families of gradient-like vector fields 

gives rise to a word in the Steinberg group. In order to show 

this word determines a well-defined invariant in Wĥ Cïï-̂ M) it 

is necessary to see what happens as the one-parameter family is 

deformed. The reader should consult Table 2.3 in §2 of II for 

a summary of the three basic types of changes in the graphic 

which must be analyzed. Chapter III develops the algebraic ma­

chinery used in proving that the Steinberg word of a one parameter 

family gives a well-defined element in W Ï ^ C T T - ^ M ) . The material is 

the one-parameter analogue of what is done in defining the White­

head torsion of an acyclic complex of length greater than two. 

Chapter IV completes the definition of the Wh^i^M) invari­

ant of a pseudo-isotopy. The main work is to show why the geometric 

changes which occur when a one parameter family of gradient-like 

vector fields is deformed only alter the Steinberg word of that 

one parameter family by relations defining the Wh 2 group. 

Chapter V is mostly geometric. Techniques for simplifying 

the graphic of a k-parameter family are given and in particular it 

is shown that for 0 < k < 2 any k-parameter family can be reduced 

to one with critical points having indices only in two consecutive 

dimensions. This is needed in Part II for the definition 

of the Wh 1(ir 1 M;Z 2 x T T 2 M) invariant of a pseudo-isotopy. Attention 

is called to the last section which shows how the definition of the 

Wh2(ir1M) invariant is much simpler in the "two index" situation. 
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Chapter VI and VII give the proof of the main result computing 

TTQ(^) except for showing that the second obstruction in 

Wh 1(ir 1 M;Z 2 * T ^ M ) is well-defined. This last part is computed in 

[12], which is Part II of this volume. Chapter VIII gives product 

and duality formulae for the Wh 2 invariant of a pseudo-isotopy. 

In addition to constructing the Wh 1(ir 1;Z 2 x n^) invariant, 

Part II includes product and duality formulae for the second 

obstruction. 

Finally, the pages in Part I are numbered so that, say,V. 13 

means p. 13 of Chapter V. 

- 15 -



HATCHER fr WAGONER 

CHAPTER I. Pseudo-isotopies and real valued functions. 

In this chapter we begin by recalling Cerfs reduction of the 

pseudo-isotopy problem to the study of the space of all C°° func­

tions on M * I. Then we discuss a number of results and techni­

ques which form the groundwork for the rest of the paper. 
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PSEUDO-ISOTOPIES AND REAL VALUED FUNCTIONS 

§ 1 . Cerf1 s "functional approach" to pseudo-isotopies [ 3 ] . 

Let *± be the space of C°° functions f : M x I •+ I such 

that f(x , 0 ) = 0 and f(x,l) = 1 for all x € M, f has no 

critical points near M x D and M x 1 , and f(x,t) = t for all 

x 6 3M. Here I denotes the interval [ 0 , 1 ] . Let p :M x I I 

denote the standard projection. Let & C !F be the subspace con­

sisting of those functions with no critical points. The corres­

pondence g -* p o g induces a fibration 

J + <P -> £ 

TT 

where the fiber = ïï-1(p) is just the space of isotopies of 

the identity of M (i.e. the space of level preserving diffeo-

morphisms of M x I which are the identity on M x 0 ) . To see, 

for example, that IT is onto choose f E £ and choose a Riemannian 

metric on M. Give M x I the product metric. A diffeomorphism 

g of M x I to itself with p o g = f is obtained by mapping the 

interval x x I to the trajectory of grad f which starts at 

x x 0 E M x 0 and ends somewhere in M x i. Now the space ^ is 

contractible because it is just the space of all paths from the 

identity in Diff ( M , 3 M ) . Hence there is a homotopy equivalence 

TT: <P -> £ . 

Since (F is contractible we have 

T T I ( < P ) « T T I ( & ) « T T I + 1 ( t T , & ; p ) . 
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HATCHER WAGONER 

The general plan, then, for measuring the obstruction to connecting 
any pseudo-isotopy g € € to the identity by a path in & is to 
join p to pog by a path in T and then try to deform this path 
down into & keeping endpoints fixed. 

Since ^QC^) is a group the bijection above induces a group 
structure on TTQ(&) and TT^CTJ^P) • Here is how to do this 
directly. Let f,g € . Deform f and g by a very small 
amount (so that if f and g are in & they remain in &) until 
they agree with p on M x [o,e] and M x [l-e,l] for some small 
e > 0 . Then define f#g: M x I I by 

f#g(x,t) = 
|f(x,2t) , 

ig(x,2t-l) 

0 < t < \ 

+ h I < t K 1 

If [ f ] and Cg] are in T*Q(&) then 

[f]-[g] = Cf#g]. 

Similarly, if [fg] and [gg] are in Tr1(^r,&;p) are represented 
by paths f and g , 0 < s < 1 , then 

[fS]-[gs] = Cf#gS]. 

Lemma 1 . 1 . If dim M > 6 , then ^Q(^) is abelian. 

This lemma will not be needed in the sequel and in fact for 
dim M > 7 it is a consequence of the main theorem. 
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PSEUDO-ISOTOPIES AND REAL VALUED FUNCTIONS 

Proof. Choose an ordered morse function f: M R (i.e. index 

p > index q — f(p) > f(q)). Let 3 < k < dim M - 3 be a fixed 

integer and let c ^ R be a non-critical value of f such that 

for any critical point p of f, f(p) < c iff index p < k and 

and f(p) > c iff index p > k. Let A = f " 1( ( -«> ,c] ) and 

B = f ^ C E c , 0 0 ) ) . Both A and B have handle decompositions in 

which each handle has codimension at least three. Now let F and 

G € (P. Use the fact that "pseudo-isotopy implies isotopy" in 

codimension at least three [15] to inductively deform F on the 

subspaces (handle of A) x I until it becomes the identity on 

A x I and has support in B * I. See [20]. Similarly deform G 

so that it is the identity on B x I and has support in A x i. 

Then clearly F « G = G * F . 

Remark. Since the space of paths from the identity in Diff O M ) 

is contractible the space ^(M,3M) defined in the introduction has 

the same homotopy type as the space of diffeomorphisms of (M,3M) x J 

which are the identity on M x o and 9M x i. We shall henceforth 

identify these spaces. 
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HATCHER & WAGONER 

§2. The stratification of J? . 

In this section we recall from [3] some facts about the low 

dimensional strata in the space of all smooth real valued functions 

on a manifold. We shall describe what a "generic" k-parameter 

family of maps looks like for 0 < k < 2. 

Let Vn+^" be a smooth compact manifold with 3V = C u D. 

Let !F denote the space of all C°° functions f:(V;C,D) (I; 0,1) 

with no critical points near 3V. As in [3] we can write & as 

the disjoint union 

T = ̂ ° U.7 1 U 72 V?3 UK 

where consists of those functions of codimension k (0 < k < 3) 

and K consists of functions of higher codimension. For 0 < k < 3 
we can compute the codimension of a function as follows: Let 
f G y and let p be an isolated critical point of f. The co-
dimension of p is the codimension (as a vector space over the 
real numbers) of the ideal generated by the partial derivatives 
of f in the ideal of all germs of functions on V vanishing at 
p. The codimension of a critical value a of f is the number 
of critical points in f"^(a) minus one. Let 

v^(f) = sum of codimensions of critical points 

v 2(f) = sum of codimensions of critical values. 

Then for 0 < k < 3 

codimension of f = v ^ f ) + v2(f)« 
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PSEUDO-ISOTOPIBS AND REAL VALUED FUNCTIONS 

The canonical forms for critical points of codimension less 
than or equal to two are 

Codim 0 (non degenerate critical point) 

(0) 2 2 x 2 x x 2 A 2 
+ xi +l +-" + xn + xn+l 

Codim 1 (birth or death point) 

(1) 2 2 ^ 2 . A 2 A 3 " xl-"- xi + Xi+l+--'+Xn + xn+l 

Codim 2 (dovetail point) 

(2) 2 2 x 2 x . 2 ^ 4 
- xl-'" xi + xi+l+-'-+ xn ± xn +l ' 

We shall say for the above models that 0 is a critical 
point of index i in the cases (0) and (1). In the case (2) we 

Lj. 
say 0 is a critical point of index i when " + x

n+i" ^ s t n e 

last term and of index i+1 when "-x . -11 is the last term. 
n+1 

The canonical models for the universal unfoldings of these 
singularities are respectively 

(0') 2 2 , 2 , , 2 -Xl--"-Xi + xi +l +"- + xn+l 

(l1) 2 2 A 2 A x 2 , ̂  x 3 - xl--- xi + xi +l +"- + xn + txn+l + xn +l 

(2') - * l — x ? + xi +l +"- + xn ± ( t xn+l + sxn+l + X n + 1 K 
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For 0 < k < 3 the subspace S^U.. is open in TT and 

for any f e 3 ^ the stratification is locally trivial at f. This 

means that there is a neighborhood of f in ST Q f the form R k x W 

where W is a neighborhood of f in ^ and where there is a 

stratification of R with 0 as a point stratum such that the 
k i stratification induced on R x w by the C7" is just the product 

stratification whose strata are (strata of R ) x W with 0 x W = W. 
It is an interesting open problem to find a good stratification of 

K . Recent examples of H. Hendriks (to appear in Comptes Rendus) 

show that the stratification of K by codimension is in general 

not locally trivial above dimension 7 . 

The following is an explicit description of and II . 

The stratum y ° . We must have v^(f) = v,>(f) = 0. Hence con­

sists of functions with only non-degenerate critical points and 

distinct critical values. 

The stratum y 1 = U . ————————————————v. p 

3^: v^(f) = 1 and v,,(f) = 0. There is just one birth point, all 
other critical points are non-degenerate, and the critical values 
are distinct. 

3^: v 1(f) = 0 and v 2(f) = 1. All critical points are non-degen­
erate and there is exactly one pair of critical points with 
the same critical value. 

The stratum There are six types of function in 

3^: v 2(f) = 2 and v-^f) = 0. There is exactly one dovetail point 

and all critical values are distinct. 
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3T2 : v 0(f) = 2 and v, (f) = 0. There are exactly two birth points 

and all critical values are distinct. 

t7^: v-̂ Cf) = 1 = v 2(f). There is one birth point and one double 

critical value for two non-degenerate points. 

a 2- v , ( f ) = l = v 0 ( f ) . A birth point and a non-degenerate point o 1 ^ 
have the same critical value. 

2 * 
3 T : v-ĵ Cf) = 0 and v 2(f) = 2 . Three non-degenerate points have 

the same critical value. 
o 
ç : v i ^ = 0 a n d v 2(f) = 2. There are two double critical values. 

If f z: V n + 1 -> R is a k-parameter family where z varies over 
k 

a parameter domain D C R define the graphic of the family f z to 

be 

^[critical values of f ] zED z 

The graphic is a subset of D x R. 

For example, the graphic of the one parameter family (1*) is 

| ^ - ^ i > l ^ ^ 

i ^ ! 

Here the i+1 and the i appearing next to the lines in graphic 

indicate that those lines are the images of critical points of 

index i+1 and i respectively. When n = 0 in (l f) the 

actual one parameter family looks like 
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t < 0 t = 0 t > 0 

The graphic of the one parameter family 

is 

1 

1 
0 

Another typical graphic which might occur for a one parameter 

family is 
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i+1 i+1 

i 
i j+1 

j 

2 4 The graphic of the two parameter family f = -(tx + sx + x ) t j s 
li 2 which is the universal unfolding of x is a subset of R x R. 

The intersections of this graphic with the planes s = constant are 

1 
1 1 

0 

s > 0 s < 0 

For a fixed s < 0 the one parameter family f is 
L , s 
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Here is a table of some universal unfoldings of the functions 

in T71 and y2: 

^ graphics 

7 1 : 
i+1 

i 
or 

i+> 

i 

death point birth point 

71: 
i 

j 
crossing point 

graphics 

rJ2 
i+1 i+1 i+A__ 

i 
index i+1 

or 

i 
it1 

i i 
index i 

rJ2 
j 

i 

j 

j 

J1: 
Y 
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^ graphies 

3 * 

3* 

4 

Any k-parameter family f^: V n + 1 + R where z s D k determines 
k k k a map F: D x V -* D x R preserving projection onto D where 

F(z,x) = (z,f z(x)). It also determines a map a:D •+3- where 

a(z) = f z. The following are equivalent statements for 0 < k < 2. 

k 0 1 2 
(a) a ( D ) C ! > u *J U y and the map a is transverse to each 

stratum . 

(b) The map F is "generic". This means first that F has only 
, . . . j. . ^n+1,0 ^n+1 , 1,0 „n+1,1 , 1,0 transverse singularities of type Z 9 , Z > Z 

(cf. [2]). Furthermore let Z C D x V denote the set of 

all singular points of F. C is a smooth k-dimensional 

submanifold of D x V and Z = Z Q U Z ^ U Z 2 where 
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E 0 = Z N + 1 ' ° ( F ) = singular points of type z n + 1 ' ° , E x = z N + 1 , 1 , ° ( F > , 

and E 2

 = , 1 , 1 , 0 ( F ) . In fact i i consists of those points 

(z,p) G D x V such that p is a critical point of f of 

codimension i. E-̂  u E 2 is a smooth submanifold of E of 

dimension k-1 and E 2 is a smooth submanifold of dimension 

k-2. The second condition for gênericity of F requires 

that if z ? and are components of and Ej then 

the maps F : E ? D k x R and F : E ^ + D k x R are in general 

position. 

Thorn transversality methods show that any k-parameter family 

can be approximated by a generic family as described above when 

0 < k < 2. Consequently, any k-parameter family can be deformed 

off of strata of codimension greater than k and 

•n±&\ .7"°U. . .07*) = 0 

for i < k < 2. 

Let f : V R be a generic k-parameter family and let 

(u,p) G E C D x V. A parametrized version of the splitting theorem 

of [10],see [31] also, says that there is a neighborhood U of u 

in D K and a k-parameter family of imbeddings TF^: Rn+^" V with 

<fu(0) = (u,p) such that for some quadratic form 

2 2 

q(x^,...,xn> = ±x^±...±xn and some k-parameter family d z: R •> R 

we have 

(*) fo^(x 1,...,x n + 1) = q( X l,...,x n) + d z ( x n + 1 ) 

for z G U. If (z,p) G E^, then d z has 0 as a critical point 
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of codimension i. This says that f z is essentially a suspension 

of d (see §5 below) and so its behavior is like that of d^ near u z 
(u,p). Canonical models for generic families d z: R -*» R are 

One parameter 

D(t,x) = (t,±x 2) , 0 G E 0 

or 

D(t,x) = (t, tx + x 3) , 0 G z 

Two parameters 

D(t,s,x) = (t,s,±x 2), 0 G z 0 

or 

D(t,s,x) = (t,s,sx + x 3 ) , 0 G E 1 

or 
D(t 3s,x) = (t,s,±(tx + sx 2 + x 4 ) , 0 G E 2 . 

A complete description of could be given as was done for 

and 5^ * We content ourselves with listing the codimension 
three critical points and their universal unfoldings. See [27]. 
Two of these three kinds of singularities will be used to prove 
a result in Chapter V §3 (Th. 3.1.b) which, however, is not necessary 
to our proof of the main theorem. To describe these singularities 
it suffices by the splitting (*) to give the degenerate part of 
the function; namely, the d u

f s . The function d Q is usually called 
the organizing center. 
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Name Organizing Center Universal Unfolding 

Butterfly 5 
x tjX + t 2 x 3 + t 3 x 3 + x 5 

Hyberpolic 
umbilic 

x 3
 + y 3 x + y + t-jxy - t 2x - t gy 

Elliptic 
umbilic 

x 3 - 3xy 2 x 3 - 3xy 2 + t 1(x 2+y 2) - t 2x-t 3y 

k k The trace of a map a:D +3? is the decomposition of D 
-1 k into the disjoint sets a (component of same & ). Here are some 

examples. 
The trace of the universal unfolding of the dovetail singular-

ity is 
* 2 

7o 

7 o 

,9-1 

4-' 
- B 

Consider a two parameter family f + :V •+ R with a graphic 

like 

nothing 
i+2 

i s 
i+2 

i+2 
i+2 

i+2 
i 

i+2 
i 

i+2 

i+1 
nothing 
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This has trace 

i2 

CL 

y 0  

'J 

T / 1 

a 

1 
3 

This is a two dimensional section in the trace of the universal 

unfolding of the hyperbolic umbilic. See [5]. 
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§ 3 . Gradient-like vector fields. 

We shall be interested in studying triples (TIJ^JVI) where 

f:V n + 1 R is a C°° function on V as in § 2 and n is a 

vector field on V that is gradient-like for f with respect to 

the Riemannian metric y on V. The term gradient-like means that 

(a) df x(n x) > 0 whenever x is not a critical point of f and 

(b) There is a neighborhood U of each critical point p such 

that n(x) = grad^ f(x) for x G U where the gradient is 

computed using y. 

Let Zf denote the space of such triples and, when V = M x I, 
let & c ZF denote the subspace consisting of those triples 
(n 5f,y) where f has no critical points. In the case 8M i 0 
we take ZF to be all those triples ( n i f 5 y ) such that near 8M x I 
the metric y is the product metric of some fixed metric on M 
and the standard metric on I. Now fix a Riemannian metric y 
on V. Then the map ^ given by f (grad f,f,p) is a 

homotopy equivalence which induces a homotopy equivalence of pairs 

(•> , £ ) 
(•> ,£ )(•> ,£ ) 

The deformation retraction of ZF down in ZF is done in two stages. 

First deform (n>f9]i) to (grad^f,f,y) via the path 

(t»grad^f + (l-t)n ,f ,y ), 0 < t < 1, and then deform (grad^f,f,y) 

to (grad—f,f,y) by the path (grad f,f,v ) where y y ̂  x 
P t = t y + (l-t)y for 0 < t < 1. 
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We have in particular 

ir 1CP', &;p) a Tr^(^,&;p) 

where p = (gradpP,p,p). 

Now let (n,f,y) G & and let p G V be an isolated critical 

point of f. Let Cp̂  be the one parameter family of diffeomorphisms 

generated by n» Define the stable and unstable sets of p, written 

W(p) and W (p) respectively, by the equations 

W(p) = {x G VI lim <p (x) = p} 
t-*» 

and 

W*(p) = {x G V| lim (x) = p} 
t-»-°° 

Let p and q be two critical points of f of index i and 

j respectively. Suppose f(p) > f(q) and let L = f~ 1(c) be an 

intermediate level surface where f(p) > c > f(q). Then the inter-
* 

section W(p) H W (q) n L will be called an i/j intersection. 
Suppose we have a smooth k-parameter family ^z'^z'^z^ * 
k k k z G D , such that the map F:D x V + D x R is in general position 

as in §2. For each point (z,p ) in the critical set Z, p is 
z z 

a critical point of and we have the sets W^P Z^ a n d W (P z) 

contained as subsets of z x v . We shall need to know how these 

sets vary as (z,p z) moves around in Z because the Wh 2 invariant 

for pseudo-isotopies comes from the i/i intersections in a one-

parameter family in & and the W T ^ C T ^ M J Z J x T T 2 M ) invariant comes 

from the intersections in a one parameter family. 
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In the remainder of this section we will first give six 

examples of the behavior of the stable and unstable sets near the 

generic singularities and then give an existence theorem for nice 

families of gradient like vector fields. To economize in notation 

we shall often suppress the notation for the Riemannian metric in 

a k-parameter family and shorten (n ,f ,u ) to (n ,f ). 
z z z z z 

Example 1, Each function f of the k-parameter family has only 

isolated, non-degenerate critical points, say of index i. Then 

W(p z) « R 1 and W*(p z> * R 1 1* 1" 1 and W(p z> intersects W*(p z> 

transversely in the point p z« As z moves smoothly in E Q = E 

the stable and unstable manifolds vary smoothly. This is just 

"stable manifold theory". See [14]. 

Example 2. (k=l). Consider the one-parameter family (grad f t,f^,u) 

where u is the standard metric on R n + 1 and 
f t(x 1,...,x n + 1) = -xJ-...-xf • x 2 + 1 + . . . + x 2 + t x n + 1 + x£+1. When 
t = 0 there is just one critical point, namely 0, which lies in 
Z1» When t < 0, f^ has two non-degenerate critical points 
a t = (0 ,...,0, y/-t/3) and b t = (0,...,0, - y/-t/3) of index i 
and i+1 respectively. Both a t and b t are in Z Q. For t > 0 
f has no critical points at all. Then for t < 0 we have (in 
„i „ „n-i 

x R) 

W(a t) = R 1 x 0 x {c t>, c t =V-t/3 

W*(a t) = 0 x R 1 1" 1 x {-ct < x n + 1 } 

W(b t) = R 1 x 0 x { x n + 1 < c t} 
W*(b t) = 0 x R 1 1" 1 x {c t} 
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For t = 0 we have 

W(0) = R 1 x o x { x n + 1 < 0} and W*(0) = 0 x R 1 1 "" 1 X { O < x n + 1 > . 

In particular W(0) and W (0) are half spaces. 
Let e > 0 and choose d > 0 so that for t € [-e,e] the 

critical values of f^ are contained in (-d,d). The corresponding 
graphic is 

_[d 

I 

For t < 0, let X t = f^C [-d,d] ) n (W(at> U W*(a t> U W(b t> UW*(b )). 
Let X Q = fQ1([-d,d]) n (W(0) U W*(0)). For t < 0, let 
X t(±d) = f"X(±d) n X t. Then for t < 0 we have 

(a) X^ is contractible 

(b) x
t ( d ) is a n (n-i) disc with boundary the (n-i-1) sphere 
w*(b t) O f'^d) 

(c) X t(-d) is an i-disc with boundary the (i-1) sphere 
W(a t) n f^C-d). 

For t < 0 we also have 

(d) the i-sphere W(bt> n f'^O) and the (n-i)-sphere 

W*(at> n f~^(0) intersect each other transversely in a single 

point in the level surface f^^(0). 
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Example 3. Consider the two parameter family (n t s > f
t g ) where 

ft,s = - 4 — - 4

 +
 x l +l +-" + xn + ( t x n + l + xn +l> 

and n t s is the gradient of f g with respect to the standard 
s 

metric. This is just a one-parameter version of the previous 
example. In each slice s = constant the behavior of the stable 
and unstable manifolds is as in Example 2. 

Example 4. (Dovetail singularity). Let (n t s , f t g ) be the two 
parameter family where 

f t , s ( x l « h + l * = -4-'-4 + x i + l + - " + x n " ( t x n + l + s xn+l + x n + l ) 

and n is the gradient of f with respect to the standard 
t ) S T ) S 

metric of R n + X . As s goes from positive to negative the change 
in the graphic is 

i+1 i+1 j. _.i+l i+1 ; 

• ' : i 
s > 0 s = 0 ' 

s < 0 

For s > 0 there is just one non-degenerate critical point of 
index i+1 at each time t; for s = 0 there is a non-degenerate 
critical point when t i 0 and a codimension two critical point, 
namely 0, when t = 0. For t = s = 0, we have (in R 1 x R n 1 x R ) 

W(0) = R 1 x 0 x R and W*(0) = 0 x R 3 1 " 1 x 0. 
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Fix s < 0 and for all t set ( r K,f.) = ( n . «f. ). Let 
L L I j S I ) S 

a^ for t < 6 and for - 6 < t denote the critical points of 

index i+1 as indicated in the diagram below. For - 6 < t < 6 let 

denote the critical point of index i. Let c_^ and c^ be 

the birth and death critical points respectively. 

W 

- - - . W 

. 

/ i+1 \ i+1 

f t(c t) 

t = - ô t = 0 t = 6 

Here is how the stable and unstable sets vary within the intermediate 

level surfaces. See [3;IV.14] and particularly [5, Chap. 2]. 

- 37 -



HATCHER & WAGONER 

(1) Near the birth and death points the situation is just as in 
Example 2 above. 

(2) In the u-level K t = f^Cu): 

W*(a t) H K t a S n"" i" 1(a t) 

w*(b t) n K t a S n" i" 1(b t) 

closure of 

W*(c t) n K t a S 1 1" 1" 1 x I where 

S 1 1' 1" 1 x 0 * S n- i" l(a 1 :) 

S 1 1' 1' 1 x i ~ S n" i- 1(b t) 

See the following diagram: 

s n- i- 1(a t) 

t < - S 
- S < t < 6 

f / 

,sn-i-1(bt) sn"i-1(bt) 

^ S n - i - 1 ( a t ) 
6 < t 

Another diagram illustrating the variation is 

,sn-i"1>.i /sn-i-1(b4.) 

sn-i"1>.i 

-38-



PSEUDO-ISOTOPIES AND REAL VALUED FUNCTIONS 

(3) In the v-level surface = f^Cv): 
For t < 0 

W(a t) n L t s S 1(a t) 
w*(c_ 6) n L _ ^ B D n" i(c_ 6) 
W*(c t) n L t SK D n _ i ( c t ) for -Ô < t < 0 
W*(b t) H L t s a ( W * ( c t ) H L t) s S n" 1" 1(b t) for -6 < t <0 

For t > 0 

W(b t) n.L t * S 1(b t) 
W*(c 6) n L 6 . D ^ C c ^ 
W*(c t) H L t s D n" 1(c t) for 0 < t < 6 
W*(a t) n L t s 3(W*(c t) n L t) ^ S n" 1" 1(a t) for 0 < t < 6 

Note that for - 6 < t < 0, S 1(a t) intersects D n"" i(c t) transversely 
in exactly one point; similarly for 0 < t <6 , S 1(b t) intersects 
°n-i 
D (ct^ transversely in one point. See the following diagram: 

Dn-i-1(at) 

S n- i- 1(a t) 

.1 
S 1(a t) 

t < 0 

n-i-1(at) 
,S 1(b t) 

& l- i(c t) 

0 < t 
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(4) In the w-level P = f ^ C w ) : For -6 < t < 6 

W(a t) n W*(b t) = <J> and W*(a t) n W(b t> = <J> . Hence 

W(a t) n P t « S 1(a t) 
W(b t) n P t « S 1(b t) 
w*(c t) n P t » s n" i(c t) 

In fact each of S 1(a t) and S 1(b t) intersect S n" 1(c t) 
transversely in a single point in P . 

(5) In the r-level Q t = f'Hr) : 

W(a t) n Q t ~ S
i ( a t ) (t < -6) 

W(a t) n Q t a D i(a t) (-6 < t < 6) 
W(b t) n Q a D 1(b t) ( - 6 < t < 6) 
W(c t) H Q s S i" 1(c t) = 3D 1(a t) = 3D 1(b t) (-6 < t < 6) 
W(c_ 6 ) n Q t s D 1(c_ 6) 
W(c 6 ) n Q t a D ^ c 6) 

W(b t) n Q t s S 1(b t) (6 < t) 

See the following diagram: 
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- 6 < 

- 6 < 

/
s i " 1 ( c t ) 

- 6 < 

D i(c ) 
0 

D 1(a t) 

- 6 < t < 6 

iO A 

t= - 6 
t= 6 

\ s i ( b t ) 

6< t 

S i(a t) 

t < 6 
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Example 5. (0 < k < 2 ). Let F : D k x R D k x R be a generic map 

where F(z,x) = (z,fz(x)) and let u z, z € D , be a smooth family 

of metrics on R. Let n = grad f . Since we are dealing here 
z u z z 

with gradients of functions of a single real variable the situation 
is easy to analyze and one sees that the stable and unstable sets 
of points in Z have the same intersection phenomena as in the 
above examples where the standard metric was used. 

Example 6. Suppose f z: R n + 1 R is a generic k-parameter family, 
z € D k , of the form 

f z(x 1,...,x n + 1) = q(x 1,...,x n) + d z ( x n + 1 ) 

where q is a non-degenerate quadratic form in the variables 
x 1,...,x n and d z: R R is a generic k-parameter family as in 
Example 5. Suppose u z and u z are smooth k-parameter families 
of metrics on R n and on R respectively and let H N + ^ be 
given the direct sum metric. Let n z be the corresponding gradient 
of f z- As in Example 5 it is easy to analyze the behavior of 
d z: the suspension principle in §5 below shows that the inter­
sections of the stable and unstable manifolds of the critical points 

of the f are the same as those for the critical points of the z 

V 

"Nice" families of gradient-like vector fields. 

Theorem 3.1. Given a generic k-parameter family f : Vn+^" •+ R, 
————————— z 
z € D and 0 < k < 2 y it is possible to choose a k-parameter 

- 42 -



PSEUDO-ISOTOPIBS AND REAL VALUED FUNCTIONS 

family of metrics y z and a k-parameter family r\z of vector 

fields, gradient-like for f with respect to y z, so that the 

family ^ n
z>^ z^ h a s t n e following properties: 

(A) For (z,p ) € I and index p = i, the stable and unstable 
z 0 z 

sets W ( P Z ) a n d w (P z) i-n z x V are Euclidean spaces of 
dimension i and n+l-i which vary smoothly as (z,pz> 
varies smoothly in E Q . 

(B) For (z,p ) € E W ( p ) and W*(p ) are smoothly varying 
Z J. z z 

half spaces (see Eg. 2). Furthermore, let T T ( Z ^ ) C D be 
k k 

the image of under the projection TT: D * V •+ D and 
suppose y c D is a small arc cutting nCE^) transversely 
in one point as in the diagram y 

x(E1) 

Then the one parameter family f̂ ., where t runs along y> 
locally has a graphic like 

i+1 

i 
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Let t>t be the critical point of index i+1 of f and a t 

be the critical point of index i of near the point p z . 

Then in any intermediate level surface L̂ . between 

f'^f^b.)) and f'-^f^a.)). The spheres « W(b t> n L ±  

n—i * and S _ * W (a ) n L. intersect each other transversely r t t J 

in one point (as in Example 2 ) . 

(C) For (z,p ) G z , W(p ) and W*(p ) are Euclidean spaces z z z z 
of complementary dimension intersecting transversely in p z < 

The stable and unstable manifolds of the critical points 

near (z,pz> vary as in Example 4 above. 

Any k-parameter family ( n z > f

z ) satisfying (A),(B), and (C) 

will be called nice. 

This definition of nice gradient-like families is more or less 

ad hoc. One would like to be able to prove (A),(B), and (C) under 

reasonable hypothesis instead of having to construct a family n z 

for which (A),(B), (C) holds. In any case this definition suffices 

for the present paper. Actually in Chapter V we will need to 

consider deformations of two parameter families (i.e. three para­

meter families). However, all the deformations performed will 

take nice families to nice families. 

One way of constructing the n z and y z satisfying (A) 

through (C) is to first choose local coordinates for the f as 

in (*) of § 2 near the points of E. The gradient with respect to 

these local coordinates is easy to analyze as in Examples(1) 

through ( 6 ) and satisfies (A) through (C). The various choices of 

local coordinates can be made in such a way that they overlap nicely. 
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Then the local metrics can be patched together by a partition of 

unity to get a global family of metrics u z such that n z = grad f z 

with respectto u z satisfies (A), (B), and (C). See [11] and [5] 

for example. The proof below uses the methods of the splitting 

theorem in [10]. 

Proof of (3.1). For k = 0, f is a function with non-degenerate 

critical points. We can choose y to be any metric on V n + 1 

because the stable and unstable manifolds satisfy (A) by stable 

manifold theory [14]. We shall do the case k = 2 and leave the 

easier case k = 1 to the reader. 
2 

Start with the generic two parameter family f z, z G D , as 
in §2 with singular set E = E 0 U E 1 U E 2 « Let T = U E 2

 a n d  

2 
let A C D be the part of the trace which is the image of r 
under the projection T T : D 2 x v n + 1 D 2 . The parameters z G A 
for which f z has a dovetail (resp. birth or death) singularity 
will be called dovetail (resp. birth-death) parameters. The set A 
is stratified as follows. The (isolated) 0-dimensional strata 

2 
are the dovetail parameters (i.e. f z e 'J^) and the double birth-

_2 
death parameters (i.e f G 1c). Each 1-dimensional strata consists 

z p 
of parameters z where f has exactly one birth or death critical 
point and is either the interior of an arc joining two 0-dimensional 
strata or is a circle. It will be convenient to introduce two 
more 0-dimensional strata on each such circle by choosing a pair 
of points on each. Give r the stratification induced by the 
map 7r:r + A . 

- 45 -



HATCHER & W A G O N E R 

Now let u a point stratum of A and p u € V n + 1 be a 

dovetail or birth-death critical point for f^. The splitting 

theorem methods of [10] show there is a small ball A centered at 

u together with a family of embeddings Éf z:R n + 1 •+ v n + 1 and a 

family of functions d z: R + R, where z G A, such that 

(i) if p u is a dovetail point, (f u(°) = P u> 

(ii) if P u is a birth-death point, then there is an arc 

Y C A of birth-death parameters with end points in 3A 

and there is an arc y C which maps homeomorphically 

onto y by such that <pz(0) = p z G y where 

i r(p z) = z; 

(iii) V < f z ( x l » " - ' x n » x n + l ) = - x î - - - - X i + x i + l + " - + x n + d z ( x n + l ) 

and the family d z: R + R has the same type of generic 

singularity as the family f . 

Give each slice <F„(R n + 1) C z x v n + 1 the metric u„ induced • z z 
from the standard metric on R n + 1 by the embedding <\z* Then the 

stable and unstable manifolds of grad (f z) satisfy (B) if p u 

^z 
is a birth-death point and satisfy (C) if p u is a dovetail 

critical point. 

Do this for each of the point strata ui>***» u
m
 i n A * This gives 

a family of embeddings of R n + 1 over the parameter domain 
A, U A0U...UA where A. is a small ball centered at u.. The 1 l m i i t 
closure A of A-(A,U. ..UA ) is the union of finitely many arcs l m 
a. whose end points lie in the boundary of A^U.••UAm» 
^ -l 1 1 

Let R 1 = IT (A f) N Z 1 . The map I T : T -* A is a homeomor-

phism. Let 5j be the arc which maps to a., under TT. We must 

extend the metrics already constructed to metrics on the local 
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slices near each of the arcs ou . Let a be one of the arcs cu 

as in the following diagram: 

i u l 

A1 

u 

a 

A2 

/u,\ 

i 3 

u3 

Let cx denote the corresponding arc 5j in E^. Let e^ = an A^ 

and e2 = aH^2 be the endpoints of a and let e^ and denote 

the corresponding endpoints of â". More generally for z e a let 

z" e a denote the unique point such that T T ( Z ) = Z . Let U ss J x a 

be a small neighborhood of a such that U n = J x e 1 and 

U n : J x e 2 where J is a small interval. The embeddings 

<?2: Rn+^" Vn+^", z € AjU.. •UA m > constructed above give embeddings 

Ç z: R n + 1 + V n + 1 where z runs through J x e 1 and J x e 2« By 

a translation of the variable x
n + ^ i n Rn+^" change the families 
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$ z and d z for z € J x e 1 U J x e 2 so that ^ Q x e (0) = ë\ and 

so that (iii) holds. Since translation preserves the metric on 

R n + 1 , the metrics induced on the images < ( z ( R
n + 1 ) , z G J x e 1 U J x e 2, 

by the new embeddings remains the same. Using the techniques of 

the splitting theorem [10] extend these embeddings to a family 

3': R n + 1 V n + 1 where z runs through U (made' smaller perhaps) 

and extend the family d z: R R, to one defined for z G U such 

that 

(i f) ^ (0) = z for z G a 

(ii-> VV X1'"-'VW = - x l - - - x M + l
+ " - + x n +

 d z ( W 

for z G U. 

Caution. To obtain this extension it may be necessary to match up 

orientations by changing the embeddings <1 ̂ 9 z G J x e^, by reflection 

in one of the axes x^, 1 < i < n, however, the induced metrics 

u z, z G J x e^, remain unchanged. 

As before let u for z G U be the metric on 

z z 
induced from the standard metric on Rn+^" by the embedding <f . 

Then the vector fields grad (f ) satisfy (B) for z near a» 
Pz z 

For any pair (u,p) G x VN +"^" with z £ A or p £ T choose 

a two parameter family of embeddings Sf : R n + 1 -» V n + 1 where ^ u ( 0 )
 = P 

and z runs through a small neighborhood around u. Let y z 

denote the metric induced on 0[ z(R
n + 1) by C{ from the standard 

metnc on R 

Finally, piece these local metrics together with a partition 
2 

of unity to get a two parameter family u z, z G D , of metrics on 
V n + 1 and set n = grad (f ). As noted above the stable and 

z u z 
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unstable sets of critical points near U satisfy (B) and 

(C). The stable and unstable manifolds of the (non-degenerate) 

critical points in E Q satisfy (A) by stable manifold theory Cm]. 

Remark 3.2. Relative version of (3.1). 

If a nice family (n z>f Z>V Z)
 o n V n + 3" has been constructed 

as above for z running through a neighborhood of a closed set 

2 
in D , then the family can be extended to all parameter values 

2 i i i 
in D by the construction. In particular, suppose (rit,ft,y.t) 

t? » H 

and (n^j^^jy^) are two one-parameter families constructed as 
I I I ii H « 

above such that (n t,f t,y t) = (n t>f tjy t) for t = 0,1. Then 

there is a nice two parameter family ^ z ' ^ z '
v z ^ which restricts 

I I I it it tt 
to (n t5f t>y t) for z = (t,0) and to ( nt>f*t ,y t) for z = (t,l). 

There is the general problem of relating the higher homotopy 

groups 7r^(c^,&;p) to higher algebraic K-theory functors Wh^+i 

and this requires studying k-parameter families ^ n

z>^ z^
 f o r k 

large. The difficulty is to know how the stable and unstable sets 

vary with the parameter z. For example, in attempting to prove 

that nice gradient-like families of vector fields exist one is 

tempted to fix a metric on V and take n z = grad f z for all 

z G D . But consider the one parameter family f^ as in Example 

2. and lêt y be an arbitrary Riemannian metric on R n +^. 

If n t = S r a d y f t "*"s ^ o f E x a m P l e 2 still satisfied? Another 

typical problem is that for a given function the topological type 

of the stable set of an isolated critical point may vary as the 

metric changes. See C26]. Perhaps the machinery of gradient-
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like vector fields can be replaced by something easier to handle 

but which also enjoys the same global aspects. In any case one 

should look at the homology of a singularity p of a function f, 

written H^(f,p), as defined in [10] and [21]. If n is the 

gradient of f with respect to a metric so that W(p) and W (p) 

are reasonable (say, stratified sets) then 

H*(f,p) = hVW_ e,3W_ e) 

where W_ £ = W(p) n f~1([f(p) - e, f(p) + e]) and 
3W_£ = W(p) n f"1(f(p) - e) for a small enough e > 0. What can 
be said about H^(f,p)? If H A(f,p) = 0 can f be approximated 
in the C°° topology by a function with no critical points? 
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§ 4 . General position of nice gradient-like families. 

Let ^ be a nice gradient like vector field for a function f 

which has only non-degenerate critical points. We say (n ,f) is 

in general position provided that for any two critical points p 

and q of f the intersection W*(p) n W ( q ) is transverse. In 

[ 2 3 ] it was shown that any nice gradient like vector field for f 

can be deformed into general position. Here is the basic idea of 

the proof: suppose p and q are critical points of f with 

f(p) < f ( q ) and let L be an intermediate level surface between 

p and q . By an isotopy of L make the spheres W (p) n L and 

W ( q ) n L transverse. This isotopy can then be used as in [ 1 8 , 

Th. 4.4] to deform n just in a neighborhood of L so that W*(p) 

and W ( q ) become transverse. This type of argument (i.e. deforming 
n by isotopies of intermediate level surfaces) can be used to 
obtain a k-parameter version of general position. 

Let ( n z , f z ) be a nice k-parameter family, z e D k , such 
k k 

that F : D x V + D X R is generic as in § 2 . For each component 
S of a stratum of the singular set E of F let 

W(S) = U W(p ) 
(z,p z ) e S z 

and 

W*(S) = L! W*(p ) 
(z,p z ) e s 2 

Then W(S) and W (S) are smooth fiber spaces embedded (not as 

closed subspaces) in D x V with fiber either a Euclidean space 

- 51 -



HATCHER & WAGONER 

or a half space. Define the index of S to be the common index 

(as defined at the beginning of §2) of the critical points in S. 

A nice k-parameter family ( n
z»f z) is in general position 

provided that W(S^) and W ( S 2 ) are in general position in 

D x V for any two components S^ and S 2 of strata in the 

singular set. The following is most likely a theorem: 

Probable Theorem 4.1. Any nice k-parameter family ^ n
z»^ z^> 

0 < k < 2, can be deformed into general position. If ^ n
z » ^ z ^ 

is already in general position when z is restricted to a neighbor­
ly 

hood of a closed set C C D , then ( n
z>f z) can be kept fixed for z € c. 

This theorem will not be needed in full generality. The follow­
ing example indicates the transversality method used in proving such 
a result and without always giving full details we will use this 
transversality technique in the remainder of the paper to put 
certain k-parameter families in "partial" general position (i.e. 
it will only be necessary for W(S 1> and W*(S 2> to be transverse 
for certain pairs of components and 8 2 ) » 

Suppose the one parameter family (n t>f t) has a graphic like 

I I 

t=a t=b 
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Let denote the critical point of f^ of index i and let q t 

denote the critical point of f t of index j as indicated in the 

graphic. At the two crossings (i.e. when f^ £ C^) certainly 

W(p^) n W*(q t> = 0 and hence this also holds for all t satisfying 

11 - a I < e and 11 - b| < e for a small enough e > 0. Let 

L t = f^ 1(u). The one parameter families S 1" 1(p t) = W(p t) n L t 

and S n + 1 _ : , ( q t ) = W(q t> n h± (a + e <t < b - e) form isotopies 

S 1 " 1 x j •> L x e. x j and S n + 1 " D x j -* L . x J. Deform these a+e a+e 
maps into general position by approximations. Then use the techni­

ques of [18, Th.4.4] to deform the one parameter family ( n t , f t ) , 

a - e < t < b + e , into general position keeping (n^jf^) fixed 

for t = a - e and t = b + e. 
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§ 5. Suspension. 

In this section we describe suspension maps from the spaces 

^ }&,^,&, and y for the manifold (M,3M) to the corresponding 

spaces for the manifold (M x J,3(M x J)). Here J = [-1,1]. These 

maps will be natural up to homotopy for the sequence 

P -> & + 'j 

and the homotopy equivalence 

( 7 , Ê ) y, 

On elements of ST suspension has the property that no new critical 

points are introduced and the intersections of the stable and 

unstable manifolds are preserved. The basic idea of the construction 

is illustrated in the following diagram: 
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For convenience in defining the suspension we replace ^(M,3M) 

by ^ !(M,3M), the subspace of diffeomorphisms of M * I which are 

the identity on M x [ o , e ] U 9 M > < I and which are of the form 

(x,t) (f(x),t) for 1 - E < t < 1; JTCMJBM) by ^'(M,3M), the 

subspace of functions M x I •> I which are the projection onto I 

on M x [o,e] U M x [l-e,l] u 3M U ; and 7 ( M,3M) by ^ - , ( M , 3 M ) , 

the subspace for which the function belongs to ^'(M^M) and for 

which the metric is the product metric and the vector field is 

the gradient vector field on M x [0,e] U M X [l-e,l] U 3M x I . 

Here e is a fixed small positive number. We also replace & and 

& by £ = & n y and & = & n > . These replacements are justi­

fied up to homotopy type by [ 4 ] where it is shown that the 

inclusions C <P, (:/' , & ' ) c , and C (?,&) are 

homotopy equivalences. 

There are two kinds of suspensions: S + and S~". We give 

the details of the construction of S + and leave the construction 

of S~ to the reader. 

Let I = [0,1]. Define C C j x i to be the set 

C = J x [ o , l - | ] . Thus: 

e 0 
~4 

t * 

e 
-1 e 0 e 

~4 4 
1 

s -* 
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Define an embedding q : C J x I such that: 

(a) 9(1,t) = (l-t,l) 

(b) 4'<-l,t> = ( t - 1 , 1 ) 

(c) <l(s,t) = (s,t+s2) for I s I < £. 

(d) for fixed t € [ 0 , 1 - |] the map s -+ $(s,t) followed by 

the projection J x I I ias a critical point only at s = 0 . 

Via the embedding ^ we can introduce coordinates u and v 
on the image cy (c) where the "horizontal" lines v = constant are 
of the form u = ^(s,t), t = constant, and the "vertical" lines 
u = constant are of the form v =^(s,t), s = constant. See the 
diagram below. 
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V V 

0 
1 
2 

1-3-4 1-3-4 1 
2 0 

1 

2 

"4 4 

A 
2 

'3 

t 

u u 

0 
-1 

s 
~4 

0 
4 

1 
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t 
For F G P (M,3M) define the suspension of F 

S +F € f(M x J, 3(M x J)) 

to be F|M x [0, on each of the sections M x {u = constant, 

0 < v < 1 - j} , the identity below the "horizontal" line v = C, 

and F |M x {1} on each slice M x {s,t} above the line {v = 1 - j } . 

The pseudo-isotopy obtained by restricting S +F to M x J x {1} 

is the "double" of F. 

Let ir : J x I + I be projection. If f € 3^(M,3M), define 

f : M x j x l - * j x l t o b e f : M x { u = constant, 
0 < v < l - ~ } - * {u= constant, 0 < v < 1 - j} on each slice 

M x {u = constant, 0 < v < 1 - y} and the projection onto J x I 

elsewhere. Then let the suspension of f 

S +f € 5f(M x J, 3(M x J)) 

be given by 

S +f = 7roF . 

Then S +f | M x { o } x l = f and property (d) above implies 

(5.1) {critical points of S+f}={critical points of f} 

Furthermore, in a neighborhood of a critical point of S +f we have 

S+f(x,u,v) = f(x,v) + u 2. 
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Next we extend S + to v'
 1 by defining it on an element 

(n,f,y). Let y.j and \ij be the standard metrics on J and I 

respectively and let y Q = y | M x { o } . On M x Ç ( C ) let S +y be 

induced by Ç from y x y and on M x j x i - M x Ç ( C ) let 

S +y be the product of y Q with a fixed extension of ^ H H j x Pj) 

to J x I. 

To define S N> let n(x,u,v) = N(x,v) + 2u * ^ J wherever the 

(u,v) coordinates are defined, and let p : M x j x i + i be a 

function which is 0 outside a neighborhood of M x {0} x [e,l-e] 

and 1 inside a smaller neighborhood of M x {0} x [e,l-e]. Then 

set 

S + N = PF? + U - P ) grad X l l(S
+f) 

y 0 yJ P I 

It is easy to check that S + N is a gradient-like vector field for 

S +f with respect to the metric S +y. The continuous suspension 

map • 

S +: £ f(M,8M) £'<M x J,3(M x J)) 

is given by 

S +( n,f,y) = ( S
+

n , s + f , s + y ) . 
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One defines S~ in a similar way but in a neighborhood of 

any critical point of S f we have S f(x,u,v) = f(x,v) - u . 

Let h:B •> R be a C°° - function on a smooth manifold B 

with an isolated critical point p such that h(p) = c. Let n 

be a gradient like vector field for h and E > 0 be such that 

h has no other critical points than p in h~^([C - E > C + E]). Define 

W £(p,h) = W(p) n h'^Cc-^c+e]) 

W*(p,h) = W*(p) n h"1([c-e,c+e]) 

3W £(p,h) = W(p) n h _ 1(c-e) 

3W*(p,h) = W*(p) n h _ 1 ( c + e ) . 

For any two isolated critical points p and q of f we 

have 

( 5 . 2 ) W(p,S ±f) O W*(q,S ±f) = W(p,f) n W * ( q , f ) . 

Furthermore, if p is an isolated critical point of f, then 

( W (p,S +f), 3W (p,S +f)) a ( W p(p,f), 3W.(p,f)) 
E E fee. 

( W * ( p , S + f ) , 3W*(p,S +f)) s (SW*(p,f),S3W*(p,f)) 
( 5 . 3 ) E E E E 

(W (p,S"f ) ,3W (p,S""f)) a ( S W (p,f ) ,S3W e(p,f)) 
£ £ E 

( W*(p , S"f), 3W*(p,S"f)) « (W*(p,f), 3W*(p,f)) 
where the capital S on the right-hand side denotes ordinary sus­

pension of topological spaces. Compare [10]. 
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Remark 1. Under suspension the space &^ of functions 

(M x I; M x o, M x i) (i;0,l) which have no critical points and 

are the standard projection near 3M x I gets mapped to the 

corresponding space x j ^ o r t h e m a n i f ° l d M x J. If dim M > 1 

the main result of this paper shows there is an isomorphism 

W S V SM x J> 
Can this fact somehow be derived in a direct way? 

Remark 2. By repeating the suspension construction a number of 
times one can, by (5.3), increase the codimensions of both the 
stable and unstable sets of all the critical points and also make 
the pairs (W £ »9W £ ) and (W £,3W £) as highly connected as might 
be desired. 
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§6. Independence of birth and death points. 

Let n be a nice gradient-like vector field for f. Two 

critical points p and q of f are called independent (for r\) 

if 

(W(p) UW*(p)) fl (W(q) UW*(q)) = <J>. 

A single critical point is independent (for n) provided it is 
independent of all other critical points of f. 

Lemma 6.1. Let (n^-jf^) be a nice one-parameter family. Suppose 

all the critical points p of each f t satisfy 1 < index p < n. 

Then can be deformed to a nice one-parameter family of gradient­

like vector fields for which all birth-death singularities of the 

f t are independent. 

Proof. To make a birth-death critical point p of a particular f t 

independent of all the critical points q of f^ with f^(p) > f^Q) 
we deform n t near p by an isotopy of the level surface L just 
below p as follows: Choose a point x in the interior of the 
disc W(p) O L. By a small isotopy of the level surface deform 

n t so that W*(q) n L doesn't hit x. This can be done because 
* . . . . 

index q > 0 implies W (q) n L will have positive codimension 

in L. Now by an isotopy of L shrink the discs W(p) n L 

concentrically into a small neighborhood of x so that W(p) n L 

and W*(q) n L don't meet. Repeat this procedure for all the 

critical points below p; then by a similar argument make p 
- 62 -



pseudo-isotopibs and rbal valued functions 

independent of all the critical points above it. 

Remark 6.2. Suppose ^ z » ^ z ^ ^ s a 2-parameter family such that 
for each critical point p of any f we have 1 < index p < n. 
Then an argument similar to the one above can be used to make all 
the birth-death critical points independent except in a small 
neighborhood of a dovetail point. See (C) of §2 of IV below. 
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§7. Independent Trajectories. 

In this section we give some ways in which the graphic of a 
k-parameter family (n ,f ) can be changed by a deformation of 

<vV-

Independent Trajectories Principle. 

This says, roughly, that whenever the stable and unstable sets 
from critical points corresponding to one part in the graphic don ?t 
intersect those from another part of the graphic we can realize 
any deformation of these two parts of the graphic relative to one 
another by an actual deformation of ^ n

z ' ^ z ^ * 

Example. Suppose the graphic of a path (n^jf^.), 0 < t < 1, looks 
like 

i 

j 

t=a t = b 

and suppose that (n t,f t> is in general position. If j < i then 

for a < t < b 

w(p t) n w*(q t ) = <j> 

where p^ is the critical point of f^ of index j and is 
the critical point of f t of index i. The independent trajectories 
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lemma below says that the following deformation in the graphic can 
be realized by a deformation of (n^jf^.) which keeps end points 
fixed: 

ii i i 

j j j 

The proof of the independent trajectories lemma is a direct generali­
zation of the argument for the Preliminary Rearrangement Theorem 4.1 
of [18]. 

Lemma (7.1). (Independent Trajectories). Suppose ( n z > f z ) is a 
nice k-parameter family (0 < k < 2) where z belongs to a para-
meter domain D C D which is a compact k-submanifold with 
boundary of D . Let I C D x v be the singular set of the map 
F: D x V + D x R and let C C z be the union of some of the 
components of E. Let a- ^ c ^ : D R be C°° functions. 

Assume 
(a) a 1(z) < f z(p) < a 2(z) for any p G C z = C n (z x V) 

(b) Let K = f" 1(Ca 1(z),cu(z)]) n f u (W(p) UW*(p)) and 
z z 1 1 l p € C z J 

suppose that the compact set K z does not intersect 
* — 1 W(q) U W (q) for any critical point q in f̂  ([a^(z),a2(z)]) 

but not in C . 
z 
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Then if B^,^: D R are any two C°°-functions satisfying 
a l ( z ) ^ ^(z) < 3 2(z) < a 2(z) the family <nz>fz) can be deformed 

to a nice family ^ n
z > S z ^ satisfying 

(i) each g^ has the same critical points as f and more-z z 
over for any critical point p of f there is a 

constant c (p) such that g = f + c (p) in a neigh-
£A z Z Z 

borhood of p in z * V. 

(ii) ^(z) < g z(p) < e2(z) for all P e C z 

(iii) if ^(z) = o^Cz) and 6 2<z) = a 2<z), then g z = f ̂. 

Note that was not changed so the intersections of the 

stable and unstable manifolds in z x v remains the same. 

A typical transformation by independent trajectories (k=l) 

might look like 

I ' ZI I " 2 

a

2 --y --^--^ ~ ^ 

graphic of f graphic of g z 
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Proof. Let K = z^j^z C D x V. Using an argument similar to 

[18, Th. 4.1] we can use condition (b) to find neighborhoods 

^1 C ^2 °^ K ^ x V a n c* " t o fi n c* a smooth function 

p:D x V [0,1] such that 

(1) the closure of U 9 contains no critical points other than 

those in C 

(2) p = 1 on U-ĵ  and p = 0 o u t s i d e U 

( 3 ) Let p z = p|z x V. Let p be a point of z x V not in K z 

and suppose o^Cz) < ^ 2(p) < c ^ 2 ) ' Then p z is constant 

on the part of the trajectory of n z through p which lies 

in f z
1([a 1(z),a 2(z)]). 

Now as in [18, Th. 4.1] construct a smooth k-parameter family 

of maps G z(t,r): R x [0,1] -+ R such that 

(4) for each fixed r 6 [0,1], G z ( ,r) is a diffeomorphism of 

R with support contained in [c^Cz^o^z)] 

* Gz 
(5) (t,r) = 1 for t near any critical value of f 

9 "t z 
( 6 ) ^(z) < G z(f z(p),l) < ^(z) for p G C z 

( 7 ) G z ( ,0) = identity for all z 

(8) If ^(z) = c^Cz) and ^(z) = a 2<z) then G z < ,r) = identity 
for all r e [0,1] 

The required deformation from f z = G z(f z,0) to 

g z = G z ( f z , p ) is the path 

G z(f z(x), s .p(x)) 

for 0 < s < 1 and x e V. 
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§ 8. One and two parameter ordering. 

This section gives two propositions which show how to simplify 
the graphics of one and two parameter families using only general 
position arguments and the independent trajectories principle put 
together by a somewhat involved induction process. The propositions 
stated are not the most general possible but they are what we need 
to construct the Wh 2 invariant and show it is well-defined. 

A function f: V n + 1 •> R is ordered provided that index(p) > 
index(q) implies f(p) > f(q). 

Proposition 8.1. (One parameter ordering. Compare [3; Chap. V, §1]) 
Let V = M n x I and let ( n t > f t ) be a one parameter family 
where f^: M x I I is such that f Q and lie in &. Then 

( T I ^ J ^ ^ . ) can be deformed keeping ^ n o ' ^ 0 ^ a n d (n^f-^) fixed so 
that it becomes a nice one parameter family satisfying the following 
properties : 

(1) For all t, f„ G U .7'1 and the one parameter family f̂_ is 
generic in the sense of §2. Thus there are only finitely many 
crossings (which occur when f. G g^) and only finitely many 

t p 
birth and death points and these all occur at different times. 

(2) Let 0 < < r^<... <r n < 1 be chosen in advance. If p 

is a non-degenerate critical point of any f t of index i 

then < f^(p) < r^. If p is a birth or death point of 

index i then f t(p) = r^. Thus each f t is ordered. 
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( 3 ) If f_k is a generic family to begin with and each critical 
point of each f satisfies 0 < index(p) < n+1, then the 
deformation of ( n ^ f ^ ) can be made so that birth and death 
points become independent. 

Proof of one parameter ordering (see [ 3 ] also). 

First deform ( n t > f t ) to a nice family where the one parameter 
family f is generic as in § 2 . There will be only finitely many 
times 0 < t Q<...<t m < 1 such that ft^ has exactly one birth or 

death point and for t i t^, f^ has only non-degenerate critical 
points. Now use general position and the independent trajectories 
principle as in [ 3 ] to deform ( n t j f t ) so that for a small number 
6 > OJ satisfies condition ( 2 ) above whenever t E [t^-6, t^+ 6 ] . 

If the index X of each birth or death point satisfies 1 < A < n 
then (6.1) insures that independence of the birth or death point of 
each f t > can be obtained. Now use the techniques of the two 
examples in §4- and §7 to further deform (n t,f t) until condition 
( 2 ) is satisfied for all t G [ 0 , 1 ] . q.e.d. 

Suppose now that we have chosen a sequence 0 < r Q < r i < , , , < r
n < 1 

and have two paths ( n t » f t ) and ( C t 5 g t ) > 0 < t < 1, such that 
( n 0 » f o ^ = ^ 0 ' g 0 ^ a n d (n-j^fj) = ( 4 1 > g 1 ) and such that the paths 
satisfy (8.1). Suppose that for any critical point p of any 
or g^ we have 2 < index(p) < n - 1. As in § 2 there is a nice 
two parameter family (y t s>n-t s^ such that 

(nt,ft) = (Yt)0'ht,o) a n d (5t»«t> = <Yt,i'ht,i) f o r 0 < t < x 

and 

( Y0,s' hO,s ) = ( V V a n d ( Yl,s' hl,s ) = ^v*!* f o r 0 < s < 1. 
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Proposition (8.2) (Two parameter ordering). Suppose for all para­

meter values z = (t,s) € 1 x I that 2 < index p < n -1 for any 

critical point p of h z« Then (y z » n
z ) c a n & e deformed 

keeping things fixed for z G a d x D until it is a nice 

gradient-like family which satisfies the following conditions: 

There are finitely many parameter values y i » # , , > v
u
 a n <* 

z^,...,zy in interior of I * I and neighborhoods U and V of 

the y^'s and z.'s respectively such that 

(1) If p is a non-degenerate critical point of h z of index i 
and z £ U then r. , < h„(p) < r.. For each z inside the i—x z i 
neighborhood U the change in the graphic is 

i+1 i+1 i+1 

1 1 i 

In fact for all z € U, h z has only non-degenerate critical points. 

(2) For z e V each function h z is ordered and the change in 

graphic is 

i+1 

i 
or 

i+1 

i 

or the reverse of these two. 
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(3) If p is a birth point of index i of h z and z £ V then 

h z(p) = r^. Furthermore, for z £ V the birth and death 

points of h z are independent. 

Theorems (8.1) and (8.2) should be compared with the tables 

"3^ graphics" and "3^ graphics" in §2. Consider for example, a 

two parameter family passing through 3 ^ with graphic 

i+1 i+1 

i i 

i+1 
i+1 

i i 

i+1 
i+1 

ii 
1 

In a two parameter ordered family this would be changed to 

r i 

ri ri 

3-ri ri 

ri 
ri 

ri rir 
ri 

ri ri 

ri 

That this graphic is not in general position is of no concern. The 
important thing is that the corresponding birth-death critical 
points in v n + 1 are independent. 
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Outline of proof of (8.2). 
As in §2 we can assume the changes in the graphic of (y^ gjh^ g ) 

2 
as s goes from 0 to 1 are those in "jT graphics". Let T C j x j t,e 

that part of the trace of the two parameter family consisting of 

those parameters z = (t,s) such that h z has either a birth-death 

critical point or a dovetail critical point. The parameters where 

birth-death points (resp. a dovetail point) occur will be called 

birth-death parameters (resp. dovetail parameters). There are only 

finitely many dovetail parameters and the set of birth-death para­

meters consists of finitely many arcs and circles which intersect 

transversely in I x I. 

dovetail parameter 

birth-death parameters 

For each dovetail parameter z we can use general position and the 

independent trajectories principle to deform (n ,h,.) until it is 
z z 

ordered and satisfies r. n < h (p) < r. whenever index p = i. 
1-1 z 1 R 

Extend this deformation to one of (Y z' nz^ z £ I x I, such that 
for z varying in a small neighborhood V of the dovetail parameters 
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the change in the graphic is like condition (2) above. This can 
be done without changing T although the graphic must 

certainly be altered. In a similar way deform ^ Y z 5 n
z ^ keeping 

things fixed on 8(1 x I) u V and without changing r so that for 
each birth-death parameter z lying in the intersection of two 
birth-death components of V the function h z satisfies (2) of 
(8.1). In fact, this can be done so that (2) of (8.1) is satisfied 
by h z for z in a small neighborhood W of these intersection 
points. At this point the closure of r - V - W is the union of 
finitely many arcs jOi j > • • • » a such that for z an end point 
of any a., the function h z satisfies (2) of (8.1). Consider the 
one-parameter family ^ Y Z J N

Z ) where z runs through a-̂ . Using 
the one parameter ordering methods, deform ^Y z'^ z^ 5 z € al* 
until (2) of (8.1) is satisfied for all z G . Extend this 
deformation to parameters running through a small neighborhood of 

so that (2) of (8.1) still holds. Do this for the other arcs 
o ^ j . - . j O i p . Thus for a small neighborhood E of r conditions 
(2) and (3) of (8.2) are satisfied along with condition (2) of 
(8.1) for z G E-V.The proof of (8.2) has thus been reduced to 
(8.3) below. 

Let D C interior of I x I be a bounded two dimensional manifold. 
Let 0 < r n < r-, < . . . <r < 1 be fixed. 0 1 n 

Lemma 8.3. Suppose ^Y z> n
z^ ^ s a t w o parameter family where z 

runs through D such that each h z has only non-degenerate 

critical points and r£_]_ < h
z ^ P ^ K rj_ whenever z G 3D and 

index p = i. Then ^ Z J N

Z ) c a n b e deformed rel 3D in the space 
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of Morse functions with only non-degenerate critical points until 

condition (1) of (8.2) is satisfied. 

A detailed proof of (8.3) requires a somewhat involved 

induction process. We shall only give here an example illustrating 

the technique of proof and one of the main points in the argument. 

First consider a deformation of the graphic like 

j 

i 

j 

1 

j 

j 

j 

i 

j 

i 

The trace of this two parameter family is 

v. = v. 
i 1 
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where the symbol = v.. indicates that for a parameter z in 

the circle h z has a critical point p z of index i and a 

critical point q z of index j with the same critical values. 

For z in a small neighborhood of the circle, W*(p z> U W(p z) and 
WCq^) u W*(q ) don ft intersect. For z inside the circle, let z z 
S1""1 = W(p ) n a level surface between f(p ) and f(q„) and let z z z z 
S ^ " " 3 = W (q ) n the same level surface. By a small deformation z z 
place the two parameter family Y z into general position. If 

i < j - 1 then W{p z) n W*(q z> = 0 for all z inside the circle. 

If j = i + 1, then we still have W(p ) n W*(q ) = 0 except 
z z 

for finitely many parameter values where an î/^+i crossing occurs. 
This will be denoted by a small "cross" as in the diagram 

i+1 
v i = v i + i 

i+1 

The independent trajectories principle shows that if no i/^+i 
crossings occur inside the circle then ^ z > h z > can be deformed 
to eliminate the circle from the trace. 

Now consider the two parameter family 

i+2 
i+1 

i 

i+2 
i+1 
• i 

i+2 
i+1 
' i 
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i+2 
i+1 

i 

i+2 
i+1 
i 

Its trace is 

vi+l 

vi+l = v i + 2 

i+l = vi+2 

A V V i + 1 / i J 

Here we suppose there is just one i/^+i crossing and one i+l/^ + 2 

crossing within the innermost circle which by general position can 

be assumed to occur at different parameter values. If no i/^+i 

crossings were present then the independent trajectories principle 

would allow deformation of the two parameter family to one with a 

graphic like 
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i+2 
i+1 

i 

i+2 
i+1 

i 

i+2 
, i+1 

i 

which satisfies (1) of (8.2). It is still possible to eliminate 

the = v^ + 2 circle using independent trajectories as follows: 

v i + l = V i + 2 
V i + 1 = Vi+2 

f / "\ M) 
'i '- v i + l 

^
v. =v . , , 

1 1+1 

"i = Vi +2 

v i = v i + l 
^i+l 

* i + 1 / i + 2 
v i + l 8 v i + 2 * i + 1 / i + 2 Vi+1 = Vi+2 
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A one dimensional cross section in the graphic of this deform­
ation is 

i+2 

i\i+1 

i+2i+2 

i+1 

i+2 

i+1 

i 
i 

i + 2 i+2 

i+1 i+1 

i i 

The vertical arrows indicate and i + l / i + 2 crossings. 
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CHAPTER II. Geometry of the Steinberg Group 

SI. Geometric realization of the Steinberg group. 

Let V be a connected (n+1)-manifold with two boundary 

components C and D. Suppose there is a function 

g: (V;C,D) (I;0,1) satisfying 

(*) g has exactly r critical points each of which is 

non-degenerate of index i. 

The critical values of g need not be distinct. Let CL be the 

space of pairs (n , f ) ^ ^ where f satisfies (*) and n is gradient-

like for f. Let A C CL be the subspace consisting of pairs (r) ,f ) 

such that if p and q are critical points of f then 

CW(p) UW*(p>] n CW(q) UW*(q)] = <J>. 

Thus the pairs (r) ,f ) of H are precisely those of CO which are 
in general position. 

If 3 < r < oo and A is a ring let St(r,A) denote the 
Steinberg group generated by the symbols x p q ^ ^ > where 1 < p , 
q < r , modulo the relations given in the Introduction. 

In this section we prove 

(1) Really the space of triples (r) ,f ,u) as in §3 of Chap. I. 
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Theorem 1.1. Let r > 3. Suppose that 3 < i < n - 2 or that 

2 < i < n - 2 and ir-̂ CC) ir-̂CV) is a monomorphism. Then there 

is a bijection 

A : StCr^ZC^Vl) + i^t-V ; ( n o > f o ) } 

for any base point (nQjfg) e$. 

Consider any (ç,h) G J9. Let p^,...,pr be an ordering of 

the critical points of h and let be a path from a fixed base 

point to Pj. Choose an orientation for each stable manifold W(p^). 

This data determines a ZCir-̂ V] - basis e1>...»er for Ĥ (V,C) 

where V V is the universal cover and C C V is the part lying 

over C. Let p^ and p^ be two critical points of h with 

hCp^) > h(pp) and let x* ̂  be a Steinberg generator with X G ZCT^V]. 

Lemma 1.2. Under the above conditions there is a path 
xaÊ ' ( c' h ) = ( çt , ht* i n (0 < t < 1) such that h t = h for 

all t, ÇQ = ç9 (ç̂ ,ĥ ) e 'h 9 a n (^ s u c n "that the stable manifolds 

of determine the basis 

el J-*-' ect + X - e B ef--' er o f Hi (^'C). 

Remark. The critical points of h^ will be ordered and based and 

the stable manifolds oriented according to the following convention. 

Let (Ç-f-jĥ ) be any path starting from (ÇQ^Q). The 

critical set of the map H: I x V I .x R where H(t,x) = (t,ht(x)) 

consists of a collection of arcs a, (t),....a (t) ordered by the 
1 r 
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condition that a^O) = p 1,...,a r<0) = p p. The j t h critical 

point of of h^ is defined by q^ = a..(l). The base path 

for q.. is just the path y_. followed by the path a..(t). The 

orientation for W(q_j) ^ s t n e o n e which transports back along the 

path aj(t) " t o t n e g i v e n orientation of W(p_.). In the following 

proof we will let W^_(p) and W^(p) denote the stable and unstable 

sets of a critical point p of h^ with respect to the gradient­

like field 

Proof of 1'. 2. This follows the handle addition theorem in the 

theory of s-cobordisms. See [16] and [18, Th. 7.6], We shall give 

the argument in the case X = ±g for g G TT-^V. Choose an inter­

mediate value c between n^P a^ and h(p £ and let 

S 1 ' 1 = W(p a) O h" 1(c) and S 1 1" 1 = W*(p £ n h _ 1 ( c ) . Orient S1""1 

as the boundary of D 1. = W(p^) n {x|h(x) > c} in such a way that 

the orientation of S 1 " 1 followed by the inward normal gives the 

chosen orientation of D 1 . The orientation of W(p ) determines 
P 

an orientation of the normal bundle of S 1 1" 1 in h~^"(c) . The 

spheres S1""'" and S 1 1" 1 shall be considered as based by y^ and 

y ^ by extending y a and y ̂  respectively by an arc in W(p^) 

from p to S"*""1 and an arc in W*(p J from p„ to Sn~^". 

Now choose an arc y in h - 1(c) between a point of S1"""*" and a 
point of S 1 1" 1 such that g = y a*y* y"̂ " and such that y misses 

ft 
W(pj) U W (pj) for j a or g • Suppose that y intersects 

S 1 " 1 and S 1 1" 1 only at its end points. See the diagram below. 

There is an embedding 9: S 1 " 1 x I h _ 1(c) with image contained 

in a small neighborhood N of S 1 " 1 U y such that e C S 1 " 1 x 0) = S"**"1 

and e C S 1 " 1 x I) n S 1 1" 1 is exactly one transverse point, say e(x,a) 
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for 0 < a < 1. Furthermore, we can choose 0 so that the product 

orientation of ÔCS1""^* x I) either agrees or disagrees with the 

orientation of the normal bundle for S n - 1 depending upon the 

sign in ±g. The imbedding 8 can be realized by an ambient 

isotopy of h" 1(c) with support in N. This isotopy then determines 

the desired deformation (C^h^) of ( S Q ' ^ O ^ * 

base point 
Y e 

Y d 

s 1-i 

Y 

(S1*"1 * 1) 

sn-i 

Diagram 1 

The path (ç t >h t> constructed above is in general position. 

For t t a, U t > h t ) However, w
a < P a > n w * ( p ^ * * while 

W*(p) n W a(q) = $ for any other pair of critical points p and 

q of h. This situation is described on the graphic of the path 

h t by a vertical arrow as follows : 

±g 

h(p 0) 
c 
h(p e) 

t = a 
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This path will be called an elementary gradient crossing path 

or an i/i-intersection path. It is the model for a transverse i/i 

intersection for a one parameter family. See [3; Chap. I, §4] or 

[18, Figure 7.2]. 
Now to construct c -(ç,h) as desired in (1.2) for any a p 

X € Z[irnV] write X = Z ±g. where g. € n v and let 
1 j=l 3 3 1 

i ' ( ^ h ) = • <••• < * a É C ± g l > . < C i h » ) 

That this construction yields a well-defined element of 

» > ^ n o ' f O ^ follows from 

Lemma 1.2 1. Under the hypotheses of (1.1) we can realize the 

following changes in the graphic by a deformation of (ç^,!^) 

keeping (n Q,fQ) and (n-pf-^) fixed for any y,v G nr^V 

a * * I 
/ _ \ y -y c c 
(a) g * v . , „ h  

a ~ T — T I H f — t — 
(b) ^ ^ y I v c J,v I * c 
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Proof of (a). This is just a one parameter version of the Whitney-

Smale procedure for cancelling pairs of intersection points. In 

an intermediate c-level W= h^ 1(c) (for simplicity we assume 

h t = h for all t) we have the isotopies S^"*1 = W(p <t" ) n W 

and S^" 1 = W*(p e(t)) n w. Let S 1 " 1 x i n s 1 1 " 1 x I = {p-^p^ C W x I 

be the two points where the gradient crossings (i.e. i/^-intersections) 

occur. Connect p 1 and p 2 by arcs a 1 and in S 1 " 1 x i 

and S 1 1" 1 x i respectively which are transversal to each Mt-slice" 
2 

t x w. We want to find an imbedded disc D in W x i transverse 
to each t-slice and intersecting S 1 " 1 x I u S 1 1" 1 x I only in 

2 
3D = U <*2 as in the diagram 

S 1 - 1 x l «1 

V> h > 
Let B x I C W x I denote the union over t of the sets 

B t = ^ (W (p g(t)) O W x t) where p ̂ (t) is any critical point below 

Pg(t). Since there are no i/i-intersections other than those 

between p a and p ̂  we have B t n S^" 1 = <J> and S^" 1 n B t = <J>. 
2 

Near p^ and p 2 it is easy to find the part of D up to 

the arcs p^ and connecting and a2» We can take the 

arcs p^ and p^ to miss B x I. Between p ^ and 3 2 the families S^" 1, 

Ŝ ""*", and B^ form an isotopy of the disjoint union S 1 ^ U S n 1 U B 

which, by isotopy extension, we may take to be the constant isotopy 

so that 3 ^ and become two paths in W with the same endpoints. 
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Claim. and 3 2 are homotopic in W - (S 1" 1 U s 1 1 " 1 u B ) 

keeping endpoints fixed. 
Consider the sequence 

T T ^ W - (S 1" 1 U Sn'L U B ) ) - * T T 1 ( W - (S"" 1 U B ) ) 

"> I T ^ C - X 1 " 1 ) + TT ( C ) + TT W 

where X 1 " 1 = [W(p^) u (U W < P$>)3 n C . The first and third arrows 
are isomorphisms because n - (i - 1) > 3. The second is an 
isomorphism because W - (S 1 1" 1 U B ) S C - X 1 " 1 . The last arrow 
is a monomorphism by hypothesis. Hence the claim follows because 
^ and 3 2 are homotopic in V since the two i/i intersections 
have invariant y and - y. 

2 
To fill in the rest of D we observe that homotopic arcs in 

a manifold of dimension at least four are isotopic by general 
position, so that ^ and & 2 are isotopic in W - (S 1" 1 U S 1 1" 1 U B ) . 

2 
Now that D has been constructed the rest of the argument is a 
straight forward one parameter version of the exposition in [18, 
Th. 6.6]. 

Proof of (b). Suppose that reading from the left the first i/i-
crossing x (y) occurs at time t = a. As in Diagram 1 choose a p 
an arc y in the a-slice from S1*"1 to S 1 1" 1 such that 

Y Q t*Y*Y~ 1 = g where v = ±g. Now in the a-slice deform S1-^" across 

S n _ 1 with intersection number ±1 depending on the sign of v in 

± T T ^ V . Extend this to an isotopy of f ° r "t near a as in 

the diagram 
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cn-i 
St 

s r 1 t = a 

Y 

Since i - 1 > 1 and n - i > 2 we can do this without affecting 

the original i/i- crossing x 0(y) which occurs at t = a. The 
a p 

change in the graphic is 

aa 

b a V 
V v -V v 

Now cancel out the last two gradient crossings using part (a) above. 

Addendum 1. In case h(p ) < h(p J the path (ç...,h.) realizing 

— — — — — — — — — — Ot p T t 

the change of basis as in (1.2) can be obtained by first applying 

the independent trajectories lemma (to a O-parameter family) to 
t i fl i t 

get a path (£ t,h t) in O from (ç,h) to ( ç ,h ) where 
t t 

h (p^) > h (p g). Then use the proof of (1.2) to produce the 

required gradient crossings. 

Addendum 2. As a converse to the handle addition lemma above 

suppose (ç t>h t) is a path in with end points (Ç Q ' ^ O ^ A N D  

(ç^h^) in S and suppose the graphic looks like 
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p — 
a 

c 

P 3 -

Choose an intermediate level c between h ^ P ^ a n c* h^(p )̂ and 

let S*' 1 = W(p a(t)) n h ^ ( c ) and S^" 1 = W*(p^(t)) n h ^ i c ) . By 

an isotopy of the level surfaces h'-^Cc) deform C t keeping CQ 

and ^ fixed so that the level preserving maps S 1 " 1 x I h^Cc) x I 

and S 1 1" 1 x I h^Cc) x I are in general position. Then there 

will be finitely many times 0 < a^ < a 2<•..<a m < 1 where 

S^ - 1n S n - 1 is single point while for t i any a. we have a. a. 3 

S^" 1 n S^" 1 = <J>. Using the "elementary paths" technique of [3] it 

is possible to deform as above by an isotopy of the intermediate 

level surfaces so that for t near each a., the isotopy of S^" 1 

past S^" 1 is as in Diagram 1. For a precise description of 

this model see [3; Chapt. I. §4]. If the critical points of h Q 

are ordered, based, and have oriented stable manifolds then we 

can read off a sequence of elementary gradient crossings starting 

from the left x a £tg^ ,... ,x a ̂ (±g m). If ... ,ea»... »e ̂  • • • »e p 

is a basis for H^(V,C) provided by the stable manifolds of ç 0, 

then the stable manifolds of give the basis 

el>'--' ea + X e g > " - > E 3 > R

 W H E R E X ' ±g1 ± &2±m"±gm' 

Furthermore, under the hypothesis of (1.1) wè have 
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i^aM; ( nQ>f 0> ) • 

Proof of Theorem 1.1. 

First we define a map 

A: S ^ r ^ C ^ Y ] ) - î aM; ( n Q > f 0 > ) • 

1 

Let z G St(r,Z[ TT^V]) be represented by the word |̂7m

 zj where 

each z. is of the form x 0 ( X. ) for X. eZ[ir,V]. (The word 
i 3 0 3 6 , 3 3 1 

i'l z. is to be read from right to left.) Define 
j=m ^ 

(1.3) A(z) = z-(n 0,f 0

) = zm- ( zm-l--"- ( zl- ( rl0' f0 ) )-

To show that A(z) depends only on z and not on its produd 

representation it suffices to show how each of the Steinberg 

relations can be realized geometrically. Let (ç,h) e 

(1) x

a B
( X ) * X a B ( y ) ' U , h > = X a B ( X + ^ ) , ( ^ ' h ) ' 

This is an easy consequence of Lemma 1.2 f(a). 

(2) X r s(X)-x k j t(y).(ç,h) = x k A(y ) . X r S(X)-(ç,h) 

for r i % and s i k. This follows by an argument quite 

similar to that in Lemma 1.2 f(b). 

(3) x r s(X).x s A(y).(ç,h) = x 8 £(y).x r i l(Ay)«x r s(X)-(ç,h). 
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This is the most interesting relation geometrically. Note that by 

(1) and (2) above the form of the third Steinberg relation as given 

in (3) is equivalent to the usual form [x ( A), x «(u)] = x (Ay). 

r s s A/ r io 

Also in view of (1) and (2) it suffices to prove (3) when 

X,yG±fr1V. The change in the graphic will be 

r * r ~ ~ f f T 

i ,x c X Xp ' c 

(3 ) s * * > s I « -

V 

t _ i 1 1 i y 

£ 

Now consider any elementary i/i-crossing path (ç^h^) starting 

at (ç 5h) € which passes the i-handle (i.e. stable manifold) 

for the critical point p^ transversely over the i-handle for 

the critical point q̂_ at time t = a as in the diagram 

- c level 

P t K 

q t 1 
t = a 

Let S*" 1 = W*(p t) n h^ 1(c) and Q*" 1 = W*(qt> n h ^ X ( c ) . For 

t i a, 1 is an (n-i)-sphere as usual; however, for t = a, 

Q^" 1 is an open (n-i)-disc whose closure in h~ 1(c) is a closed 
a a 
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(n-i)-disc that intersects S n - 1 in an (n-i-1)-sphere S n ~ 1 - 1 . 
a a 

The local model for the singularity in Q t as t passes through 
time a is described in the following diagram: 

Q t(t < a) 

Qa 

,Qt(a < t) 

cn-i 
S a 

. cn-i-l 

Now consider a path (ç^jh^) as in (3 ) representing 
x r s(X)-x s J t(y)-(C,h). Let S*" 1 = W*(p s(t)) H h ^ C c ) , 
Q^" i = W*( P j l(t)) n h ' ^ c ) , and = W(p r(t)) H h " 1 ^ ) . Then 
the following diagram illustrates what happens in h^Cc) as t 
increases. The dotted line shows how to deform ^ to produce 
the path corresponding to x

Qi(v) # x r * / * ^ * xrs 
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Q t(a < t) 

/ s i 

n i / ï 9 r 7 ^ x 
s r < • v  

(t < a) 

This completes the proof that A is well-defined. 

To prove that A is a bijection we will show that any path 

( n t > f t ) in CL> which starts at ^ Q ' ^ O ^ A N D E N D S ^ N & deter­

mines a well-defined element 

x < n t , f t ) €E StCr.ZC^V]). 

The construction of x ^ n ^ f ^ ) will show that the map 

X ^ t f ^ C n o » ^ ) ) -> StCr.ZC^V]) 

is the inverse of the map A. 

Put the path ( n ^ * ^ ) into general position keeping (n 0 , f g ) 

fixed and ^ ni»^^ -*-n ^ s o x n a T there are only finitely many 

gradient crossings and crossings (i.e. «̂ ><Ĉ ) which all occur at 

i 
different times. Thus there are no gradient crossings at a time t 
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where G ^ ^ . Now reading from left to right across the 

graphic produces a sequence x _ (A., ) , . . . , x . (A ) of gradient 

al%. 1 °Sn%i m 

crossings as in Addendum 2 above. We define 
(1.4) x ( i t ' f t ) 

1 
- n x . ( x . ) . 

j=n a3 % 3 

It must be shown that the word x̂ -j-jf-j.) is n o t changed when 

considered as an element of St(r,Z[TT^V]) under a deformation of 

(nt>ft) which fixes ( n 0 > f o ^ a n d m o v e s C n ^ » ^ ) in Jj . 
Let (a(t,s),g(t,s)) be a two parameter family in U such 

that for all s 

(a(0,s) ,g(0,s)) = Cn 0»f 0> ând ( a(1,s),g(1,s) ) e /, . 

For each fixed 0 < s < 1 let y g = (a(t,s),g(t,s)) for 0 < t < 1. 
Suppose that paths y Q and Y - L a r e i n general position with only 
finitely many crossings and i/i-intersections which all occur at 
different times. We shall show that X ^ Y Q ) = X ^ Y ^ ^ N 

StdsZtir^V]). 
It is possible to deform the two parameter family into 

general position (keeping things fixed for t = 0 or s = 0,1 and 
keeping the t = 1 end point of each y g in /> ) so that the 
following conditions are satisfied: 

(1) For 0 < i < 2 let C I x I consist of those parameters 

(t,s) at which g(t,s) 6 . Then II2 is a finite set of points, 

I I i s a collection of finitely many disjoint circles and arcs 
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between points of ïï^, and Ilg = I x T. - n ± - I^. 

(2) There are two mutually disjoint sequences 0 < s^<...<sa < 1 

f I ! 
and 0 < s,<...<s, < 1 such that for s i s. or s. the l b 1 3 

gradient crossings of y g

 a r e transverse and occur at 

different times. Furthermore, we have 

(a) If s = s^, then there is exactly one time t^ at which 

the path y has a non-transverse i/i-intersection. 
i 

The other i/i-intersections of y are at distinct times. 
s i 

In the level surfaces near the non-transverse intersection 

the deformation of S * - 1 and s " " 1 looks like 

sn-i 

sn-i 

cn-i 
bt 

Qn-i 

V " 1 

bt 
s = s . 

1 
s < s . 

1 

s r 1 

s > s . 
1 

or its reverse. 

(b) If s = S j then there is exactly one time t^ at which 

two transverse i/i-intersections occur simultaneously 

for the path ? » . All the other i/i-intersections of 

y g» occur at distinct times. 

1 t 

( 3 ) Finally, all the exceptional parameters (t^,s^) and ( t . . , S j ) 

lie in nQ. 
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Now for s i s. or s. the word x ( Y e ) is locally constant, i j s 
Hence we must see what happens to X(Y_) when s = s. and when 

Case (a). Let s = s^ and let p^ and p^ be the critical 

po5.nts between which the non-transverse gradient crossing occurs 

at the parameter (t.,s.). The local change in the graphic is 

k i 
s < s. s > s. 

or its reverse. The corresponding change from X(Y e J) to 
Y ( Y . ) is to insert or delete a subwcrd of the form 
x k J t(±g)«x^^C+g). By the first Steinberg relation we know therefore 

that x is no"t changed. 

t 

Case (b). When s = s^ there are two possibilities corresponding 

to the second and third Steinberg relations. Let x a ^(A) and 

x k J t(u) be the Steinberg generators for the two transverse gradient 

crossings of W(p a(t)) past W*(p^(t)) and of W(p k(t)) past 

W (p.(t)) which occur at the same time t = t.. Here X,u e ( ± T T V). 
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Subcase 1. a i % and 3 i k. 

(i) if a, 3,1y and k are distinct the change in the graphic is 

l % x
 . I » I T Y " 

______ — » > — 

or 

a — T T ' I f * — 
k — * — , __ 

I ^ - I ± — 

I I _L1_* 
A. and y at 

same time 
or 

4 t 1 I—î—I h r 
I * 1 

X and y at 

same time 

(ii) If £ = A > the change in graphic is 
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a 

k X y u X 

or 

k 

fit 

X 

y y 
x 

(iii) If a = k and B = the change in graphic is 

a 

3 

A 
a 

3 

a 

3 

y x 

X and y 

at same time 

In each case the effect is to replace the word xi, o ( ̂  )'x<v Q ( B V 

the word x g(X)*x k«(y). Hence X<Y S) doesn't change in 
StCrsZCi^V]) by the second Steinberg relation. 

- 96 -



GEOMETRY OF THE STEINBERG GROUP 

Subcase 2. 3 = k but a i %. The change in the graphic will be 

a x I 

U Tx ~T~1 
k x . » )[ > ~* ar­

il y I +v 
l , ± _ 1 I * j j 

or 

a f M K — * — 

A , X 
k — ± — T T - — > — — ^ - t — r 

I 

Compare with (3 f) above. 

The effect on x is to replace x
a k(X)*x k^(y) by 

x k £ ( y ) - x a £ ( X y ) ' x a k ( A ) or to replace x
k £ ^ > # x

a k ( x ) hy 
x a k ( A) •x a £(-Xy )-x k £(y) . Hence x doesn't change in St(r J Z E T ^ V ] ) 

by the second and third Steinberg relations. 
This completes the proof of Theorem 1.1. 
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§ 2 . Multi-level Steinberg words. 

Suppose ( n , f ) is a nice pair in 5 such that f:(V;C,D) ( I ; 0 , 1 ) 

is an ordered function and has only non-degenerate critical points. 
Let 0 < r n < rn<...<r < 1 be chosen so that u l n 

(*) if p is a critical point of f of index i 
then < f(p) < r^. 

Let ( V I ; 3 _ > V I , 3 + V i ) = (f" 1( C r ^ . x ^ ] ) ;f~ 1(r\ L_ 1), f' 1(r i)). Let 
p: V V be the universal cover of V and for any subset A c V 
let £ = p~^*(A). Choose paths from each critical point to a fixed 
base point in V and orient the stable manifold of each critical 
point. This data determines as in [ 1 7 ] a based chain complex 
(C*,3 * ( n,f)) where each chain group C^ = H^(V\,3H7\) is free 
over Z C i r ^ V ] with one generator for each critical point of f of 
index i. Furthermore H*(V,C) sH^CC*). 

Now suppose ( n t > f t ) is a path in general position such that 
f t satisfies (*) for all t. The matrices 3 i ( n t » f t ) ' J CJL-1 

will in general vary by left and right multiplication by elementary 
matrices as t varies. More precisely, the procedure of § 1 above 
gives rise to a sequence of Steinberg words 

x = x ( n t > f t > = ^ x o ( l i t » f t > , X i ( n t » f
t > » - ' - > 

where Xi(nt>f
t> = X± l i e s i n St-CZCi^V]), the Steinberg group 

generated by symbols x
p q ^ ) where p and q run through the 
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indexing set consisting of the critical points of f Q of index i. 

(Compare §1 of III below.) Let E ^ C Z C T ^ V ] ) denote the correspond­

ing group of elementary matrices and let E E ^ ( Z [ i r ^ V ] ) denote 

the image of x ^ under the homomorphism S t ^ ( Z [ T ^ V ] ) E ^ ( Z [ T ^ V ] ) . 

Then it follows from Lemma 1.2 above that 

(2.D B ^ V V - ^VV-XI-I • 

To define the invariant E I Ï Ï Q C ^ ) •* Wh 2 we must study how 

X^i1 t>f t) changes as the path (n̂ jf.j.) is deformed. 

Suppose Y s is a deformation of y Q = (n tjf t) to y^ = (ç^jh^) 

where both y Q and y 1 satisfy the one parameter ordering theorem 

(8.1). Then the deformation y g can be taken to satisfy the two 

parameter ordering theorem (8.2). By suspending this situation as 

in §5 of I we can assume that the indices of critical points are 

not too low or too high and hence that the birth and death points 

are independent except in a very small neighborhood of the dovetail 

singularities. 

Important Remark 2.2. The work of §1 of this chapter implies 

that 

X<y ) € 0 S t . ( Z [ i r , < M x I)]) A ' s ^ i 1 

doesn't change unless one of the three changes described in the 

table below takes place. So that the information will be in one 

convenient place we have included the changes in the gradient 

crossings also. Why these take place will be discussed in Chapter IV 
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where we construct Z : T T Q ( ^ ) + Wh 2 and show it is well-defined. 

Table 2.3. 

Exchange relation 

i+1 
k 

i+1 
k ! 

i 

1 

i 

t = a 

W W = <*pq> 
with a k £ = 0 

i+1 P 

k 
, api-A 

i q 
A »a. 
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Birth-Death Relations 

i+1 i+l| 

k — " k <**relabel as boundary  
^ index p 

^ — m \i ^-relabel as cycle 

i j index p 

or 

i+1 i +l| 

k ^^^? ^
 k
 ^/y^m^^ow labeled as k 

£ p f %
 mm0^^00fig0^0^ labeled as I 

i 
i 
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Dovetail relation 

i+1 

i 

t=a 

W W = (apq> 

i+1 

k 

i 
q 

g 

-g-a, 

or 

:+i 

p 

i 
Si 

t=a 

i+1 V f a 

i+1 

P 

i 

£ 

,-1 

g g" 
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In this chapter we discuss the algebra needed to define 

Z: irQ(<P) - Wh 2. 

§1. Presentations of Wh^. 

Let A be any associative ring with identity and let r be 
any countable indexing set. Let St(A) denote the Steinberg group 
formed using the indexing set T: i.e., St(A) is the free group 
on the symbols x

p q ^ (where p,q G T and X G A) modulo the 
usual Steinberg relations (see the Introduction). Let E(A) denote 
the corresponding group of elementary matrices and define K 2(A) by 
the exact sequence 

(1.1) 1 + K 9(A) St(A) E(A) + 1 

Suppose A = Z[G] for some group G. Let W(A) C St(A) 
denote the subgroup of those elements x G St(A) such that T T ( X) = P-D 
where P is a finite permutation matrix and D is the identity 
matrix except for at most finitely many diagonal entries of the 
form ±g for g G G. Let W(±G) C W(A) denote the subgroup gener­
ated by words w (±g) of the form x (±g)x (+g _ 1)x_(±g). Let 

pq pq qp pq 
H(A) C W(A) denote the subgroup of those elements x such that 

TT(X) = D where D is a diagonal matrix as above. Let 

H(±G) C H(A) denote the subgroup generated by the words 

h (±g) = w ( ± g).w (-1). 
pq pq pq - 103 -
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Let W Q ( ± 6 ) = W(±G)H K 2(Z[G]) and define 

( 1 . 2 ) Wh 2(G) = K 2(Z[G]) mod W Q(±G). 

This definition is actually independent up to canonical iso­

morphism of the choice of the countable indexing set r . For if 

T is any other such indexing set let $ T T be a bisection. 

Then the correspondence x
p q ^ A ^ x 3(p) 3(q)^ A^ induces an iso­

morphism from the St and K 2 formed from r to St and 

formed from r . Since K 2 is the center of St(see [ 1 9 , § 5 ] ) , 

this isomorphism is independent of the choice of 3 by Corollary 

9 . 4 of [ 1 9 ] . The induced isomorphism between the Wh^s is 

therefore also independent of the choice of 3 . 

From now on we will take r = {(i,j)| 0 < i , j < °°}. 

Linearly order V by saying that (i,j) < (k,fc) iff either i < k 

or i = k and j < JU 
Let U(A) c St(A) denote the subgroup consisting of those x 

such that if ir(x) = (a ), P 5q ^ T, then 
pq 

(a) a = 0 whenever q < p, and 
pq 

(b) a = ±g for some g G G. 
pp °p °p 

Let T C U(A) denote the subgroup generated by x p q ^ where 

p < q. Let U(±G) denote the subgroup of U(A) generated by the 

elements of H(±G) and T. 
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Lemma 1 . 3 . Every element of U(±G) can be represented uniquely 

as a product h-t where h GH(±G) and t G T. 

Proof of 1 . 3 . Suppose h± •±1 = h 2 -t2 in St(A) where I K GH(±G) 

and t± ^ T. Then h~ 1. ^ = t 2 -t"
1 and hence irCh"1 . ̂ ) = irCt^t" 1). 

Since the right hand side is in ir(T) and the left hand side is 

in T T ( H ( ± G)) we must have ir(t 2 -t"
1) = 1 . Therefore t 1 = t 2 in 

T because TT: T •> E(A) is a monomorphism. See [ 1 9 , 5 . 2 ] . 

Hence h^ = h 2. 

It will be useful to describe Wh 2(G) several ways as a 

quotient A mod B where A and B are subgroups of St(A). 

Recall the sequence 

1 K 2( A) + St( A) ï E( A) * 1 . 

Consider a subgroup F of E(A). Let A = T T ~ * ( F ) and let B C A 

be a subgroup such that T T ( B ) = F . Let x G A . Define 

<(x) e K 2(A)/K 2(A) H B by 

( 1 . 4 ) (x) = x-b" 1 mod K 2(A) n B 

where b € B is any element with ir(x) = Tr(b). 

Lemma 1 . 5 . The element (x) is independent of the choice of b 

and gives an exact sequence 

1 + B A -* K 2(A) mod K 2(A) O B - * 1 . 

The proof is easy. 
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The construction (1.4) is natural in the following sense: 
» » _ i » i i 

Suppose that F C F. Let A = TT (F ) and let B C A be a 
t i t 

subgroup such that B C B and ir(B ) = F . Then there is a 
commutative diagram 

1 •+ B * A* t K 2(A) mod K 2(A)n B ' -* 1 

1 + B -»• A K 2(A) mod K 2<A)n B 1 

This construction will be used in three cases 

(1) A = W(A), B = W(±G), F = T T ( W ( A ) ) 

(2) A = H( A), B = H(±G), F = ir(H(A)) 

(3) A = U(A), B = U(±6), F = T T ( U ( A ) ) . 

Lemma 1.6. In each of the three above cases the condition 

T T ( A ) = T T ( B) is satisfied; furthermore, in each case we have 

K 2(A) n B = K 2(A) n H(±G). 

The proof of the second part of (1.6) is entirely similar to 

the argument showing Th. 9.11 in [19]. We leave it as an exercise. 

Also, we shall just prove that T T ( A ) = T T ( B) in the case A = W(A) 

and B = W(±G) and leave the other cases to the reader: 

Let x G W(A) and let M = T T ( X ) . Then M = P*D where,for 

some large integer r > P is an r x r permutation matrix times a 
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diagonal matrix with ±1 as diagonal entries and D is an r x r 

diagonal matrix with entries g 1,...,g r € 6 . Let e:Z[G] Z be 

the augmentation with e(g) = 1 for g € G. Since M is a product 

of elementary matrices so is e(M) = P in GL(r,Z). Hence det P = 1 

and P ^ TT(W(±1)) which is contained in T T ( W ( ± G ) ) . N O W consider 

D. Multiplying D on the right by the 2 x 2 matrix 

\ J = ^Wi2 («l ) W 1 2 ( - 1 ) } 

produces a diagonal matrix with entries l,g 2g 1,g^>•••>g p • 
f 

Continuing this process reduces D to a diagonal matrix D with 
only one entry which is possibly not 1; namely g = g r..-g 2g 1« 

t 
However, g is a product of commutators because D has determinant 

1 over the ring Z[H] where H = G/[G,G]. Finally we note that 

any diagonal matrix with a single commutator entry is in T T ( W ( ± G ) ) 

because of the identity 

(--v* > (* .4v)(*"vl J 
Hence T T ( W ( A ) ) C T T ( W ( ± G)). q.e.d. 
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The naturality of (1.4) gives the following commutative diagram: 

1 
1 

1 

W ( ± G ) 

H ( ± G ) 
! 

U ( ± G ) 

W(A) 
H(A) • 

U(A) mod H ( ± G ) 

mod W ( ± G ) 

W h 2 ( G ) 

mod U ( ± G ) 

1 
1 

1 

Diagram 1.7. 

In what follows we shall sometimes denote TT(G) by G for 
any subgroup G of St(A). 
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§ 2 . Relations in the Steinberg group 

For simplicity we use the indexing set r = { 1 , 2 , 3 , . . . } with 

the usual linear ordering to form St(A) in this section. The 

lemmas below translate easily to statements about St(A) formed 

from the indexing set r = {(i, j)|l < i, j < 0 0 } . 

Exchange relation. Let x G St(n,A) and let A = (a^j) = ir(x) e E ( n , A ) . 

Suppose n > 3 and that a ^ = 0 for some pair ( k , £ ) with 

1 < k , I < n. Then 

2 . 1 

Lk 
ik >x= x îl 

11*1 

X* 

in St(m,A) where m > n and A is any element of A. 

Proof of exchange. The third Steinberg relation implies that 

(a) TTC TT ïïïïï 

<« TTĈ TTk-ïl • 
j ̂  it j**, 

Let [a,b] = aba^b" 1 and recall the commutator identities 

Ca,b] = [ b j a ] " 1 

[a,b»c] = [a,b].[a,c]*[[c,a],b]. 
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Together with the Steinberg relations they imply that 

«•> T T I ^ - i l • f T T * ' 1 - 4 1 -
i*k I itk 

<« 7 T K - • k •TT>âa • 
J** 1

 J L 
Set a = T T X Ï - X *nd

 ^ = T T X m j J
 " 

i*k j** 

Then from (c) and (d) we must show that 

(e) x"1- CôfX^J-x = tx^ m,e3 in St(r,A). 

The left hand side of (e) is equal to 

Cx^-a-x, x ^ - x ^ - x ] . 

Hence to prove (e) we must show that 

(f) x^.cfx = x ^ and 
xm 

( * } x " 1 # x m k x = * ' 

Let C C St(m,A) and R_ C St(m,A ) denote the subgroups m m 

generated by symbols xX^ and xj^ respectively. These subgroups 
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map monomorphically under I T to E(m,A). ̂ *^ The second and third 

Steinberg relations show that 

x - 1«a»x G C and x""L«xi. »x G R • 
m mk m 

Hence to verify (f) and (g) it suffices to check these 

identities on the matrix level; i.e., in E(m,A): 

(h) • TO** i*k 
mm 

(i) 
^0 1/ 

•V 
mk 

A 0' 

0 1- 1** 

i*k 
i*k 

These are straightforward computations once we recall that a ^ = 0; 

because then 

TT 
i*k 

eim 

I ( £ t h col of A)*x\ 

r ° — 1 i 

and 

(*) See [25, p. 205-206]. 
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T T e V . 
I m] " T K

 1 i 
j*jt ^ c T n row of A -1 

Q.E.D. 

Corollaries of "Exchange". 

(A) The Steinberg relations (ii) and (iii) are special cases of 

the exchange relation. 

1. Steinberg (ii): t xij> xpq 3 = 1 i f 1 * * ^ 3 * P* 

u Choose x = x , k = n and A = l and X = X. The pq 
"exchange" is then 

xC\ -x U = x U -x*. . 
ij pq pq ij 

2. Steinberg (iii): [x£ b,x b
B
c] = x** if a i b i c * a. 

Choose x = x ^ , k = c, I = b, and X = 3 • The "exchange" 

is 

a 8 6 a a B 
xac* xbV xab = xab- xbc • 

(B) K 2(A) C center of St(A): Suppose y G K 2(A) and x® b e St(A). 

Choose x = y, k = b, I = a, and X = a. "Exchange" gives 

a a 
x a b * y = y**ab ' 
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Dovetail relation, (n > 3 ) . Let x e St(n,A) and I T ( X ) = (a^) e E ( n , A ) . 

Let 1 < k < n and let p > n. Let u G A* be any unit of A. 

Then 

(2.2) x p k ( u ) ' x k P
( - u " 1 ) - x - ( I " p j ^ k ^ j = w p k ( u ) ' X 

M*P 1 

in St(p+1 ,A). 

Proof. Multiplying (2.2) through on the left by ^Xp k(u) ^ ^ ( - u ) " 1 ] " 1 

gives 

x
u ' a k j 
pj v * x 

which is a special case of the exchange lemma. 

Birth and death relation. Let A = Z[G]. Let x G St(n,A) and 

A = T T ( X ) = (a^) £E(n,A). Assume n > 3 . Assume a k J= +g 
for g e G and 1< k , I < n and also assume that a, . = 0 for 

k} 
j i k and a^% = 0 for i i K Let n < p < m. Then 

(2.3) w k p(±g>.x = x - * * p ( 1 ) 

in St(m,A). 
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Proof. It suffices to prove that 

x _ 1 ,wkP

( ±«) *x = Ma>(1) • 

But this follows from 

(a) x"1,xkp t g ) *x = x a p ( 1 

and 

(b) x - ^ x ^ C ï g - 1 ) * = x p 4 ( - l ) . 

To see why (a) and (b) hold, note that the second and third Stein­

berg relations imply that the left hand side of (a) is in 

C p C St(m,A) and the left hand side of (b) is in R p C S t ( m , A ) . 

Since x^ p(+l) G C p and x p &(-l) G R p, it suffices to prove 

( O A" 1 , ekp (*8)'A = e * p ( 1 ) 

<d> A - 1 . e p k ( + g " 1 ) - A = e p £(-l) 

because the groups C p and R p map monomorphically into E ( A ) . 

But (c) and (d) are easy matrix computations, q.e.d. 

Proposition 2.4. Let A = Z[G]. Let A e St ( A ) and suppose that 

for i = 1,2 there are elements P£*Qi € W(±G) such that setting 

P i = ir(Pi), = *»r(Qi), and a = TT(A) in E(A) we have 
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p^.a»q^ = for some v^ G ir(T). Then 

P 1.A.Q 1 = P 2 * A , Q 2 m ° d U ( ± G ) -

First we prove 

Lemma. Let Q € W(±G) and V € T. Let q = TT(Q) and v = ir(V). 

Suppose that q-vq" 1 G ir(T). Then Q «V •Q"1 G T. 

Proof of lemma. Assume for some large n > 0 that Q,V G St(n,Z[G]). 

As in [19, p. 72] write q = a*d where a is an n x n permuta­

tion matrix and d is an n x n diagonal matrix with entries 

e 1,...,e n of the form ±g for various g's in G. Write V in 

lexicographical order V = al where for 1 < k < n - 1 

z 
n 

i=k+l 
x k i ( X k i ) 

Then as in [19, Cor. 9.4] 

xa(k),a(i)(ekxkiei1 } 

where for 1 < k < n - 1 

xa(k),a(i)( 

i=k+l 

n 
xa(k), a(i) ( ek xki ei 1 } 

Let $, = i r ( R ) G E(n,Z[G]). The a ( D t h row of q.v.q'^ " g, 
x ^ i=n-l K 
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is the a(l) L 1 1 row of because, for i > 1 $^ is a product 

of symbols x
a(i) a( j ) ̂ i ^ij 8^ 1) where a(i) t that is, the 

elementary matrices e
a(i) a(j)^i^ij 8^ 1^ f o r i > 1 d o n o t a d d 

anything to the cr(l) t h row. Since q'vq" 1 G T T ( T ) we conclude 
that e^Xy-eT1 = 0 whenever a(l) > a(j) and thus 3 1 € T . This 
implies ^n-l""*"*^2 G ^(T) and we can proceed to show as above 
that 32

 € T. Continue in this way to show that all k e T and 
therefore Q-V-Q""1 G T. 

Proof of 2.4. First note that v 2 = ( q ^ ' q ^ ^ ) •v1* ( q ^ 1 - q 2 ) : from 

hypothesis we know a = P ^ ^ i ' ^ î 1 = P2^"#v2*q2^" hence 

V 2 = P 2 P 1 1 V l q î l q 2 = ( P 2 P l 1 ) ( q l 1 c l 2 ) ( q l l q 2 ) " 1 ^ ^ l 1 q 2 ) # 

Since v i e ir(T) we have (p 2P^ 1) ( q ^ 1 q 2 ) = 1-

It then follows from the lemma above that (Q* 1 •Q 1)-V x•(Q" 1*Q 2) € T 
and hence 

( Q ; 1 - Q 1 ) - V 1 - ( Q ] ; 1 - Q 2 ) = v2 

or 

Q -m •Q- Q . •v • Q ; 

Here V i is the lifting of v i to T for i = 1,2. 

Now commutativity of Diagram 1.7 shows that 

- 116 -



MORE ABOUT WH 2 

P1*A*Q1 mod U(±G) = P^/Aj/Q^V" 1 mod H ( ± 6 ) 

= A-Q-^V" 1 mod W(±G) 

= A-Q 1-V^ 1-Q~ 1 mod W(±G) 

= A - C ^ - V " 1 ^ " 1 m o d W ( ± G )  

= A-Q^V" 1 mod W(±G) 

= P^A-Q^V" 1 mod H(±G) 

= P 2*A-Q 2 mod U ( ± 6 ) 
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§3. Construction of £: ft ->» Wh^. 

This section gives the first step in the construction of 

Z: Tr 0(f(M,3M)) - W h 2 ( T r 1 M ) . 

Let CQ be the free, left A-module based on { Z Q} where 

0 < a < «>. For 1 < i < » let C^ be the free, left A—module 

based on {b?,z?} where 0 < a < ». Then C i = B i © Z i where B i 

and are the free A-submodules of C^ based on {b?} and 

{z?} respectively. Let St^(A) be the Steinberg group formed 

from the indexing set r = {b?,z?} or r = {z?} when i = 0. Thus 

St^(A) is generated by symbols xpq^ A^ where p = some b? or 

z? and q = some b? or z? . The b? and z?• will be 

called respectively the boundary indices and the cycle indices in 

dimension i. 

We shall say that b? and z£_i a r e corresponding indices. 

Let E^(A) be the group of A-automorphisms of C^ generated 

by the elementary matrices e
p q ^ A ^ a n d l e t ^j.1 St^(A) E^(A) be 

the homomorphism which sends x_( A) to e _ ( A ) . Define * pq pq 

S t P ( A ) = © St.(A) 

St (A) = © St. (A) ev • i i=even 

St ,,(A) = © St.(A) 
o d d i=odd 1 

Similarly, let 
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E P(A) = ©E.(A) 

Eev ( A ) = i=£ven Ei ( A )  

E o d d ( A ) = i?odd Ei ( A ) 

If A = Z[G], let W i(±G)C St^A) denote the subgroup generated 

by the words w^(±g) where g € G and p and q are in the 

indexing set {b?,z?} . Let 

w p ( ± 6 ) = e w . (±G) 

u i 1 

W (±G) = © w . ( ± 6 ) ev • i i=even 

W ,,(±G) = © W.(±G). 
o d d i=odd 1 

Now let C be the graded A - module {C i} and let 

3 = {3^: •+ C^_1> be a boundary operator; that is = 0 

where composition is read from left to right. A contraction 

operator 6 = { 6̂ : C^ + 1> for 3 is a collection of A -linear 

maps satisfying 6̂ o 6^ + 1 = 0 and 6i° 9i+i + 9i° ̂ i-i = ^ d o n 

Let tf denote the collection of such pairs. Then Stç(A) acts on 

the left of Ç" as follows: Let x = (xQ,x^,...,x^,...) GStçCA) 

and let (e Q 9e^9... 9 e ^ 9 . . . ) = ( TT q (x Q ), ̂ (x.^ , . . . , T N C X.^) ,. .. ) GEçCA). 

Let (3, <S) G if and define 

x-( 3, 6) = (x*3,x-
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where 

x . a = { e - . a . ^ } 

x-6 = {ei-fii-eT^} 

The action of St c(A) on the right of Ç is given by 

(3, 6)-x = x " 1 - 0 , 6 ) . 

We shall always be concerned with pairs (8,6) of the form x«(u),o*) 
for some x G St c(A) where (w,a) is the standard pair given by 
the equations 

w
±(z?) = w

±(z?) = 

w
±(z?) = 0 

and 

a±(b? ) = 0 

a i(z ±) - b i + 1 . 

Note that pairs (3^5) = x*(a),a) satisfy 3- = u)^ and ^ = a-
for almost all basis elements b® and z?. 

If A = Z[G] and (3, <5) G Ç we say that (3,6 ) is complex 
of elementary projections provided that for each i > 0 

3^(basis element) = 
±g (basis element) 

or 
0 

Let fl C St c(A) denote the set of all x G St c(A) such that 

x-(a>,cO is a complex of elementary projections. The aim of this 
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section is to construct a set map 

E :fl - Wh 2(G) 

which, as we shall see in the next chapter, will induce the homo-

morphism 

Z-: T T 0 ( ( P ) + W h 2 ( 7 r 1 M ) . 

For suppose (n^f^), 0 < t < 1» is a n ordered path as in § 2 of 

I I where each f^ goes from ( M x I ; M x 0, M x 1) to ( I ; 0 , 1 ) 

and fg'^1 G £• Suppose further that all the birth and death 

points are independent. Then under a suitable identification (see 

I V , §1) of SSt^ZCTT-jM]) with a subgroup of St c(Z[TT-JM]) we wi] 

have 

x ( n t , f t ) e n 

and hence can apply £ to get an element of Wh2(ïï^M). 

Recall that our "standard" Steinberg group St(A) is formed 

using the indexing set T = {(i,j)|0 < i, j < «} which is 

linearly ordered as in §1. Make the following identifications: 

z2k * (2k,a) , k > 0 

+ (2k-l,a) , k > 1 

(*) 2 k 

b2k+l + ( 2 k ' a ) ' k > 0 

z2k+l * ( 2 k + 1 ' « ) , k > 0 
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This induces homomorphisms 

St (A) St(A) ev 

St Q d d(A) St(A) 

by which we can consider any element of St or St ,, as an 
ev odd 

element of St(A). 
Let C = © C. and C ,, = © C. and let M be the ev • - i odd • _^ j j i i-even i=odd 

free A-module generated by the indexing set r« The correspondences 
(*) induce identifications C ^ M and C , . ̂  M which we hence-

ev odd 
forth take for granted. 

For any (9,6) e the A-linear homomorphisms 

9«..+ <5„ : C •> C , , and 3 + 6 ,-, : C , , C are inverses Of ev ev ev odd odd "odd odd ev 
one another. For example, & + a = identity = 

ev ev 
^odd + aodd* Also, if x e St^(A), then for the pair 
(x«u),x- a) = x» (a), a) we have 

X'"ev + X % v = 7 { T T X 2 i TT x2i+l) G E ( A ) 

\ CKi 0<i / 

and 

xm%dd+ x-°odd
 = ^ ( T T x2i+i • TT x2i) e e ( a ) 

\0<i 0<i / 

where x = (x^,x^,x 2>...). 

Now let A = Z[G]. 
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Lemma 3 . 1 . Let z e ft CStçCA). Then there is a u € W C ( ± G ) such 

that u»z €ft and uz«w + uz«a € T T ( U ( A ) ) CECA). 
w w 

Proof. Since z e ft, z«a> is a complex of elementary projections 

and we can find a u in Wç(±G) such that uz-o) satisfies 

(uz-u ) i + 1(bJ + 1) = ±g a-z? 

and 

<uz.*))i+1(zj+1) = 0. 

This is the algebraic analogue of Step 3 in the proof of Prop. 3. in VI. 

Therefore 

(uz.a)i(z«) - ± g ; H f + 1 • n ? + 1 

and 

(uz.o)i<b«) = ç ? + 1  

for n ? + 1 e Z . + 1 and ç « + 1 e C . + 1 . 

This implies that 

uz-o) + uz *a e T T ( U ( A ) ) . ev ev 

Lemma 3.1 allows us to define 

I: ft + Wh 2(G) 
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as follows: Let x S il and choose u e W c ( ± 6 ) as in ( 3 . 1 ) . Set 

( 3 . 2 ) E(x) = ^ T r « 2 i - x 2 i ) • ( T T x U + 1 - u 2 i + l ) B o d U ( i S ) ' 

Here x = ( X Q 9 X ^ , . • • ) ,. u = (u Q,u^,...), and we consider W l ^ G ) 

as U(A) mod U(±G). 

Here is why ( 3 . 2 ) is independent of the choice u: The second 

Steinberg relation gives 

E(x) = u -X-u mod UC±G) ev odd 

where 

u e v = Y u 2 k
 € W ( ± G ) 

uodd = Y U 2 i + l € W ( ± G ) 

X-(7 x«)-('i"S.i) • 

Let v € W ç ( ± G ) be another choice as in ( 3 . 2 ) and define v e y and 

v as above. Use ( 1 . 3 ) and ( 1 . 6 ) of § 1 to find h ,h e H ( ± G ) odd u v 
and t

u>" t
v
 G T s u c n that 

ff(uevX*uodd) = 1 l ( h u ' t u ) 

and 

ir(v «X-v = ir(h »t ). ev odd m v v 
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Then using u to compute (3.2) we have 

E(x) = h~*-u -X-u mod U(±G) u ev odd 

and using v we have 

E(x) = h " 1 ^ -X-v mod U(±G). v ev odd 

By Proposition 2.4 the right hand sides of these equations are equal 

mod U(±G). 

Q.E.D. 
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CHAPTER IV. The Wh^ invariant for pseudo-isotopies. 

In this chapter we construct a homomorphism L Î Ï Ï Q C ^ ) + W ^ C T T ^ M ) 

for any connected manifold M . In Chapter VI below we show that £ 

is surjective for n > 5 and identify the kernel of z geometric­

ally. 

§ 1 . Definition of Z I T T Q C^) Wh^. 

Let M be any smooth connected manifold (compact, possibly 

with boundary) and let [f] € TTQ(&) be a class represented by the 

function f G &. Join the standard projection p on M x I to 

f by a path f^ in where f Q = p and = f ( 0 < t < 1 ) . 

Deform f^ by a small amount keeping f Q and fixed so that 

the one parameter family is generic in the sense of (b) in § 2 

of I. Now choose a nice one-parameter family of gradient 

like vector fields for the path f^. If necessary suspend the 

family (n^jf..) as in § 5 of I to get a new family on ( M x D ) x I, 

which we still call (n t>f t),
 a n<* which has the property that if 

p is a critical point of any f^ then 3 < index(p) < n + k - 2 . 

Using the general position methods of §4- in I, deform the path ( n t > f t ) 

keeping ( n 0 , f Q ) and (r^,^) fixed so that it satisfies the one-

parameter ordering conditions (Proposition 8 . 1 of Chapter I); so that 

there are only finitely many crossings, births, deaths, and i/i-

intersections and they all occur at different times; and so that 

each f t is ordered and the birth and death points are independent. 
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Now let Vi>9m''Vm denote the birth points in (M x D ) x I 

of the various functions f t such that p^ is a birth point for 

f ^ where 0 < < ^ < # • • < a
 m

 < 1 # Suppose index p^ = k^. The 

graphic near time t = ou looks like 

k i + l 

ki 

t = a. 

Choose a small e > 0 so there are no gradient crossings in the 

interval [o^ - e, + e]. For t = let b^(t) = p i = z^(t) 

and for < t < + e let b^(t) be the critical point of f^ 

of index k^ + 1 coming from the birth point p^ and let z^(t) 

denote the critical point of index k^ coming from p^. Choose 

once and for all a base point v G M x O x l c ( M x D ) x l . Then 

(a) Select a base path y^ from v to p^ 
(b) Let < t^ < + e and choose orientations of W(b^(t^)) 

and W(z i(t i>) so that if 3 = 3 i + 1 ( n t. > f
t. > "then 

3(b i(t i)) = + z i ( t i ) . 

(c) Identify each b^(t^) with some boundary index in {^j^z®} 

where j = + 1 and identify each z^(t) with the 

corresponding cycle index in {b?,z?} where j = k^. Thus 
2 2 if b ^ * ^ goes to bj then z ^ * ^ goes to z^^. The 

choice for b^(t^) determines the choice for z.(t^). 
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This data determines for each j > 0 a word 
Xj<ntfft) = Xj € St.. (zC^M]) as in Chapter II. Furthermore, since 
the function f with which we started has no critical points we 
have 

X = <X 0»X 1»---») e « c St^zCirjM]) 

One way to see this is to use independence of birth-death points and 
the independence of trajectories principle to deform the path 
( n t > f " t ) , keeping each f^ ordered and each birth and death point 
independent during the deformation, so that for some 6 > 0 all 
the births occur at times between 0 and 6, all the deaths occur 
at times between 1-6 and 1, and there are no gradient crossings 
for 0 < t < Ô or 1 - 6 <t < 1. Then 3 ( n ô , f ô ) is just the 
standard-complex with boundary operator u> and ^ n i - $ > ^ i - ^ = X # w 

is a complex of elementary projections because f has no critical 
points. 

Finally we use (3.2) of Chapter III to define 

E : T T 0(&) Wh 2(Z [ T r 1M]) 

by the formula 

(1.1) Z(Cf]) = z ( x ) . 

To prove that this gives a well-defined map we first show below 

that (1.1) is independent of the choices in (a), (b), and (c) above. 

- 128 -



THE WH 2 INVARIANT FOR PSBUDO-ISOTOPIES 

In §2 and §3 we show that £ is independent of any deformation 

of the path ( n t j f t ) which keeps ^ H Q J ^ Q ) fixed and moves (n^,f^) 

in &. 

Making choices differently in (a) through (c) produces a new 

*Xf which can be derived from the original word x b v applying the 

following operation a finite number of times (cf. [19, Cor. 9.M-]): 

Let x = ( X Q * X]_> • • • ) e Let p and q each denote a boundary 

index in dimension (or degree) k + 1 and also the corresponding 

cycle index in dimension k. (This is done because under the 

identifications (*) in §3 of Chapter III the boundary indices and 

corresponding cycle indices become the same). Let g G TT-^M. Then 

X is replaced by x ' = (XQ>XIX 2>•••>
 G ft where 

Xj = Xj f o r J * k + l 

*k = w p q ( ± g ) ' X 3 c " W p q ( ± g r l 

*k +l =
 W p q ( ± g ) ' X k + r

W p q ( ± g r l 

We verify that Z ( x ) = Ẑ X* ) ^ n t h e c a s e 9c + 1 = 2d and leave 

the case k + 1 = odd to the reader. Write x a

 = j T x 2 j and 

Y 0 = Xo^; T • Choose a u G W P ( + Ï Ï , M ) as in (3.1) of III to 
3 j*d Z 3 ~ 1 L 1 

compute 2 (Y ! ) . Write u = u »u n where u £ W A ( ± T K M ) and 
A a 3 a 1 

u « € W , , ( ±77-, M). Then we have p odd 1 
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r(x') - «a* wpq ( ± g )' X2d' Wpq < ± g r l' Xa' X"Ê : L , Wpq ( ± g )' X2d-l* wpq ( ± g r l* U"B 1  

= uc. , Wpq ( ± g ) , X2d , Xa- w

Pq
( ± g r l' Wpq ( ± g )' Xe 1* X2d-l' wpq ( ±e )" 1* u"6 1 

= u a - V ( ± g ) # X 2 d ^ a - x V # X 2 d - l # W p q ( ± g r l # U " 3 1 

= I(x) mod I K + I ^ M ) 

because the word u

a'
wpq^ ±g^ * u 3" wpq^*8^ e Wç(±iTjM) is a choice 

which satisfies ( 3 . 1 ) of III for the word x« Note that as elements 

of W 0 ( ± T T T M ) the first w (±g) is in W and the second is in G 1 P<1 ev 
Wodd* Considered as elements of St(z[ir1>M])via (*) in § 3 of III they 

become the same. 

Remark. In view of (5.2) in §5 of I the invariant 2(x) does not 

depend on the number of times (n t»f^) is suspended. 
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§2. The three basic relations. 

Any deformation of ( n t > ^ t ) as a path in (/,fi;p) can be 
made generic and then suspended so that the two parameter ordering 
conditions (8.2) of I can be realized. In particular, the independence 
of birth and death points is maintained except when the deformation 
passes through a dovetail singularity. As pointed out in §2 of II 
the word x = x ( n t > f t ) e StçCzCi^M]) does not change unless one of 
the deformations in Table 2.3 of II occurs. This geometrically 
oriented section analyzes how x changes to a word x ' when these 
three changes in the graphic take place. The next section shows 
that the Z invariant stays the same under the algebraic changes in 
the word x* 

(A) The exchange relation. 

Let ( n t 5 f t ) be a path with no gradient crossings where each 
f is an ordered function with only non-degenerate critical points. 
Let the graphic be 

i 
I i 

i+1 "~ 

i , — — 

t 
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The matrix = 3i+l^ nt' ft^ î n d e P e n d e n t o f * because there 
are no gradient crossings. Represent it as the matrix ^ apq) where 
a € Z[ir^M]. (Thus we are assuming that the critical points of 
f Q are based and the stable manifolds are oriented.) Now suppose 
that it is possible to deform the graphic as follows via a deforma­
tion of (n+jf^): 

i+1 a 
i 

a 
c 

b 

Diagram (a) 

Then a ^ = 0 where p k is the lowest critical point of f Q of 

index i + 1 and q^ is the highest critical point of index i of 
f 0 " 

Lemma 2.1 (exchange). The most general change in the gradient 

crossings which occurs as a result of the above deformation of the 

graphic is 
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i+1 i+1 

P 

k 

api'x 

i i 

q 

•a, 

_Jsa_ 

Here A is any element of n^M. Thus the word 

x p k ( a p * , x ) 

appears in degree i + 1 and the word 

xfl (À«a, ; 
Jlq kq 

appears in degree i. (Note that by the second Steinberg relation 

the order of the gradient crossings in degree i +1 and in degree 

i is not important.) 

Proof of 2.1. Let f: X n + 1 + R be a Morse function on a compact 

manifold such that for some interval [a, C R there are just two 

non-degenerate critical points p and q in f~^([a,£]). Suppose 

index p = i + 1 and index q = i. Let n be a nice gradient-like 

vector field for f. For any t e R let X t = f _ 1 ( t ) . Let c be 
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an intermediate value between f(p) and f(q). Suppose 

S 1 1" 1 = W*(q) n X Q and S 1 = W(p) n XQ are in general position in 

X c so that they intersect transversely in finitely many points 

x l S...,x m. Then V n" 1(q) = W*(q) n X& (see Diagram (a)) is the 

interior of an (n-i)-dimensional Z -manifold whose m leaves fit 
m 

together along the (n-i-1)-sphere S 1 1" 1" 1 = W*(p) n x & 

(i.e. V(q) = V(q) U S 1 1" 1" 1 is a Zm-manifold with V(q) the 

stratum of regular points and S11""1""1 the singular stratum). 

In a neighborhood of S11"1""^" the j**1 leaf is determine* 

as follows: Take a small disc D 1?" 1 C S n - 1 in X which contains 
3 c 

X J but misses the other intersection points. Push D?""1 - x^ 

along the trajectories of n until it is contained in X &. This 

gives the leaf L^. Similarly V x(p) = W(p) n x^ is an i-dimen-

sional, Zm-manifold whose leaves fit together along the (i-D-

sphere S 1 " 1 = W(q) O X b-

We shall need to know the standard models for intersections of 

two parameter families of Zm~manifolds. 

A neighborhood U of a point in the singular stratum Z of 
a Z -manifold V n is of the form Y x R 1 1 "" 1 where Y is the m 
cone on m points. If 0 G Y denotes the cone point then 

U n £ = 0 x R 1 1 " 1 . Consider the Z -manifold P p C R n and the 
y 

Z^-manifold Q q C ^ n defined as follows where (p - 1 ) + (q - 1 ) = n - 2 

Let R n = R x R x R x R q " 2 x R p - 1 . The first R coordinate is the 

t-coordinate and the second is the s-coordinate% Let 

Y C 0 x ( - 0 0 , - 1 ] x R x 0 x 0 be the cone on y points with 

vertex y = ( 0 , - 1 , 0 , 0 , 0 ) : 
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S * 

Y 

Let Z C R x [ 0 , « > ) x o x o x o be the cone on v points with 

vertex z = ( 0 , 0 , 0 , 0 , 0 ) . 

s t 

Let P = 0 x Y x 0 x R P " 1 be the Zy-manifold with singular 

stratum Z = 0 x - i x 0 x 0 x R P " 1 and let Q = Z x R x R ^ " 2 X O 

with singular stratum I I = 0 x 0 x R x R ^ " 2 x o as in the following 

diagram: 
n Q 

s t 

pt Et - 135 -
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The family P T = t x Y x O x ^P"1 with Z t = t x - l x O x O x R P " 1 

is a one parameter deformation of P = P Q . Consider an isotopy: 
2 2 . H : R •> R as in the diagram 

s 

9Î 

*0 t 

This induces an ambient isotopy of JR which deforms the one 
parameter family in such a way that at time s = y the 
singular set Z of P intersects the singular set II of Q in 
a single point as in the diagram below: 
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Q 

n 

s 

't 

p. 

This isotopy ( or its reverse) is the standard local model for 
i 

a deformation of P to P^ = 9]/Pt̂ ' Note that there will be 
» 

finitely many times t when n int Q is not empty and also 
finitely many times t where IT n int P^ is not empty. 

Now for i = 1,2 let be a Z^-manifold of dimension n^. 
Let E^ denote the singular stratum of (of dimension n^-1). 
Let a 1 = g= C n be two-parameter families of imbeddings 
where (t,s) runs through a parameter domain D = [a,b] x [c,d]. 
Assume (n^l) + (n 2-l) = n - 2 and that a* s & ^ n s C E 2 ) = * 
for (t,s) € 3D. Then using the "elementary paths" technique of 
[3] we can show that each a 1 can be deformed rel 3D to 
new two parameter families (which for simplicity we call by the 
same names) such that - 137 -





THE W H 2 INVARIANT FOR PSEUDO-ISOTOPIES 

By deforming n z just above the a-level and just below the b-level 

we can arrange that, for each z € D, S^ _ 1(z) intersects S^( z) 

transversely and s£(z) intersects Sn^"1(z) transversely in 

f" 1(b). Let D C int D, be a subdisc with 3D close to J = 3D, 
z 1 i 

such that W (p k(z)) nw(q^(z)) is empty for zG D ] L - int D. 

For each z e D let 

S^" 1(z) = W(q £(z)) - n f'^c) 

S^" 1" 1(z) = W*(p k(z)) H f ^ C c ) 

V i(z) = W(p (z)) n f^Cc) 
a a z 

V ^ C z ) = W*(q e(z)) flf'^c). 

Since transversality holds in the a-level and in the b-level and the 

V^(z)'s are diffeomorpKic for z € D and so are the V 3

n - 1(z) ls. 

Now by a z-preserving isotopy of the c-level deform n z rel 3D so 

that the two parameter families S^ - 1(z) and S J J" : L" 1(z) satisfy 

(i) and (ii) above. For simplicity we assume there is just one 

parameter value z Q = (t 0,s Q) e D where S^" 1(z Q) n s j j " 1 " " 1 * 2 ^ ) ^ 4> • 

The general case reduces to this one easily. Let g G TT^M denote 

the loop obtained by going along the base path to q^(z Q), then 

down the stable manifold WCq^Czg)) to the point S ^ ' ^ C Z Q ) n S^" 1" 1(z 0), 

then down the unstable manifold W*(p k(z Q)) to p^Cz^), and finally 

back along the base path of p k<z Q) to the base point. Near z Q 

the deformation of S, _ 1(t,s) and V n

û"
1(t,s) is like in the 

standard model. For s < S g , s j "*"(t,s) misses Vr^"1(t,s) (for 

t near t n) but for s n < s there are finitely many times t 
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near t Q where S^"1(t,s) n V 1 1" 1 (t,s) i 0. Each such time t is 

where a new i/i-intersection takes place between q^(t,s) and 

q £<t,s). The algebraic number of leaves in the singular manifold 
V n" 1(t,s) is determined by the coefficient a, in the boundary 

p K P 

matrix and this forces the coefficient in the Steinberg symbol 

x^£ to be (±g)-a^ . Similarly for s Q < s there will be 

finitely many times where S?~1""1(t,s)n V 1(t,s) is not empty and 

at each such time t there occurs a new i+l/i+l-crossing between 

p (t,s) and p,(t,s). The algebraic number of leaves in V 1(t,s) 
(X K (X 

is determined by the coefficient a in the boundary matrix and 
hence the coefficient in the Steinberg symbol x ^ will be a^^C+g). 

To illustrate this proof of the exchange lemma we give a 
simple example. Consider the constant family (r^jfj.) = (n>f) 9  

0 < t < 1, with a graphic like 

i+1 
p l 

P 2 
c 

i *1 
*2 

Suppose that 3£ + 1(n>f) is "the 2 x 2 identity matrix geometrically: 

which means the following: Let S 1 = W(p ) n f~ 1(c) and 
a a 

S 1 1" 1 = W*(q J n f^Cc). Then S 1 n S 1 1" 1 = <J> for a f f while 
P P ci p 

both intersections S^ n S^" 1 and S^ n S^"*1 consist of exactly 

one transverse point. Let g € T T ^ M . Then by pushing the q^ line 

up over the p 9 line and pulling it down again we can deform 
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(n^jf^) so that for 2 < i < n - 2 the change in the graphic looks 
like 

i+D i+1 ±g 

(2 < i < n-2) 

i i ±g 

(2.2) 

To see this first deform the graphic so that it looks like 

P l 

P 2 

q l 

q 2 

t = 0 

Let S^" 1 = W(q x(t)) O f^ 1(c) 

Dt = V l ( t ) = W ( P l ( t ) ) ° f t 1 ( c ) 

S ^ " 1 " 1 = w*(p 2(t)) n f" 1(c) 

D*" 1 = W*(q 2(t)) H f^ 1(c). 
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For simplicity assume that the families S^" 1 and are 
constant near t = 0. The isotopy of the intermediate c-level 
which produces the described deformation of ( n t > f t ) is illustrated 
by the diagram 

base point 

base path 

si-1 22 = 1 
±g 

si-1 

D 1 

Dn-i. 

cn-i-l 

The lemma (2.1) is called the "exchange lemma" because it can 

be used to replace i/i-crossings by i+l/i+l-crossings as follows: 
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i+1 , -g 

.3) 
i g -g g 

8(n,f) = id, 2 < i < n - 2 

(B) Birth-death relations. 

Consider the following two deformations of graphics arising 

from a deformation of a path (n t>f t), 0 < t < 1, such that through­

out the deformation the birth and death points are independent: 

i+1 

i 

a- 6 t=a a+ 6 t=a t=a 

(1) 

- 143 -



HATCHER & WAGONER 

i+1 

i 

t=a t=a t=a 

(2) 

Suppose ( n t > f t ) is a path in general position as above and 
let x = X ( n t , f t ) = ( X Q J X ^ * - •> be the Steinberg multi-level word 
obtained as in §1 for the left most graphics. 

Let X ^ + 1 = y x where x is the Steinberg word of i+l/i+1-
crossings which occur (in the left most graphic) before time t = a-6 
and y is the word composed of crossings (in the left most graphic) after 
time t = a+6 . Similarly write = h*a. The deformations of ( n t j f t ) 
indicated by the above changes in the graphic result in a new Stein­
berg word x ! obtained by replacing y and b by words y 1 and 
b f described below in (2.4). (Actually we only do the case corres­
ponding to the first diagram and will let the reader do the second 
case.) 

Redraw the diagram 
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, x j y * 1 
i+1 - ' 1 

k 1 k ' S* r 

a ^ b y/ I r 

1 i = I 
a I b 

t=a- 6 t=a a+6=t t = a 

For (n^,ft> corresponding to the left hand graphic let 

p^.(t) denote the lowest critical point of index i+1 of f^ and 

let ^("t) denote the highest critical point of index i of f t 

(a-6 < t < a+ 6). Throughout the deformation no gradient crossings 
occur and the birth and death points are independent. 
Let 9..-,(r) ,f ): C.., -* C. be represented by the matrix (a ). î+l 'a a î+l i * J pq 
Since Pj^01) a n <3 ^-^a^ cancel each other in the deformation 
we know that a ^ = eg for g G TT-^M and e = ±1. To get the new 

I T 

words y and b do the following: 

(a) Relabel p^(a+6) as p r(a+6) where r is a boundary index 

in degree i+1 not occuring in the words x and 
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y & St^^CzCir^M]) (i.e. r doesn't occur as a subscript 

index in any symbol xpq^ A* appearing in x or y ) . Relabel 

q^(a+6) as q p(a+6) where r now denotes the corresponding 

cycle index in degree i. A l s o c h o o s e r s o t h a t i t d o e s n ' t o c c u r i n 

a o r b • 

(b) Let the base path for qp(<*+ 60 be the old base path p for 

q^(a+ 6) and let the new base path for P r ( a + 6) also be p . 

Note that if y is the old base path for pk(ct+6), then p 

is g" 1 followed by y where as above a ^ = e#g» 

(c) Let the orientation for W(q r(a+60) be the same as the one 

for W(q^(a+6)). Choose the new orientation for W(p r(a+6)) 

so that 3..-,(p ) = +q • Thus the old orientation of i+l r r 
W(pk(ct+6)) is kept if e = +1 and is changed if e = -1. 

The changes (a), (b), (c) will now give a new word y! 

arising from the i+l/i+l-crossings occuring after t = a+ 6 and 
t 

also a new word b coming from the i/i-crossings after t = a+ 6 . 

According to [19, Cor. 9.4] we have for e = ±1 

y' = w k r ( + g ) - y w k r ( + g ) " 1 

(2.4) 
b' = w . ^ - D - b - w ^ - l ) - 1 . 
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(C) The dovetail relation. 

This part studies the change in x ^ n

t » f

t ) resulting from the 

changing in the graphic 

i 1.1 I1*1- m\ 
i 

s > 0 s < 0 

coming from the dovetail catastrophe. See Example 4 of §3 in I 
for notation. 

Suppose that the above graphic results from the standard 
model for dovetail singularity. In general the birth and death 
points can not be made independent in the graphic for all s < 0 
but only for all s less than some fixed negative number. This is 
what produces the dovetail relation. 

Since S 1(a t> n D n" 1(c t) i <{> (in the model in Example 4) for 
t near - 6, independence near the birth point c_ ^ fails. 
Similarly, independence near the death point c ̂  fails too. However, 
independence of c_ ^ and c ̂  can be achieved by deforming the 
vector field n t via an isotopy in v-level indicated by the 
following diagram: 
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S 1(a.) / / [Ml Ml - n V m f 
• ^ ^ ,s • \ L U T T v T / 

x i i — i / »—i—i—i — ' — 1 — * — — • — 1 / 

^ S n - i - 1 ( b t ) S n" i- 1(a t) 

t < 0 0 < t 

This process introduces i+l/i+l-crossings of over and 

then b^ over a^. Thus for all s less than a fixed negative 
number (which can be chosen arbitrarily small) the graphic looks 
like 

(*) 

i+1 

i 

Now suppose we have a path (n t,f t), a < t < b, with no gradient 
crossings in the graphic for a < a - e < t < a + e < b. Suppose the 
graphic is like 
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i+1 
k — — 

i , . . _ 

t=a-e t=a t=a+e 

Let P k(t) denote the lowest critical point of f of index i+1 

of f^ and let q^Ct) denote the various critical points of f 

of index i. 

Use the standard model for the dovetail singularity to deform 

the path ( n t > f t ) to one ( n ^ , f p having a graphic like 

i+1 j 
I k 

i 1 
a-e a- 6 8 a a+ 6 a+e 
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This can be done (see [5, Chap. 2]) so that the deformation has 
support in a small neighborhood of W(p k(a)) U W*(p k(a)) a n d n e a r 

Pk(a)-For convenience we take a = 0 and use the notation of Example 
4 again. 

We must deform (n^f^) to achieve independence of the birth 
and death points: If the support of the deformation is small enough 
the birth and death points will be independent of all the i+1 index 
critical points except a t and b t« Use the procedure described 
above to make c_ ̂  and c ̂  independent of a^ and b^ for t 
near -6 or t near +6 . This produces two new i+l/i+l-crossings 
as in (*) above. 

In general, the birth and death points will not be independent 
of the critical points of index i for t near ± 6 . Let 
S 1(p k(t)) = W(p k(t)) n Q t for t < - 6 or 6 < t and 
S n" 1(qj(t)) = W*(q^(t)) n Q t for - e < t < e . The way in 

which S 1(p k(-e)) intersects S n" 1(qj(-e)) is measured by the 
coefficient a.^ in the boundary matrix 3 i + ] / n _ e » f _ e ) • I ^ this 
intersection is not empty (i.e. when a k^ i 0) then (5) of Example 
4 shows that quite possibly D 1 ( c - 6 ) and S n - 1(q.. (-6) ) will have 
a non-empty intersection. However, this can be eliminated (thereby 
achieving independence of c_^ and qj) by using the process in 
§6 of I as follows: Choose a point z in D 1(c - f i) not contain­
ed in any Sn""1(q^ (-6) ) and use an isotopy expanding away from z 
to push the intersections of S n" 1(q^(-6)) with the sphere 

D 1(c J U D 1(a x ) into D ^ a J. Then for t > - 6 but near -6 — o - o - o 
each S n" 1(q ;.(-6)) can only intersect D 1(b t> U S 1" 1(c t) u D 1(a t) 

in the subdisc D x(a t>. Similarly, for t near 6 we can arrange 

that each S n" 1(q :-(t)) intersects D 1(b t> U S 1" 1(c t> U D 1(a t> only 
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in D (b^.). This gives the independence of c_ ^ and c^, However, 
as t passes from - 6 to 6 the spheres Sn~1(q^.(t)) must pass 
across the sphere S 1~^(c t) in the intermediate level surface Q t 

giving rise to i/i-crossings. Which crossings occur is determined 
by the coefficients a, . in the boundary matrix. 

A precise statement of how x = X^n^jf^) changes to 
T R F 

X = x(n t>f t) is the fallowing: Write X^ + 1 = y*x where x 
comes from the i+l/i+1 crossings occuring before t = a and y 
comes from the i+l/i+1 crossings occuring after t = a. Similarly, 
write x^ = D # a • Now 

(1) Relabel the critical point b( 30 as P p( 3) where r is 
a boundary index in degree i+1 which we assume doesn't 
appear in y or x. Relabel c( 3) as q^( 3) where r is 
the corresponding cycle index in degree i which we assume 
not to appear in b or in a. 

(2) Leave the orientation of p r( 3) the same as that of the 
original p^Ca+e), which is now labeled as p^Ca+c). Choose 
the orientation of q ( 3) so that r 

3 i + i ( p r ( = + V ©• 

(3) Choose any path y from the base point to c_^ and use this 
as a base path for p p( 30 and q p( 3). Let g denote the 
loop composed of y followed by the inverse of the base path 
for p^Ca). 
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Then finally we have 

Xj = Xj for J * i> i + 1 

(2.5) X - + 1 = w k r(-g- 1).yw k r(-g- 1)- 1.x r k(g).x k r(-g- 1).x 

X'i = B,(TTXrj(-8-alcj>)-* 
t i 

The graphic of (n t>f t) looks like 

i+1 P k ( 0 H 
Pk(0H g 

P r(a+e) 

Pk(0H 

i j -

- g' akj 
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If the graphic changes like 

i+1 
i+1 

i i 

then gradient crossings are introduced as follows: 

•g. 

Pi 

( 2 . 6 ) 

q 

g 
-g" 1 
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As a corollary of the analysis of deformations through the 

dovetail singularity we have 

Lemma 2 . 7 . Let M n be a smooth manifold with n > 4 . Let 

2 < i < n - 2 . Let f t: (M x I ; M x 0 , M x I ) ( I ; 0 , I ) be a 

path of functions where f t has no critical points. Let 

be a path of gradient-like vector fields for ft» Let ~^TW

V be 

a word in St(r,ZCir^M]) where each w^ is of the form W j ^ ^ g ) 

for some ±g e T ^ M. Then ( n t > f t > can be deformed,keeping (n 0,f Q) 
t t 

and (n,,f-,) fixed,to (n.,f.) which has only i+l/i+l-crossings 
J J. J. X. L 
and such that 

x i + l ( n t ' f t > = _ ( J Wv 

Proof. Here is how to realize a single word w^a^S*-

nothing 

i+ 1 

i 
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dovetail 
t g 

^ 

r8 

independent 
trajectories and 
(0.3) of V; then 
exchange 

g = 2 g 

E Z Z8-

1 s t Steinberg 
relation g 

8 ^ g 

The product jj w v is then built up by joining these elementary 

blocks together by the uniqueness of birth lemma (0.1) in V . 
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§3. E : Ï Ï Q ( P ) •> Wh 2 is well-defined. 

To show that Z is well-defined it is enough (as remarked 

in §2 of II) to show that Z stays the same when x is changed 

in one of the three ways in Table 2.3. (i.e. when x changes as 

in (2 .1) , (2.4) or (2.5) of the previous section). 

(3.1) Exchange relation. 

Let x = (Xn'Xi»*"') G ^ 3 1 1 ( 1 suppose that x^ = D * a a n c * 

X ^ + 1 = y x for a,b G St^(A) and x,y G St^ + 1(A). Represent 

a. , , = x-u). -a" 1: C . n C. by the matrix (a ) where the 
l+l î+l î+l i pq 

indices are "concentrated" in degrees i+1 and i (i.e p G > Z I + I } 

and q G {b?,z?}). Suppose for some pair of indices (k,£) that 

a ^ = 0 and let X G A . Let 

I T T 

X = (X 0>X!» • • • > € il 

be defined by 

X = ( X o ' - ' - ' X i - ! * b-Y-a, y e • x , x i + 2 , . .. ) where 

e = ~|~] x ^Ca ^»X) for p concentrated in 

p * k degree i+1 

and 

y = J J x£q(** akq) ^ o r ^ concentrated in 

degree i. 

- 156 -



THE WH 2 INVARIANT FOR PSEUDO-ISOTOPIBS 

We shall do the case i+1 = 2c and leave the case i+1 = odd 

to the reader. Choose u £ WçCti^M) as in (3.1) of III for 

t 
X G ft. This choice also satisfies (3.1) for x e ft. Let 

x" = JGX2j' Xg= S»*2*-1"1» = Jlu'̂ a n d ue = ]JC
 u2i-r 

Let x = ( u

0 * ^ o ' u l - X l ' " - * 9 a ' x ' u i + 2 # x i + 2 ' # , , ) e s t

c

( A ) - finally 

let O , 6) = x*(w,o). 

Represent the map dev+ 6 e v:C e v+ C Q d d by the matrix (A ). 

If p is in degree 2c and q is in degree 2c-l, then A = a . 
pq pq 

In particular A ^ = 0. See the following diagram which illustrates 

the case i+1 = 4. 
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C l C 3 CS 
, ot a , a a , a 5 
b l z l b 3 z 3 b 5 z 3 

bl zlbl zli 0 0 

C 2 
b 2 
a 

z 2 
32 0 

0 
3 U I 

C 6 
b S 

z6 

0 0 *6 

\l - 0 
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We have 

E ( X > = u 2 c-y-x-uiX5X " B

1 -U3 1.a" 1.b " 1 . u ; J . 1 

and 

ï<x'> = u 2c
- y ' e ' x ' V i x V ' S l 1" a" 1" Y" 1" b" 1' U2i-l -

Let e 1

 =TTxpjc(
Ap£'A) where p runs through the indices of even 

degree less than 2c. Let =TTx£q(X-Ak ) where q runs through 

q 

the indices of odd degree greater than 2c-l. Then e

1 > Y 1 € T and 

the second and third Steinberg relations imply that 

u 2 c ' y £ l = t , , u 2 c ' y 

and 

-1 -1 -1 -1 -1 " 
*1 * b ' U2c-1 = b -^o-l** 

f II 

where t and t lie in T. 

Let e 0 = e,«e = ! ! x i-(A -*X), where now p runs through all 
1 L p*k p K p * 

indices of even degree. Let Yo = Y-I'Y = Tl x 0 (X-A, ), where 

now q runs through the indices of odd degree. Then we have 

E ( x ' ) = u 2 c # v ' e 2 # x # x a ' x 8 1 # ^ 1 * a " 1 # Y 2 1 * b " 1 # u 2 c - l m o d T ' 

Now apply the exchange lemma (2.1) of III to the word 

e 2 x u a x a x g 1 ^ ^ " ^ 2 1 e s t ( A > t o conclude that it is equal to 
-1 -1-1 1 1 

x u aX aX ̂  Up a . Hence we have E (x ) = I (x ) mod T; i.e. E (x ) = Z (x ) 

in Wh 2(7r 1M) = U(A) mod U(±ijM). 
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(3.2) Birth-death relation. 

We shall go through the argument for the relation corresponding 
to the diagram (1) in (B) in the previous §2. The argument for 
the diagram (2) is similar. 

Let x = ( X Q ' X ! * - - • ) G n where X i = *> * a and x i + 1 = y # x -

Let = x'wi+ia""^": ^i+i C i b e represented by the matrix 
( apq) such that for some fixed pair of indices (k,&) we have 
a ^ = 0 and a ^ = 0 whenever p i k and q i &. Suppose 
ak& = ± g ^ o r s o m e S G TT^M. Let r be a boundary index in degree 
i+1 not occuring in the word x^+^^i'e. r doesn't appear as a 
subscript index in any symbol x^(X) in the word X^+i^- L e t r 
denote the corresponding cycle index in degree i and suppose r 
has been chosen so that it doesn't occur in the word x^. Define 
X e n by 

Xj = Xj for j i i, i+1 

xi+l = W k r ( ? g ) , y V T g ) " 1 , x  

xi = w A r ( " 1 ) • b' w
i l r<- 1>"" 1- a-

See (2.4) in §2 above. 
Let x= (X 0>X l 5--- 5

a> x>X i +2»--- ) € S t c ( A ) . Assume that i+1 = 2c. 
The case i+1 = odd is similar. 

Let (3, 0 = .x•(<*>,a). Let 3 e v+ ^ v
:C e v-»- C Q d d be represented 

by the matrix ^ A
pq^• W e know by hypothesis that for the fixed 

pair of indices (k,JD that A ^ = ±g while A p & = 0 and A^ = 0 
for all p i k concentrated in degree i+1 and all q i % concen­
trated in degree i. 
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Now choose u € Wç( iir̂ M) as in (3.1) of III to compute 2.( x

f). 

L e t u a = jPc u 2j» U B = j * c u 2 j - l > * a

 = j7c X 2 j» and X g = ^ X 2 j _ r 

Then 

« x' ) = u2cwkr(?g)ywjŒ1(ïg)-
1xu0x0xê

1^1»"\r«-l)ï>"Sr(-l>'
:LU2Î-l 

Let t x and t 2 in T be defined by ^ =TJXpfc<" A

p A*(^g)"
1) 

for p in even degree less than 2c and = "q^Aq^"^±g^~1 ̂ kq^ 

for p of odd degree greater than 2c-l. The two crucial properties 

enjoyed by t-̂  and t 2 are 

(a) Let r = x u ^ x ^ u j ^ a " 1 . Then irCt^r-t^ € E ( A ) has only a 

single non-zero entry in the k**1 row or the l^1 column; 

namely, ±g in the (k,£) t h spot. 

(b) The second and third Steinberg relations imply that there are 
t t 

t 1 and ±2 i n T s o t n a t 

t l # u 2 c , W k r ( : F g ) - y , w k r ( : ' : g ) " 1 = u2c' Wkr ( : i : g )* y - Wkr ( : i : g )"" 1 - tl 

and 

t 2 * w l r ( - 1 ) - b " 1 - w t r ( - 1 ) * 1 * u 2 e - l - w i r < - 1 ) - b ~ 1 - w i r ( - 1 ) " 1 * u

2 " c - i * V 

It now follows from (b) that modulo T 

ï(x') = u 2 c.w k r(ïg).y{w k r(Tg)-
1.t 1-r.t 2.w J l r(-l)}.b-

1.w J l r(-l)" •u^ c_ 1. 

Apply the birth-death relation (2.3) of III to the subword enclosed 
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by brackets to get 

Ux) = u 2 c ' w k r ( î « ) , y t l ' r ' t 2 , b " 1 * w A r ( - i r l , u 2 c - l 

= tî* u2c* wla. <*« >-y I- b" : i- w»r (- 1 )" 1- uS-l- t2 

= u 2 c w k r ( ? g ) ' y , r # b * w J l r ( " ' 1 ) " 1 * u 2 c - l m o d T 

= ( u2c' wkr ( î8> % ) , y » ' X B X j - a ' 1 - ^ 1 . (u" 1-w A t,(-D~
1-u;J_ 1) 

= E(X> • 

The last step is valid because £ is independent of the choice of 

u used in (3.1) of III. 
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(3.3) Dovetail relation. 

We shall verify that ï(x) remains the same under the change 

(2.5). The argument for (2.6) is similar. 

Let x = ( X Q ' X ! * - - - ) e « where X ; L = *> and xi+1 = y x -

Let 8^+1 = x wi+i a"^ : ^i+l Ci b e r e P r e s e r r t e d by the matrix 

(a ). Let r denote a boundary index of degree i+1 and also the 
pq 

corresponding cycle index of degree i. Suppose r doesn't occur 

in o r X^ + 1«
 Le"t k ^ r be any index of degree i+1. Let 

t 

g G IT-^M and define x e by the equations 

Xj = Xj f o r J * i> i + 1 

*i+l = w k r(-g"
1)-yw k r(-g-

1)- 1.x r k(g).x k r(>g-
1).x 

*i
 b #(j"K xrj (-g , akj }) * a • 

As usual we take i+1 = 2c and leave the case i+1 = odd as an 

exercise. Let 

X = <X0>•••>a,x,xi+2>'''
) a n d ( a ' ô ) = X*(w,a). 

Let (A ) be the matrix representation of 8 + S :C C , ,. 

pq * ev ev ev odd 
i 

Choose u G WçCiïï^M) as in (3.1) of III to compute Z(x )• Let 

u $ ' u a 5 *a 5 a n d *3 ^ e ^ e f i n e < ^ a s -*-n (3.2) above. Then 

Z(x'> = «2c , wkr (-8" 1 )-y wkr (-8" 1)" 1^rk (S )- xkr (-s" 1 )- r } b" 1- u;c-l 
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where 

r = xV<a W 1(jîrSj (-«*kj )) 

for j concentrated in degree 2c-l. As in (3.1) and (3.2) it 

is easy to show that T is equal modulo T to the same expression 

where j runs through all odd degrees greater than or equal to 

2c-l. Apply the dovetail relation (2.2) to the word in brackets 

using this enlarged T to conclude that it is equal to 

w r k ( g ) x u o x a X " E L U " E L A - T H U S 

Z ( x ' > = u2c W k r ( - Ê _ 1 ) y w k r ( - g " 1 ) _ 1 wrk (g> x u c v r f ^ S l l 

By Lemma 9.5 of [19], w

rk^ê)
 = ^r^""^" 1^ a n d h e n c e 

E<x'> = u 2 c w k r(-g"
1) y x u ^ X ^ V 1

 a" 1 u ^ 

= Z ( x ) mod UUir^M). 

This completes the proof that E: ^Q(^) Wh^i^M) is well-

defined. 

- 164 -



THE WH 2 INVARIANT FOR PSBUDO-ISOTOPIES 

§4. E is a homomorphism. 

We show in this section that for [f],[g] in T T Q ( & ) — TT^(<P) 

we have 

(4.1) 2([f]-[g]) = Z([f]) + Z([g]). 

The operation of §1 of I defined on 7 extends naturally 

to y so that if n iô gradient-like for f and ç is gradient­

like for g then n # C is gradient-like for f#g. 

Let [f],[g] €T T 0(&) and choose paths ( n t > f t ) and (C t>g t) 

in £ as in §1 of IV so that Z([f]) = Z ( x ( n t > f t )
) and 

z([g]> = £ ( x ( c t , g t ) ) . 

Then we have 

graphic of 

graphic of = ^ çt' gt^ 

by _ _ 

< n t # ç t , f t # g t ) definition graphic of 

( n t , f t ) 
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graphic of 

(^t'8t ) 

graphic of 

(Vft> 

ordered graphic of 

(nt,ft) 
ordered graphic of 

(c t,g t) 

Let x(n t,f t) = a = (a^c^...) and x U t » g t ) = 3 = ( B Q J ^ » . . . ) - T O 

calculate x^Ct>gt) we can replace 3 by w$«w""^ where 
w G W (±ir,M) is chosen as in §1 of IV. Pick a w so that the c 1 
indices appearing as subscripts in the symbols in any n e w p 

are different from any indices appearing in the a^ fs. 
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Then 

z(Cf]-Eg]) = z(x(nt#ct,ft#gt)> 

= -n<a 2 i 6 2 i ) -n<a2i62i) m o d W C i T T - j M ) 

-n<a2i62i) 
n<a2i62i) 

(7 *i) (7 *i) 

= z(x(nt,ft))'ï(c(xt»gt)) 

= Z([f]) + Z([g]). 
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CHAPTER V. Deformations of the Graphic 

This chapter discusses a number of ways to change and simplify 
the graphic of a k-parameter family ( n

z» f
z^ by a deformation of 

( n z 5 f z ) . For convenience we list below certain changes in the 
graphic which will be needed later in this paper. They are special 
cases of more general results in §1 and §2 of this chapter and 
int [5]. In each of the following the graphic on the left hand 
side will be that of a one parameter family ( n t , f t ) where each 
f t is a function from (V n + 1;C,D) to (I;0,1) and V,C,D are 
connected. The claim is that each of the deformations of the 
graphics can be realized by a deformation of (n^jf^) which keeps 
(nQjfg) and (r^,^) fixed. 

(0.1) Uniqueness of birth. See Chap. Ill, §1 of [3 ]. For 0 < i < n 

i+1 

i 

i+1 

i 

i+1 

3^ i+1 

i i i 
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(0.2) Dovetail. See [5, Chap. 2]. For 0 < i < n - 3 

i+1 
1 + J 

i+1 

i 

(0.3) Introducing a beak. See [3; Chap. IV, §3]. For j < n + 1 

i 

i t ! 

i 

i+1 

1 

For 0 < j 

i+1 

i 
y. 

i+1^ 

i 

j 

i+1 

i 

j 

The proof of (0.3) is actually an application of independence of 

birth-death points and the independent trajectories lemma in Chap. I. 
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(0.4) Unicity of death. 
Suppose (n t>f^) has a graphic like 

i+1 

i 1 : 
I 1 

t=a t=b 

Suppose for a < t < b that the stable and unstable manifolds of 
the two critical points of f^ intersect transversely in exactly 
one point in the level surface f^ 1(0). Then 

i+1 

^ ^ ^ ^ ^ ^ ^ ^ nothing 
l 

Remark 1. In (0.4) if the birth-death points of f and ffc are 
independent of other critical points (not indicated on the graphic) 
this independence can be maintained throughout the deformation. 

Remark 2. If V = M11 x I and T ^ M = 0, then ( n t > f t ) can be 

deformed so that the hypothesis of (0.4) becomes satisfied provided 

i = 0, i = n , or 2 '< i < n - 2 and n > 5. Hence under these 

conditions unicity of death holds. See [3; Chapter III; §2]. 
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When TT^M i 0 there is an obstruction to unicity of death and in 

fact this gives rise to the second obstruction Wh1(ir^M;Z2 x T ^ M ) 

for the pseudo-isotopy problem as will be explained in [12] and in 

Chapter VII below. 
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§1. Cancelling Critical Points. 

Recall the original cancellation lemma of Smale: Let the morse 
function f: W + I have two critical points c and c 1 of index 
i and i+1 respectively which are consecutive, i.e., f(c) < f(c f) 
and there are no other critical values between f(c) and f(c f). 
If f has a gradient-like vector field for which the transverse 
intersection of the stable manifold of c f with the unstable 
manifold of c consists of exactly one trajectory from c to c f, 
then the two critical points c and c 1 can be cancelled. 

This has the following generalization to m-parameter families 
f t: W + I, t G i m. Suppose for a subregion D k x D m " k of the 
parameter domain that f t has two consecutive nondegenerate criti­
cal points c^ and c^ of index i and i+1 respectively, 
t e D k x D m " k , which cancel each other above 3D k x D m " k , i.e., 
for t € 3D k x D m " k c t = c£ is a degenerate critical point of 
birth-death type. 

Proposition 1.1. If f^ has a family of gradient-like vector 
fields for which the transverse intersection of the stable manifold 
of c^ with the unstable manifold of c t consists of exactly one 

°k m—k 
trajectory for each t ^ D * D , then c t and c^ for 

k ° o m - k 

t G D x D can be cancelled, leaving birth-death points along 

D K x aD
m"k. 
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Examples : 

i+1  
m = 1, k = 0 

i 

m = 1, k = 1 
i 

m = 2, k = 0 

m = 2, k = 1 

m = 2, k = 2 
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As the picture indicates, smoothing of the corners above 3D k x 3D m~ k 

is implicit. 

The proof of this proposition is essentially contained in 
Chapter 1 of [5]. A slightly different proof can be constructed 
as a straight-forward generalization of the proof of Theorem 5.4 
of [18]. 

The question of whether a gradient-like vector field satisfying 
the hypothesis of the proposition exists is equivalent to whether 
the intersections S 1. and S 1 1' 1 of the stable and unstable mani-

ct ct 
folds of a given gradient-like vector field with an intermediate 
level surface can be isotoped in a parameter preserving way 
so that their transverse intersection S 1, n S n - 1 C is one 

ct ct t 

point for each t € D k x D m ~ k . Near 3D k x D m " k the intersection 
is already one-point, and isotopies are to preserve this fact. 

To measure the obstruction to finding such an isotopy, first 
note that we may as well assume k = m, since an isotopy over the 
core D k x {0} extends immediately to all of D k x D m ~ k . Also, by 
isotopy extension we can take the inclusion S^" 1 C to be 
independent of t. Then the obstruction lies naturally in 
7T-. (Emb(S 1,V n), Emb (S^V 1 1)), where E m M S ^ V 1 1 ) is the space of . 0 
embeddings S 1 C V n and E m b ^ S 1 ^ 1 1 ) the subspace of embeddings 

having a one-point transverse intersection with S 1 1" 1 C V. 

In a stable range of dimensions we will now "compute" this 
"FT» 

homotopy group. For a space X let fl^ ( X ) denote the framed 

bordism group in dimension I and let i r ^ R ( X , * ) denote the set 

(group if I > 0) of framed homotopy classes of framed maps 

(S*,*) + ( X , * ) . Thus 7 r ^ R ( X , * ) splits naturally as T T ^ X , * ) ® T ^ 0 . 
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There is a natural Hurewicz map H^ r: ïïlr(X,*) î£r(X) extending 

the classical J homomorphism îr̂ (O) + ft^r(*) C ft^r(X). One can 

define a relative object (fl,7r)^r(X,*) to consist of maps of 

framed ^-manifolds (N**) (X,*), with basepoint * E 3N « S * " 1 , 

9 -1 

with the equivalence relation of framed bordism trivial (i.e.,S* x I) 

over 3N and preserving basepoints. If I > 2 (ft ,ir )^r(X, *) is a 

group with respect to connected sum at * € 3N. There is a sequence 

3 H^** a 
... - ( 0 , i r ) ^ 1 ( X , * ) - T r f£(X,*) «f r(X) * ( f t , T r)£ r(X,*) -, . . . 

which is exact, at least when I > 0. In low dimensions one has 

(fl,Tr)£r(X,*) «fljjr(X) and (ft , T T )£ r(X, *) « coker H^ r . 

Proposition 1.2. There is a map 

7r k(Emb(S
i,V n),Emb 0(S

1,V n)) - (ft ,ir )£r(ftV,*) 

which is an isomorphism i f k + 2 < i < n - k - 2 and is surjective 

if k + 2 < i < n - k - 2 and k > 0. 

Proof. The proposition follows easily from 3.1 and 4.2 of [13]. 

In effect, the intersection T = S 1 x D k n S 1 1" 1 x D k C V n x D k 

f r 

determines a bordism class in (ft , T T ) ^ (ftV,*), and the class of 3T 

f r 

in T T ^ C V , * ) is the obstruction to choosing for "N" in 4.2 of 

[13] a disc D . If this obstruction vanishes one obtains a closed 

framed manifold T U^D^ representing an element of ft£r(ftV) which 

k 
is the obstruction to changing the intersection T to D . This 
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latter obstruction is of course only well-defined modulo the image 
f r k of H k . Having the intersection T = D it is then always possi-

k i k 
ble to change the embedding D C S x D by any homotopy; in 
particular, the intersection can be made one point in each para­
meter slice. 

The proof of 4.2 of [13] shows that any class in (fl ,Tr)£ (flV,*) 
can be realized as intersection, provided k + 2 < i < n - k - 2. 

If k = 0 the proposition gives the well-known result that 
the obstruction for the classical Smale cancellation lemma lies 
in ftgr(nV,*) « Z C T T - J V ] , provided 2 < i < n - 2. For k = 1 we 
have the following: 

i+1 
Corollary 1.3. If 3 < i < n - 3 then a graphic can 

i 
be cancelled directly (i.e., by a deformation through graphics of 
the same type) if and only if an obstruction in 

fr ( Z 2 * * 2
V ) C i r l V ] 

c o k e r H l - < g g x ^ V H I J vanishes. 

Proof. Since all the components of fiV have the same homotopy 
type, one has P^r(o.V) » p.^r( p.v) [ T ^ V ] , where V is the universal 
cover of V. And 

^ r(fiV) « P^ r(*) x ^ r(ftV) « Z 2 x T T 2 V « irpCflV,*) . 

In Chapter VII it is shown that the restriction 3 < i < n - 3 
can be weakened to 3 < i < n - 3 and n > 7, just as in the 
case k = 0 the hypothesis 2 < i < n - 2 can be relaxed to 
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2 < i < n - 2 and n > 5. 

We will have occasion to cancel not only pairs of nondegenerate 

critical points by using birth-death points, but also pairs of 

birth-death points using dovetail singularities. This is covered 

by the following proposition, a proof of which may be found in 

[5], Chap. 2. 

Proposition m . 

A) If the one-parameter family f^: Wn+^ •> I with graphic 

—r ~~m~^x*~~~~T~~' has a gradient-like vector field for which the 
i+l — i + i 

i 
transverse intersection of the stable manifolds of each of the two 

critical points of index i+1 with the unstable manifolds of the 

critical point of index i consists of exactly one trajectory in 

each t slice, then f̂_ can be deformed through a dovetail 

singularity so as to change the graphic to — . 
i+1 

B) If i < n - 3 one can always find such a gradient-like vector 
field. 

Here is a sketch of the proof of part B when n > 5. Start­
ing with an arbitrary gradient-like vector field for the graphic 

a" -i+1 - b 

i 

one first slides any i+l/i+1 intersections of a over b off to 

the left of the birth point and any i+l/i+1 intersections of b 

over a off to the right of the death point. Then the stable 
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manifolds of a and b will run uninterrupted down to level 

surfaces just above the i-handle, which they intersect in 

spheres S^(a), S^(b). For the transverse spheres S ^ - 1 c of 

the i-handle one has S*(b) n S^" 1 (S^(a) n S*' 1) equal to one 

point for t slices near the birth (death) point. We wish to 

extend these one-point intersections to the whole t interval of 

the i-handle. This is done in two steps. First, by the corollary 

of Lemma 1.5 below, we can make S*(b) n s^" 1 one point except in 

t slices near the death point and S^(a) n S^" 1 one point except 

in t slices near the birth point. Then in a level surface between 

a and b the "bad" i+l/i intersections involving a can be slid 

off to the left of the birth point and those involving b can be 

slid off to the right of the death point. 

Lemma 1.5. Let H: Q q x I M m be an isotopy transverse to 

P m" q C M . If q < m - 3, m > 5, and the normal bundle of H Q(Q) 

in M has a section, then H can be deformed rel Q x 31 
t i N 

through isotopies to an isotopy H for which H | Q x [ 0 , /2] is 
an embedding and (H^)"1(P) = H^ 1(P) if 1 / 2 < t < 1. 

Corollary 1.6. With the same hypotheses, any isotopy of H~ 1(P) 

in Q x I fixing H~^"(P) n Q x 31 can be realized by a deformation 

of H through isotopies fixing Q x 31. 

A proof of the lemma can be found in [3] Ch. I §5.3. 

In analogy with Proposition 1.1, part A of Proposition 1.4 can be 

extended to (m+1)-parameter families whose graphic contains an 

m-disc D k x D m " k of graphics i j i ^ i ^ l _ , with the 

i 
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birth-death points being cancelled by dovetail singularities over 
3D k x D m " k . Part B also holds in this setting for a suitable 
range of dimensions. For example, a k-parameter version of Lemmal.5 
and Corollary 1.6 can be proved by the techniques of 4.1 of [13] under 
the hypothesis q < m - k - 3. This implies the parametrized ver­
sion of Part B when i < n - k - 3. The case m = k = 1 is treat­
ed in detail in [5], Theorem 3.2.1. 
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§2. Introducing Critical Points. 

It is also of interest to know under what conditions the process 

of cancelling critical points described in Propositions 1 . 1 and 1 . 4 can 

be reversed. Thus in the first case one is given a region D k x D m ~ k 

in the parameter domain and numbers r and e . such that in 
—1 k °m—k f t [r-e, r+e], f t has no critical points when t G D x D and 

a single birth-death point c t when t e D k x 3 D m ~ k , with f t(c t> = r. 

And one seeks to "e-xpand" c t to a pair of nondegenerate critical 

points c
t » c

t
f over D k x D m ~ k which cancel over 9 D k x D m ~ k , as 

in the hypothesis of Proposition 1 . 1 . In general, there is an obstruct­

ion to doing this. For t e D k x 3 D m ~ k the stable and unstable 

manifolds of the birth-death point c t of index i provide at 

c^ a splitting into subbundles of dimension i and n - i of the 

tangent bundle xV^ of the level surface =-f~^"(r). (Note 

that V*t is a manifold which, up to a natural diffeomorphism, is 

independent of t; call it V.) Thus one has an element of 

7T , , ( G . ( T V ) ) , where G . ( T V ) is the Grassmannian of i-dimensional m—x—x l l 
subbundles of xV, which is the obstruction to extending the 

splitting of xV t over D k x 9 D m - k to a splitting over all of 

D k x D m ~ k . This is an obstruction to introducing the desired 

critical points, and it follows easily from § 1 . 5 of [ 5 ] that in 

fact this is the only obstruction. 

In particular, when m = k there is never any obstruction 

(the result in this case being rather trivial anyhow), and when 

m - k = 1 there is no obstruction if V is connected, since 

Tr Q(G i(TV) « T T Q V . The latter case was first handled in Chapter III, § 1 
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of [3]. For pictures of the resulting changes in the graphic in 

low dimensional cases see the diagrams after Proposition 1.1 (reverse 

the arrows, of course). 

The hypotheses for introducing pairs of nondegenerate critical 
points in the manner just described can be weakened slightly to 
allow other critical points in f ~"*"[r-£,r+e] . Since the critical 
points are introduced in a small neighborhood of an m-parameter 
family of points x t e f~*[r-e,r+e], t G D k x D m " k , with x t = c t 

for t G D k x 3D m~ k, it suffices to find the x t disjoint from 
other critical points of f^. This is always possible by general 
position if n = dim V is large enough, say n > 2m - 1. 

Also, the new critical points can be introduced to be independ-
dent of all the old critical points, and without disturbing their 
stable and unstable manifolds, provided the points x^ can be 
chosen in the complement of these stable and unstable manifolds. 
Here general position suffices if the indices of the existing 
critical points lie in the interval Cm+l,n-m]. 

We turn now to reversing the process of Proposition 1.4. One 
is given an m+l-parameter family containing an m+l-disc 
D k x D m ~ k x D̂ " of critical points which are nondegenerate of index 
i+1 except over D k x 3D m" k x {0} , where they are dovetail singu­
larities of index i. Thus one has an m-disc D k x D m ~ k of 
graphics which across D k x 3D m" k become ^tX-^^-J-*-^--

i 
One wants to pass through dovetails over D k x D m ~ k x {0} to 

produce an m-disc D k x D m " k of graphics 1 — i - i with dove-
i 

tail singularities remaining over 3D k x D m " k x {0}. 
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A nondegenerate critical point of index i+1 (i.e., of the 
2 2 2 form -x 1«...-x^ + 1+...+x n + 1> determines, via its stable and 

unstable manifolds, a splitting of the tangent space of the manifold 

at the critical point into subspaces of dimension i+1 and n-i. 
4 2 2 2 2 A dovetail singularity of the type ~ xi~ x2~•• , xi+l + xi+2 +*"* + xn+l 

such as we are here considering also gives such a splitting. But 
in addition there is a preferred line in the i+l-dimensional sub-
space, corresponding to the term Moreover, as one can see 

from the unfolding of the dovetail singularity which takes place 
across D K * 3D m~ k x D 1 , this line has a preferred orientation. 
The obstruction to extending this oriented line in an i+l-dimension­
al bundle over D K x 3D m~ k x { o } to an oriented line in the i+1-
bundle over D K x D m ~ k x { o } , which lies in ^ . ^ - i ^ S 1 ) > i s a n 

obstruction to introducing the desired critical points. It is not 
hard to see using the results of Chapter 3 of [5] that this is the 
only obstruction. In particular, when m - k - 1 < i there is no 
obstruction. 

We shall have occasion to use the trivial case m = k = 0, 
when the change in the graphic is simply 

i+1 i+X_ i+X_ 

i 

and the case m = l , k = 0 , i > 0 which is 3.3.1 of [5]: 
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We remark that for introducing critical points by passing 

through dovetails along a sheet of nondegenerate critical points in 

this manner the situation is unchanged if other pieces of the 

graphic intersect the graphic of the sheet of nondegenerate critical 

points, since everything takes place in a neighborhood of the given 

nondegenerate critical points. 

Question: What are the obstructions for the analogous problems of 
cancelling and introducing the higher order singularities in the 
series: birth-death point, dovetail, butterfly,..., i.e., the 
singularities whose degenerate part is of the form x p for some 
p > 3? Do the obstructions always vanish in a suitable stable 
range, as they do for the case of birth-death points? 
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§3. Two Indices. 

For an h-bordism W n + 1 let Jf. denote the interior of the 

closure of the set of morse functions on W having all critical 

points of index i and i+1. If 2 < i < n - 2, A^ is non-empty 

[18]. The principal result of this section is: 

Theorem 3.1. a) If 2 < i < n - 2 then T T Q ^ = 0.(** 

b) If 7 < i < n - 7 then = 0. 

The restriction 7 < i < n - 7 can be weakened, but we will 

not need to do so. 

The condition = 0 translates into the statement that 

a (k+l)-parameter family f : W + I, t G I k + 1 , which over 8 l k + 1 

is a generic k-parameter family having all (nondegenerate) critical 
k+1 

points of index i and i+1, can be deformed rel 31 to a 
generic (k+1)-parameter family all of whose critical points are of 
index i and i+1. 

The principal tool in proving the theorem is the following 
proposition which is a direct but somewhat complicated generaliza­
tion of the methods of [30]. Let ft:Wn+"^" -* I be a generic m-para-
meter family, m < 2, whose critical points are ordered as in I §8, 
and let i be the lowest index of the critical points of f^. 

(*) cf. [5] and [6]. 
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Proposition 3.2. Suppose is a nondegenerate critical point 
of f t of index i such that is the only critical point on 
the level f ^ c ^ ) , t € I 1 C I m. Then if i < n - £ - m - 3 , we 
can introduce a trivial critical point pair iy^9Q^) °f index 
(i+2, i+1) over a neighborhood N of I* so that $ t cancels 

in N with birth-death points of and remaining on 
3N. 

Complement. This can be done preserving all o^/j intersections 
outside N. If j < i * 1 we can preserve j/o^ intersections 
outside N and have no j/f^ intersections (other than Y t/B t) 
near 3N. 

We begin the proof with a technical lemma. Let M*(M~) be a level 
surface just above (below) a^, so that is the only critical 
point between M* and M~. By isotopy extension we can assume 
M + = M*(M~ = M~) is independent of t. Then let W 1 be the part 
of W below M", W 2 the part above M~, and W 3 the part 
above M +: 

r i i h 
| W 2 

W *i "at 1 

tr}"» 
Let D 1 be the stable, D n + 1 - 1 the unstable manifold of a t 

between M~ and M +, with S 1 " 1 = D 1 n M", S 1 1" 1 = D 1 1* 1" 1 n M +. 
Finally, let k be the highest index of critical points below 
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Lemma 3.3. If i < n - 2 and k < n - 2 then the pair 
(W3>M+ - S11"1) is i-connected. 

Proof of Lemma: Since there are no handles of index < i, (W âjO 
is (i-1)-connected. From the exact sequence of the triple 
(W,W1,3-W) and the fact that (W,a_W) is --connected, we conclude 
that (W,W1) is i-connected. A proof of the following elementary 
fact may be found in [30]: 

Fact: Let B and C be CW complexes intersecting in a common 
subcomplex. If B O C C C induces an isomorphism of fundamental 
groupoids, the pairs (B,B O C) and (B U C,C) have the same 
connectivity. 

We apply this to B = W2, C = Ŵ , to conclude that (W2,M") 
is i-connected. The condition on fundamental groupoids is satisfied 
if n - 2 > k, for since there are no dual handles of index < n-k+1 
in Wx> (Wlt,M~) is (n-k)-connected. 

Next we examine the exact sequence of the triple 
(W2,(W2 - D1) UM",M"). Since (W2,(W2- D1) UM") is n-connected 
and i < n, ((W2 - Di)U M",M") is also i-connected. 

Now apply the Fact again with B = W2 - D i, C = M" to obtain 
that (W2 - D1, M~ - S1"1) is i-connected if (M",M~ - S1"1) is 
2-connected, which is the case if S*"1 has codimension > 3 in 
M", i.e., n - 2 > i. 

Finally, note that (Wg,M+ S11"*) is a deformation retract 
of (W2 - D*, M" -> S i" 1), hence is i-connected. 

Note that since k < i + m, the condition i < n - A - n-2 
implies k < n - 2. 
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Proof of the Proposition 3.2. Let D~ be a small i-disc transverse 

to S 1 1" 1. This determines an element of i^CWg*M+ - S 3 1" 1) which is 

zero by the lemma. Thus there is g: D 1 + 1 •+ W 3 with 3 D 1 + 1 = D + UD", 

g|D~ = D~, and g|D + mapping to M + — S 1 1" 1. By isotopy extension 

we may assume the embedding S 1 1" 1 C M + is independent of the para­

meter t, so that g extends to a map g^ in each t-slice 

satisfying g t| D~ = D~ and g t l D + mapping to M* - S^" 1. 

The remainder of the proof will be devoted to showing that g^ 

can be improved so that, for suitable concentric i+l-discs 

D x C D 2 C D 3 C D 4 = D 1 + 1 , 

1. g^(D^) is disjoint from the critical points of f^ 

2. g-tlDi ^ s a n e m b e ( i d i n g i n a level surface above M* 

3. g t | D
2 " D i i s a n isotopy of g t|3D 1 in M t 

4. g-tlD3 " D2 "*"S a n i s o t o P y obtained by following trajectories of 
the gradient-like vector field of 'f from g t O D 2 ) C down 
to g t(3D 3) C M*. 

5. g-tlD4 " D3 a n isotopy i n M ^ of "tne embedding g t 18D3 to 
an embedding g ^ | w h i c h intersects S^" 1 transversely in 
one point. 

Having such a g^, the proof of the proposition goes as 

follows. Introduce a trivial (i+2,i+1)-critical point pair (Yt9^t) 
just above the level M t for t near I A. Using |D 2, deform 

the vector field above so that g^(3D 2 is the intersection 

of the stable manifold of 3 ^ with M^. By condition 4, this stable 
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manifold runs all the way down to M*, so (3̂  can be lowered to 
just above M*. Then using g t |D^ - D 3 the vector field can be 
deformed above M* so that g t<3D^) is the part of the stable 
manifold of &t in M*, and by condition 5, & t can then cancel 

near I. 

We now turn to conditions 1-5. Since the critical points of 
an m-parameter family are of dimension m, general position suffices 
for 1 provided i < n - m. 

To achieve 2-4 we begin by pushing g t ( D 1 + 1 ) as far down tra­
jectories of the vector field as general position will allow. Let 

be a family of level surfaces lying above M* and above the 
closure of the set of critical points of index < q, with W^ being 
the part of W between M* and M^. Then since the general 
position intersection of the family g^(D 1 +^) with the unstable 
manifolds of critical points of index j is of dimension 
i + I + 1-j, we can push g^ down trajectories so that 
g t ( D 1 + 1 ) C w £ + A + 1 and so that except near a subset of I* of 
dimension r, g t ( D 1 + 1 ) C W ^ + A ~ r . Thus there are level surfaces 
M t in W ^ + A + 1 , with W t the part of W between M* and M t, 
so that g t ( D 1 + 1 ) C w t and so that M t lies in W 1 + * ~ r except 

0 
near a subset of I of dimension r. 

Next let A t(B t) be the inverse image under g t of the 

unstable (stable) manifolds of critical points in W., A = 'J 0A., 
B = ;,B.. Let C(A. ) be the cone on A. with vertex the center tel* x T T 

of D 1 + 1 and let C(A) = > 0C(A.). (Consider A,B, and C(A) as i+1 a tei 

lying in D x i x.) 
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Claim; In general position C(A) n B = <J> provided i < n - I - m-3. 

To prove this we need only make g t(C(A t>) disjoint from the stable 

manifolds of critical points in W^ +*~ r +^ over an r-dimensional 

subset of I* for 0 < r <l. The critical points in W* +*"" r~ 1 

have index < i + £ - r + l + m since f^ is ordered as in I §8. 

So over an r-dimensional subset of I these stable manifolds 

have dimension < i + £ + m + 2 . If dim C(A) < I + 2 < "codim B = 

n + 1 + £- (i+Jl + m + 2 ) , or i < n - & - m - 3 , then in 

general position C(A) n B = <f>. 

With C(A) n B = <f> then near C(A) we can push g t up 

i+1 i. 

trajectories to M t- Let Zg t = {(x,t) G D x I |gt is not an 

embedding at x} . Then if dim C(A)< codim Eg t, i.e., 

£ + 2 < n = i - l or i < n - Jl - 2, in general position g t 

will immerse a neighborhood of C(A^) in with at most 

isolated double points in isolated t slices. Moreover, these 

double points may be assumed to lie all in distinct concentric 
o 

spheres in D^. Since we can assume is independent of t, 

g^|D t provides ê t l
D

2

 a s ^ n conditions 2 and 3. One obtains 
g t|D 3 immediately by sliding down trajectories from g t(3D 2> c 

+ o 
to , using the fact that C(A) C D 2• Also, there is no 

obstruction to pushing g^-l^ ~ D3 down trajectories to M* , 

where it provides a homotopy from the embedding g^|3D^ to 

ĝ I = 3D1+^" which has the desired one-point intersection with 

S^" 1. To get an isotopy from this homotopy one applies the 

following lemma. 

Lemma 3.4. Let and M m be manifolds fibered over some mani­

fold and let i: Q M be a fiber preserving embedding which is 
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disjoint from a subcomplex K C M . Suppose i is fiber nomotopic 
to a map f transveral to a subbundle P p C M with f(Q) n P = N. 
If m > q + p/2 + 1 and 2 m > p + q + k + 2 , then i is fiber 
isotopic in M - K to an embedding intersecting P in N. 

When K = <f> this lemma is Theorem 4.1 of [13]. The proof 
there readily extends to the present case. 

To apply the lemma to the family of homotopies g t|D 4 - D g 

(and hence to finish the proof of the proposition) we 
need n + £ > i + £ + .̂ (n - i • £) + 1, or i < n - £ - 2. For 
K we choose the intersection of the stable manifolds of critical 

+ £ 
points of index < l+l with M t , t € I, which is of dimension < i+£. 
The restriction 2 m > p + q + k + 2 also reduces to i < n -£ - 2, 
and 8tJ^3 disjoint from K by the proof of the claim above. 
This choice of K guarantees that the conditions of the Complement 
will be satisfied. 

Proposition 3.2 . When m = 1, the condition i < n - £ - m - 3 
in Proposition 3.2 can be replaced by i < n - £ - 2. 

To establish this the only doubtful point is the claim about 
C(A) n B being empty. When m = 1 the level surface M t below 
which g ( D 1 + 1 ) is to be pushed can be taken to be below birth-

/i+2 
death points For g (D ) can be pushed off the unstable 

manifolds of such birth-death points, as these unstable manifolds 
intersect level surfaces just above the birth-death point in (n-i)-
discs. Then the highest critical points in W t are nond«generate 
of index i + I + 1 at isolated t-slices and (if £ = 1) of 
index i + £ for the remaining t-intervals. Thus C(A) n B = 4» 
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if dim C(A) < I + 2 < "codim B" = n + 1 + «, - (i + ft • 1) = n - i, 

or i < n - £ - 2. 

That ^tf^ = 0 when 2 < i < n - 2 is an immediate conse­

quence of the following: 

Proposition 3.5. Let f^: W n + * I be a one-parameter family on 

the h-bordism W with i the lowest index of critical points. 

Suppose fg and f^ have no index-i critical points. Then if 

i < n - 2, by introducing new critical points of index i+1 and 

i+2 f can be deformed, rel f^ and f^, so as to eliminate all 

index i critical points. 

Proof. 
1. Eliminate i/i intersections 

According to the previous proposition we can cancel the upper 
i-handle of an i/i intersection pair in a small neighborhood of 
the t-slice containing the i/i intersection without introducing 
any new i/i intersections, provided i < n - 2. 

2. Cancel a remaining arc of i-handles. 
a) Near t-slices containing o r points, 
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This step breaks the given arc of i-handles up into small 

enough pieces so that we can assume each piece crosses no other 

critical points in the graphic. That is, with no i/i intersections, 

a segment ^ ^ can be raised above :ill other i-handles. 

b) The remaining segments S ^ 

Case I: i < n - 3. Let be the given arc of i-handles, with 
t 

either of the i+l-handles connected to ott at the birth or 

death points. Now apply the preceding proposition to cancel 

with an i+l-handle 3 + for almost the full length of a^, up to I 

where the a^at intersection is one point in each t-slice: 

1 °t-. 
1 °t-. 

at 1 °t-. 

1 °t-. 
1 °t-. 

1 °t-. 
1 °t-. 

t 

We still have 0 L^ 0 L^ intersections one-point in each t-slice, so 

cancel a t with a t up to a ^ o r
 a where the S t / a

t 

intersection is one point in each t slice. 

i+1 i+1 
Now we have a graphic with both i+l/i 

i 
intersections one point in each t slice, and so by Proposition 

1.4 the remaining piece of i-handles can be cancelled: 

i+1 

1 

i+1 i+1 
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f 
Case II: i < n - 3. We can apply Proposition 3.2 with & = 0 

to introduce i+l-handles which cancel for a small t interval: 

a l «t 
at 

6t 

This latter graphic can then be deformed to 

«t «t 

and Proposition 1.4 applies to cancel the two remaining segments of 

a . 
With the following proposition the main theorem of this 

section will be complete. 

Proposition 3.6. Let f t : W n + 1 I be a two-parameter family on 
2 

the h-bordism W, i.e., t G D , with i the lowest index of 
• . . 2 

critical points. Suppose f^, t G 3D , has no index-i critical 
points. Then if i < n - 7, by introducing new critical points 

2 
of index l+l and i+2 f^ can be deformed, rel f^, t 6 3D , so 

as to eliminate all index-i critical poins. 

Proof. We follow the one-parameter version and cancel i-handles 

first near isolated phenomena, then near one-dimensional phenomena, 
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and finally cancel the remaining small 2-discs of i-handles 

1. Replace dovetails j ^ ^ j j ^ i__. b v "~ . 

This is a purely local question. The birth-death points of our 

given dovetail have trace \ ^ , i.e., a cusp. On one of the arcs 

of birth-death points we can pass our two-parameter family through 

a three-parameter family containing an isolated butterfly singular­

ity (with polynomial x^) to introduce a pair of dovetails: f / 

V 
One of these dovetails, say the upper one, is of the type "^ZSZTi+l 

and the other is j^^^r " b r l n ^ " t n e n e w ^ove-

i+1 . 
tail c ^ o s e proximity to the original dovetail: 

r .JJ The two dovetails — i — then can be cancelled 

leaving only a dovetail i+1 ^ K ^ ^ //X\ 

2. Eliminate i/i+1 and i/i intersections. 

a) Eliminate i/i+1 intersections by cancelling the i-handle in 

a small neighborhood of the i/i+1 intersection. 

b) Eliminate crossings of pairs of i/i intersection arcs by 

cancelling the top i-handle in a small neighborhood of the 

crossing point. 

c) Reduce crossings of birth-death arcs with i/i intersection 

arcs to the case TR-*-d 
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The other possible cases are: 

i) Here we can cancel the upper i-handle 
^^i 

near the crossing point. 

ii) j Cancel the middle i-handle near the 
? • i 

crossing point. 

d) Eliminate the remaining arcs of i/i intersection (i < n - 3). 

After the preceding three steps a,b,c, we can assume the 

graphic along the i/i intersection arc is 

* * * T ^ E i T h a t i S j t h e u p p e r i-handle arc 

crosses no other critical points. We are then in the 
situation of 2.b of the preceding proposition for one-
parameter families, and the upper arc of i-handles can 
be cancelled, first in the interior: j 1 ^ £ |—̂ —J 

And then in the remaining segments, 

J—-C ^">-| ^ ""^^ where we 

introduce four dovetails 1 n i 

3. Cancel a sheet of i-handles. 
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a) Near t-slices containing birth-death points of other 

i-handles 
i+1 i+1 

i) Dovetails • i Cancel the given 

i-handle, which lies below the dovetail. 

ii) Crossings of arcs of birth-death points of other 

i+1 
H+l 

i-handles: Again cancel the given 

iii) 

i-handle near the crossing point. 

The remaining arcs, where the given sheet of 

i-handles lies below an arc a of birth-death 

points except perhaps at an end of the 

arc where the given i-handle is cancelled by an 
i+l-handle which may lie above the arc a 

• a 
As in 2.d above, we 

cancel the given i-handle first in the interior of 

the arc and then, 

after reordering the birth-death arc a if necessary, 

cancel the remaining 

segments, producing 

four dovetails. 
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b) Break what remains of the given sheet of i-handles into 

discs, e.g., an annular region of i-handles ~*\. 

becomes as in 2.d. 

c) Cancel the remaining discs of i-handles 

i) Near the isolated points where the given i-handles 

are cancelled by an i+l-handle which is simultaneous­

ly the upper i+l-handle of an i+l/i+1 intersection, 

with graphic 
1+1 

.i+1 and trace 

-L 

(The wavy line indicates the crossing of the 

given i-handle with the lower i+l-handle in the 

graphic.) Here we may cancel the i-handle just 

below the lower i+l-handle > 

t + 1 

i+1 
" * 1 

reorder to eliminate 

and finally eliminate 

the remaining piece 

of i-handle above the 

lower i+l-handle: 

i+1 
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i . T h i s last step can be done 

/ either directly (since 

P*-*̂  i+l/i intersections are 
1 right) or by the following 

three steps. 

We can now assume the given disc of i-handles crosses no 

:her handles in the graphic. 

ii) Cancel the interior of the disc of i-handles, e.g., 

iii) Cancel near the interior of the birth-death arcs, e.g., 

iv) Translate the index of the remaining triangles V o f 

i-handles to triangles of i+2-handles by elliptic 

singularities as explained in Lemma 4.1 of the next 

section. 
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§4. The Butterfly and the Elliptic Umbilic. 

In section 3 we made use of two of the three kinds of codimen­

sion three singularity, the butterfly and the elliptic umbilic. We 

shall give here brief descriptions of these two singularities. For 

an account of the hyperbolic umbilic see [5], Chapter IV. 

The degenerate part of the butterfly singularity is the 
5 2 3 5 polynomial x , with universal unfolding t^x + t^x + t^x + x . 

This singularity effects the following change in two-parameter 

families : 

Graphic Trace Graphic Trace 

(a) ^ 

Here the solid lines in the trace represent birth-death points and 

the dashed lines represent crossings in the graphic. The change 

from (a) to (b) is made by just shrinking all the complications of 
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(a) to a point. Notice that the change in the trace of the birth-

death points is the same as the change in the graphic at a dovetail 

in a two-parameter family (turned on edge): ^ — ^r" ^ — — — — • 

Thus the effect of a butterfly singularity is to introduce or cancel 

a pair of dovetail singularities, one of each kind involving the 

i+i_^^ i+-L i+1 
two indices i and i+1: ^ — — — - a n d 

i 
^ i ^ ^ i 

The degenerate part of the elliptic umbilic is the singularity 
3 2 

at (0,0) of the function x + xy . The graph of this function 

is sometimes called the "monkey saddle": 

(2) 
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The universal unfolding is a three-parameter family of the form 
x 3 + xy 2 + t ^ x 2 + y 2) + t 2x + t 3y. The trace of this three-
parameter family is : 

(3) 
0 

The elliptic umbilic itself lies at the central vertex 0. In a 
vertical plane section on either side of 0: 

C 

\ A 
*' I * % . 

! * D * -

the solid lines correspond to birth-death points (with dovetails 

at the three cusps), the dashed lines to crossings, and the dotted 

lines to 1/1 intersections. The letters A,B,C,D refer to the 

following sample functions, shown in wide-angle view: (the subscript 

on A denotes the index of the central critical point): 
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(5) 0 A 2 

B C D 

In terms of graphies we have the following one-parameter slices: 

(6) 

(a) (b) (c) 
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Thus the effect of passing through an elliptic umbilic is to 

exchange a triangle of critical points of index 0 for a triangle 

of critical points of index 2. Notice that in each of these 

triangles the 1/0 or 2/1 intersections of each of the three critical 

points of index 1 with the critical point of index 0 or 2 consist 

of exactly one point in each parameter slice. 

2 
Lemma 4.1. Let f^,t € D , be a two-parameter family with graphic 

as in (6.a) above with critical points of index i and i+1. 

Suppose the i+l/i intersections for each of the critical points 

of index i+1 consist of exactly one point in each t slice. 
2 

Then f^ may be deformed, staying fixed over 3D , to a two-para­

meter family with graphic as in (6.c) and with critical points of 

index i+1 and i+2. 
Proof. The lemma states that in figure (3) it is possible, under 
the one-point intersection hypothesis, to move a vertical plane 
section from one side of 0 to the other. Rather than do this 
directly, we first deform the plane section to look like: 
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(The one-point intersection hypothesis guarantees that there will 

be arcs of i+l/i+1 intersections emanating from the three dovetails 
in the given graphic.) Then by translating this curved two-dimen-

t 

sional section upward along the line 0 0 we can bring about the 

desired deformation of f^. Some stages along the way have traces 

as in (8) below. The advantage of this indirect deformation is 

that it reduces the use of the elliptic umbilic to the step (a)-(b), 

which is easy. The crucial steps (b)-(c), (d)-(e), and (e)-(f) 

are all justified by the results of V §1, since the one-point 

intersection property is preserved throughout. 
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( 8 ) 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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§5. Eliminating all Dovetails. 

Let f

t u

: M x I + I> (t,u) € 1 x 1 , represent a homotopy 

between two representatives f t Q and of the same class in 

ir 1 C? r ,&), so that f Q u and f l u have no critical points. Assume 

the (nondegenerate) critical points of f are all of index i 

and i+1. In this brief section we show that, with an additional 

mild restriction on f t Q and f t l , all the dovetail singularities 

of the two-parameter family can be eliminated. 

In the graphic of a one-parameter family £ which has 

critical points only of index i and i+1, with f Q and f 1 having 

no critical points, the set of arcs corresponding to i+l-handles 

has a natural permutation ir, obtained as follows: An arc a of 

i+l-handles is connected at its birth point to an arc a 1 of 

i-handles. In turn, a f is connected at its death point to the 

arc ir(a) of i+l-handles. We call ir the permutation associated 

to f t. 

Proposition 5.1. If the permutations associated to f t Q and f t l 

are of the same parity and 0 < i < n, then f t can be deformed, 

staying fixed over 3 ( 1 x I) and preserving the index range 

[i,i+l], to a (generic) two-parameter family having no dovetail 

singularities. 

Proof. First replace all dovetails — — i - by 

i+T""" X T ï+ï~ 

i , as in the first step of the proof of Proposi­

tion 3 . 6 . 
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Next we observe that any two of the remaining dovetails can 

cancel each other. For, by a simple extension of 3.1.1 of [5]* 

this can be done if the two dovetails occur in the same sheet of 

i+l-handles. But by "uniqueness of birth" any two sheets of i+1-

handles can be connected since the underlying manifold is connected 

(see §2). 

Thus may be assumed to have at most one dovetail. Our 

hypothesis on the permutations associated to f^ Q and f ^ will 

guarantee that f^ u has an even number of dovetails and the proof 

will be complete. 

As u varies, the changes in the graphic of which 

affect the associated permutation TT are of three types: 

a) 

b) 

c) 

It is easy to see that a) and b) preserve the parity of TT while 
c) reverses it. So if f t Q and f t^ have permutations of the 
same parity, must have an even number of dovetails. 

*See §2 above, p. V. 16. 
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§6. The Two-Index Definition of Z . 

The definition of the Wh 2 invariant Z . in the general case 
that critical points of all indices are present requires some 
fairly heavy algebraic machinery. If one uses the geometric 
results of this chapter the algebra can be considerably streamlined 
by defining Z only in the two-index case. We indicate briefly 
how this is done. In this section we use right modules over 
ZCiTjM]. 

Let f t:M x I + I be a generic, ordered one-parameter family 
all of whose nondegenerate critical points are of index i or 
i + 1 , and let f^ be provided with a nice gradient-like vector 
field in general position for which the birth-death points of f^ 
are independent. Choose an ordering, orientations for the stable 
manifolds, and paths to a fixed basepoint for the arcs of critical 
points of index i + 1 . Specifying that the algebraic i+l/i inter­
section number of a birth pair be + 1 e ZCTT^M] determines similar 
choices for the arcs of critical points of index i. Then in t 
slices not containing i+l/i+1 or i/i intersections there is 
defined the algebraic i+l/i intersection matrix in GL(Z [i^M]). 
(We consider that prior to its birth or after its death an (i+l,i) 
pair has the same i+l/i intersection number as at its birth or at 
its death.) 

Near t = 0 this algebraic i+l/i intersection matrix is the 
identity matrix. As t passes an i/i (resp. i+l/i+1) intersection 
the matrix changes by right (resp. left) multiplication by an 
elementary matrix e? k for some o € lir^ and suitable j and k. 
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Near t = 1 the matrix is of the form P»D = (permutation)•(dia-

gonal with entries in ±irn C Z[ir n]). Thus one has lie. , = P #D. 
1 1 l D A k £ 

By the proof of 1.6 of III, P»D has a representation 

-1 
- n - t ^ — T T 

P . D = Tie m e m e m 

m p m q m q m p m pm Sn 

Then the product 

\SL JH A/\m *m 4m 4m*m p m H m / 

in StGSCi^]) lies in K J Z E T ^ ] C St^tir^). Its image Z I + 1 in 

Wh2(ir1M) is independent of the representation of P-D. It is 

easy to see that Z = ( - 1 ) 1 + 1 Z ^ + 1 is the Wh 2 invariant Z 

defined in IV in this special case where all critical points are 

of index i and i+1. 

Rechoosing the ordering, orientations, and paths to the 

base point for the arcs of critical points affects the algebraic 

i+l/i intersection matrices as a change of basis by conjugating 
-1 

by suitable products of terms e* e~* e * . Since K 9 is the 
J pq qp pq 2 _! 
center of St, conjugating by the corresponding xpq xqp xpq 

does not change Z . 

To show Z is well-defined on T ^ O ,&) requires looking at 

a two-parameter family f^ u connecting two choices of as 

above. Since suspension (see I §5) preserves Z we can assume 

that indices and dimensions are large enough to deform f into 
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the two indices i and i+1 (V §1). We can also restrict attention 
to the case that the permutations associated to f^g and are 

both even, so that f^ u may be assumed to have no dovetail singu­
larities, by V, §5. Then birth-death points can be taken to be 
everywhere independent. Thus one is reduced to showing that the 
following "catastrophes" preserve E: 

1. Changes in the graphic 

a) 

b) 

2. Changes in i+l/i+1 and i/i intersections 

a) Cancelling or introducing a pair of consecutive i+l/i+1 

or i/i intersections 

b) Permuting a pair of consecutive i+l/i+1 or i/i intersections 

c) i/i+1 intersections. 

Of these, l.a) has no effect on II, l.b) reduces to the "birth 

and death relation" of I I I §2; 2.a) and b) are just the Steinberg 

relations within II (see I I ) , and 2.c) is precisely the "exchange 

relation" of I I I §2. 
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CHAPTER VI. The kernel of Z. 

In this section we show that I is surjective for n > 5 and 

identify the kernel geometrically as the "uniqueness of death" 

subgroup. 

Consider the set J$ of all [f] € such that f can 

be connected to the standard projection p by a path having a 

graphic like 

i+1 

(*) P f 

i 

for some 0 < i < n. 

Lemma 1. For n > 4 is a subgroup, which we will call the 

uniqueness of death subgroup. 

Proof. Suppose [f] and [g] have representatives f and g in & 
which are connected to p by paths f^ and g t having graphics 
like 
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p 

i+1^ 

i 

f and 
p j g 

j 

Then f t#g t» 0 < t < 1, has a graphic like 

p 
j 

i+i 

i 

«g 

For n > 4 the dovetail lemma (0.2) of V implies that this 
graphic simplifies to 

P 

k+1 k+1 
«g 

k k 

where 2 < k < n - 2. Now use uniqueness of birth to deform this 

to 
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p 
.^k+1 

k 

.^k+1 

Hence [f]»[g] = [f#g] G which shows that £7 is closed 

under multiplication. 

To show that, [f]" 1 G & whenever [f ] e £• write f = pog 

for g G ^. Let f t(0 < t < 1) be a path from p to f with a 

graphic like (*). Then the path from p to pog"1 defined by 

f 1_ t°g for 0 < t < 1 has a graphic like (*) and [f]""1 = [pog"1]. 

Theorem 2. E I T T Q C ^ ) •+ Whjd^M) is surjective with ker Z = 

for n > 5. 

The proof of surjectivity is easy. Let z G Wh ^ T r^M) be 

represented by the word TFx (A.) in K 0(Z[7r nM]). Using 
a i e i 1 1 1 

Theorem 1.1 of II construct a path (ri t>f t), 0 < t < 3/4, from 

the standard projection to (n 3>f 3> 4 such that each f^ has only 
4 ? ' 

critical points of index 2 and 3 and such that 

X 3(n t>f t) =[Tfea g " 1* T n e n 3 3 ^ n 3 ' f 3 ) = identity and as in 
1 1 If 4 

the proof of the s-cobordism Theorem [ 16 ] we can cancel the 
critical points of f 3 without introducing any more 3/3 or 2/2 

4 

crossings to extend the path to one (n t>f t)> 0 < t < 1, where 

f x G &. Then Z([f x]) = z G Wh^i^M). 
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The remainder of this chapter concerns the proof of ker Z 

Let [f] € T T 0 ( & ) = vQ(P) be in the kernel of I. Choose a path 

f t € & from p to f together with a one-parameter family of 

gradient-like vector fields n t for f t. According to Theorem 3.1 

of V whenever n > 4 we can choose (n^^f^.) so that each f. has 
t t t 

only critical points of index i or i+1 for a fixed value 

2 < i < n - 2. Put the path (n t>f t) into general position so 

that the birth and death points are independent. Unless otherwise 

stated (n t>f t> shall always have these properties in the remainder 

of this chapter. 

Proposition 3. If £([f]) = 0 and n > 4 then we can eliminate 

all the i+l/i+1 and i/i crossings of (n t»f t> by a deformation 

which preserves independence of birth points. 

Proof. 
Step 1. Use the independent trajectories lemma (7.1) of I together 
with the beak lemma (0.3) of V to deform <n t>f t) until all the 
births occur in the interval [0,^-) and all the deaths occur in 
the interval (^,1] and so that there are no gradient crossings 
in these intervals. Also, assume f^ has no critical points for 
t € [1,1]. 

Step 2. Use the exchange lemma (2.2) of §2 in IV to eliminate 

the i/i crossings as in the following example: 
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r V , 

i y 

-u 

-y< >y 

il-

Actually, in case n = 4 and i = 2, we want to eliminate the 

3/3 crossings with the above method by considering them as 

(n+l)-3/(n+l)-3 crossings of the dual pair (-n t-f t). 

Step 3. Let x e St(Z C T ^ M]) be the word determined by the 
i+l/i+1 crossings of ( n t > f t ) . Since Z(Cf]) = 0 in Wh 2 there 
is a word w € WCin^M) such that w x = 1 in St(r,Z [ T T 1 M]) for 
some large r > 0. Now keeping (n 7,fy) and (r^»^) fixed deform 

8 8 

the path (n t»f t), \ < t < 1, as in (2.7) of IV to introduce a 

graphic with i+l/i+1 crossings which give the word w. Use the 

uniqueness of birth lemma (0.1 of V) to join the two graphics 

together as in the following example: 
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The resulting word determined by the i+l/i+1 crossings is w»x. 
Now introduce trivial graphics of the form 

i+1 

i 

into the diagram so that there are at least r critical points of 

index i+1 and index i. Now if n > 5 we can choose the i 

such that 2 < i+1 < n - 2. Apply (1.1) of II to eliminate the 

i+l/i+1 crossings. If n = 4 then from Step 2 we only have 2/2 

crossings. These can be eliminated as in Step 3 by introducing 

the word w into the graphic in the form of 2/2 crossings. 

Q.E.D. 
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The following proposition completes the proof of Theorem 2. 

Proposition 4. Let n > 5 and 2 < i < n - 2. If ( n t , f t ) has 
no i/i or i+l/i+1 intersections and the birth and death points 
are independent then (n^f^.) can be deformed to have a graphic 
like 

i+1 

i 

Proof. 
By the independent trajectories lemma deform the path (n^fj.) 

so the graphic is 

i i 

i 
1 

If i < n - 3 reduce the number of components in the graphic to 
one by repeating the following process: 
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If i = n - 2, go through the argument upside down using 

n-2 

— — > in 
n-3 
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Corollary S . If n> 5 and ir^M = 0 then 11 Q(?) = 0. 

Proof. Since Wh 2(0) = 0, Propositions 3 and 4 imply ^ Q C O = ^ » 

the uniqueness of death subgroup. In the case 3 < i < n - 3 , 
i+1 
j-^* can be cancelled by 1.3 of V. To cancel a graphic 

< n - 2 and n > 5, one first applies Lemma 
i 

2 of VII below to reduce the i+l/i intersections of this pair to 
a single arc connecting the birth and death points, using TT^M = 0. 
Then by Corollary 1.6 of V, this arc can be straightened out to 
intersect each t slice in one point, provided 3 < i < n - 3, 
(and hence n > 6), and the critical points can be cancelled by 
Proposition 1.1 of V. 

The case n = 5 requires an extra argument. For if 
2 - i = n - 3, the arc of i+l/i intersections may be knotted in 
S 1 x I,.the stable spheres of the i-handles. However, by two 
careful applications of the Whitney procedure (i.e., embedded 
surgery on this arc in S 1 x I), a n "overcrossing" can always be 
changed to an "undercrossing": 

and the arc can be unknotted. See [3], Ch. I §5.3 for more details. 
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CHAPTER VII. The WhjfojM;!,» x TTQM) Invariant. 

The second invariant for a pseudo-isotopy is a homomorphism 

e r i T Q ^ ) W h 1 ( T r 1 M ; Z 2 x T ^ M ) 

This section shows how to obtain an element in 

Wh 1(ir 1 M;Z 2 x T T 2 M ) from any graphic of the form 

p 

i+1 

i 
f 

The main problem is to show that this element depends only on 

[f] <6' *\ C T T Q C ^ ) and not on the choice of path connecting p to f. 
This will be done in [12]. 

This chapter shows that when restricted to £f = ker E the 
homomorphism 9 is surjective for n > 5 and injective for n > 7. 
Hence, we get the main result as stated in the introduction that 
E + e is surjective for n > 5 and injective for n > 7. 

i+1 
Proposition 1. A one-parameter family with graphic -«<^^~^> 

i 
can be deformed to a family with no critical points if an obstruction 
in (*2 x i r2 M )^ i rl M' 1 vanishes, provided 3 < i < n - 3 and n > 7 . 

(aa-a TxaT 1,3«1) 
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X —1 
Here ( a a - a T a x ,3*1) denotes the additive subgroup of the 

T — 1 

"group ring" ( Z 2 x i rgMKir^M] generated by the elements a a - a x a x 

and 3*1 for a , 3 e Z 2 x ir2M and a , x e i^M, with a T denoting 

the standard action of x on the T T 2 M component of a and the 

trivial action on the Z 2 component. 

When 4 < i < n - 4 (and hence n > 8) this proposition 

follows immediately from Lemma 4 below and Corollary 1.3 of V. 

To get the improvement to n > 7 we must work somewhat harder. 

The crucial point is Lemma 3. 

We now give the definition of the second obstruction. To i+1 
eliminate a graphic it is necessary that the i+l/i 

i 
intersection consist of one point in each t-slice. A priori the 

i+l/i intersection will be only a one-dimensional submanifold 

T = S 1 x I n S 1 1" 1 x I c V n x I, V an intermediate level surface. 

From the local picture at birth-death points we know that 3T 

consists of exactly two points, so that T has one D 1 component, 

connecting the i+l/i intersections at the birth point with those 

at the death point, plus a number of circle components Ŝ ". We 

will define for each Sj element's <jj G TT^ and ajG 2Z2 x TT 2 S O 

that the total second obstruction is represented by the sum la.a.• 
j 3 3 

To define O j we may assume first, by a suitable choice of 

paths from a basepoint to S 1 x I and S11""1 x I and orientations 

for S 1 x I and S 1 1" 1 x I, that the algebraic intersection number 

of the handle pair is +1 G Z C i ^ ] . Each point of transverse inter­

section of T with a t-slice determines an algebraic intersection 

number in + ir , C Z [ T T , ]. If signs are ignored then this intersection 
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number is well-defined on components of T. Thus has 

"algebraic intersection number" G J € 7 r^ . The D^" component of 

T has algebraic intersection number 1, by assumption. 

To define O j , let C 1 and C 2 be contractions of S^ in 

S 1 x I and S n - 1 x I respectively (we assume 2 < i < n - 2 

throughout). Then the union C 1 u C 2 will define the TT2 compon­

ent of c,j once a homotopy class of paths from to the base-

point is specified by choosing the preferred path from S 1 x I to 

the basepoint. (Strictly speaking we should also orient , 

for example by choosing the +t direction at a point of transverse 

intersection of Sj with a t-slice where the algebraic intersection 

number is +o"j • ) The TL^ component of oij is defined as the 

framed bordism class in z 2 of S^ C S 1 1" 1 x I c S n " i + 1 with 

normal bundle v(S^;S n" 1 x I) * V ( S 1 x I; V x I)|gl framed via 

the canonical framing of v(S x x I ; V x I ) , namely, the one given 
by the fact that S 1 is the attaching sphere of a handle. Alter­
natively, we could use the framing of v ( S 1 x I ; V x I ) | c l induced 

by the contraction C]L of S^ in S 1 x I. 

Lemma 2. If two components of T have the same algebraic inter­

section number in TT^ then they can be joined by surgery into a 

single component, provided 2 < i < n - 2 and n > 5. 

Proof. Suppose SJ and sf are such that a. = a, • If 
J K J K J 

intersects a t slice transversely, it does so in two points 

(at least) with algebraic intersection numbers and " aj> 

and likewise for S^. So after applying Corollary 1.6 of V to 
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make and meet the same t slice, we can apply the 

classical Whitney procedure in this t slice to cancel the i+l/i 

intersection points corresponding to +a- and -a v» As a one-

parameter family this cancellation is in effect a surgery joining 

to s£. 
Note that the proof also applies when f lSj W is the D 1 

component of T and a k = 1« 

Lemma 3. An component of T with vanishing Oj € Z 2 X T T 2 M 

can be eliminated if 3 < i < n - 3 and n > 7. 

Proof > We imitate the proof of the Whitney procedure for cancelling 

pairs of isolated intersection points, as presented for example in 

[18], Theorem 6.6. Let D be a lens-shaped 3-disc whose boundary 

consists of two 2-discs D 1 and intersecting transversely in 

a circle S 1: 

^ ^ ^ ^ 

We shall construct a t-parameter preserving embedding 

u: D 3
 X * 1 " 1 X K 1 1 " 1 " 1 - V n

 X I with Ç" 1(Sj) = S 1 X{0> X {0}, 

: ' 1 ( S 1
 X I ) = D L X B 1 " 1 X {0} , and d^CS 1 1" 1

 X I) = D 2 X {0} X R 1 1 " 1 " 1 . 

It is clear from this model how to cancel S^. 
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To begin we apply Corollary 1.6 of V to isotope so that 

its projection onto t is a morse function having only two 

critical points, with critical values t Q < t^. To construct 

D 1 C S 1 x I with 3D 1 = we can regard S^ C S 1 x I as an 

isotopy Ŝ'--»- S 1 which has given extensions to Ŝ " for t 

near t Q and t^. If i > 2 this extends to D^ c+ S 1 for 

t Q < t < t^, producing an embedding of a 2-disc D 1 C S 1 x I 

with D 1 = Sj . If i > 3 we can assume also that O T = S^. 

Similarly, if n - i > 3 we can find D 2 C S 1 1" 1 x I with 

D 2 f i T = 3D 2 = S^. 
Let n be a framing of vCS 1 x I , vn x 1)1 . Then nIcl 

Dl Sj 
is a framing of in S x I whose framed bordism class is 

the Z 2«xO(n-i) component of a j . If this is zero n can be 

deformed so that the first vector v of n is the inward normal 

of Sj in D 2 and so that the remaining n - i - 1 vectors 
t n_i t extend to a framing n of in S x I. Write n = v © n 

1 
over D 1- Thus n is a field of (n-i-1)-frames over D 1 U D 2 

which are normal to S 1 x I over D 1 and normal to D 2 in 
S 1 1" 1 x I over D 2 . The inward normal of Ŝ " in D.̂  induces a section of 

v ( S n _ 1 x I, V n x l)|gl. If i > 3 this extends to a section w 
3 

of vCS 1 1" 1 x I,Vn x I) I . Together v and w allow one to 
2 

push D 1 U D 2 off S 1 x I U S 1 1" 1 x I. The resulting 2-sphere 
S 2 C V x I - (S 1 x I u S11""1 x I) represents the T ^ M component 

3 
of aj» which is zero by hypothesis. To construct D we now 

regard S 2 as an isotopy Ŝ <~* V - (S 1 U S 1 1 ' 1 ) , t Q < t < t][, 
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2 

which has given extensions to for t near t Q or t^. This 

isotopy extends to a homotopy D 2 -, V - (S 1 u S 1 1" 1) since 

T r 2 ( V N - (S 1
 u S 1 1" 1)) -, T R 2 ( V N - S n ' L ) « TT 2 (M - S 1' 1) -, 

is an isomorphism whenever i < n - 4 (or dually, i > 4). If 

n > 6 general position suffices to make D 2 -• V - (S 1 u S 1 1" 1) an 

isotopy, producing D 3 C V N x I with 3D 3 = D 1 U D 2 as desired. 

3 n 1 

In v(D , V x I) r| is now a field of (n-i-l)-frames over 
3 1 3 3D . The obstruction to extending n to all of D is an 

element z G TT0V . n 0 where V • -. o 0(n-2)/0(i-1) is 2 n-i-l,n-2 n-i-1,n-I 

the appropriate Stiefel manifold. The group ^^n-i-l n-2 ^ s 

zero unless i = 3. 

If i = 3 then we can make z = 0 by rechoosing the section 

w of v(S n" 1 x I, V N x I ) | D . For 3(z) G n ^ d - l ) classifies 
2 3 n 1 

the bundle of (i-l)-planes in v(D , V x D | ^ D 3 normal to n • 

This bundle becomes trivial after stabilizing by adding w, so 

a suitable choice of w will make 3(z) = 0, and hence z = 0 

since 

3 
IT 0(n-2)/0(i-l) -, Ïïl0(i-1) 

is injective. 

An extension of q to a field of (n-i-1)-frames in 

v ( D 3 V N x I) provides automatically a framing of the remaining 

i-1 normal directions. These framings permit the construction of 

the required ^\:D3 x H 1 " 1 x I* 1 1" 1" 1 -, V N x I. 
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Proof of Proposition 1. If S o tj aj = & # 1 f o r s o m e G G x
2
 x i r 2 M 

we can reduce T to the D 1 component as follows: First, join 
all components having the same aj, as in Lemma 2. Then any 
Sj components which remain must have o*j i 1 and aj = 0. Lemma 
3 allows these to be cancelled, leaving only the D 1 component. 
By Corollary 1.6 of V this D 1 can be straightened out to inter­
sect each t slice transversely in one point, and the graphic 
can be cancelled. 

Remark. The result so far, namely that if 2 a j a j = & # 1 "then 
the graphic can be eliminated, is the main result of Chapter 1 of 
[6]. 

To complete the proof of the Proposition it remains only to 

prove the following: 

Lemma 4. A one-parameter family with graphic 6 1 1 1 ( 1 

i+l/i invariant Z O J O J can be deformed to a family with the 
same graphic and i+l/i invariant ^ aj aj +

 A A " O ^ T O T " 1 for 
arbitrary a € Z 2 * T ^ M and Q , T € TT^M, provided 3 < i < n - 2. 

Proof. Near the right end of the original graphic, where the i+i/i 

intersection is one point in each slice, introduce two circles S 1 

and S 2 of i+l/i intersection with invariants aa and - aa, 

respectively, so that S 1 lies to the left of the slice t = t Q 

and S 1 lies to the right. This is done just as in Proposition 5 

below. At t = t Q the two critical points can be cancelled, pro­

ducing a graphic «<T^> where the right component 
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has i+l/i intersection invariant -aa . By rechoosing the path 

connecting the newly created birth and death points by a factor 

of T 6 ÏÏ^M and cancelling the new birth and death points along this 

new path (and thereby returning the graphic to its original form) 

1 T -l 
the i+l/i invariant of S 2 will be changed from -aa to -a T O T 

T -1 
The total invariant is then 2 a j a j + aa - a T a x 

Proposition 5. There is a one-parameter family with graphic <r^~^y^ 

and prescribed i+l/i intersection invariant in ( Z 2

 X 7 r 2 M ) [TT^M] , 

provided 3 < i < n - 2. 

Proof. When 3 < i < n - 3 this is a consequence of Proposition 

1.2 of V. The following explicit construction allows the improve­

ment to 3 < i < n - 2. 

Let ^ i / 2

: M x I I be a morse function with only two 

critical points, of index i and i+1, and with transverse i+l/i 

intersection consisting of three points p^, p^, and p_ Q in an 

intermediate level surface V n with intersection numbers l , a , 

and -a G ±ir̂ M, respectively. To cancel p^ and p_ a by the 

Whitney procedure one first joins these two points by arcs 

C± c S 1 and C 2 C S
1 1" 1 and embeds (if n > 5) a disc D 2 C V n 

with 3D 2 = C1 U C 2 = D 2 n (S 1 U S n _ 1 ) . The choice of D 2 can 

be altered by any a e TT2M since the composition 

7T2(V - (S
1 U S 1 1" 1)) - 7T2(V - S

1) « TT2(M - S
1 1' 1" 1) - TT2M 

is onto if i > 3. 
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Next one frames the bundle £ over C 1 U C 2 of vectors which 

over C 1 are normal to D 2 and to and which over C 2 are 

normal to D 2 and tangent to S n " i . The dimension of £ is 

n-i-1, so £ can be reframed by any element of T^OCn-i-1), i.e., 

stably by an arbitrary b G ^ 0 * I 2 if n-i-1 > 2. 

If n-i=2 we must resort to more drastic means for realizing 

o 

the Z 2 factor. The disc D depends on choosing a direction to 

push U C 2 off S 1 U S 1 1" 1. This choice can be altered by re-

choosing the section of vCS^V 1 1)!^ determined by the inward 
l 

2 

normal of D along C 1, a choice classified by an element of 

7 r 1 S
n ~ " L ~ 1 « i^OCn-i) » Z whose image in TT^O is the prescribed 

b e z 2 . 

Finally, the framing of £ is extended to a field of (n-i-1)-

frames in v(D ,V ). The obstruction to doing this lies in 
ff-iV . T „ 0 « I T , (0(n-2)/0(i-D) which is zero if i> 3. 1 n-i-l,n-2 1 

Now the i+l/i intersection points p and p can be 

o -a 
2 

cancelled in two ways, according to the choices of D and the 

choices of framing of £ differing by a € ÏÏ2M and b G ^^0 * Z 2. 

Then the critical points can be cancelled in two ways, producing 

a one-parameter family f^ with graphic and with 

one S 1 component of i+l/i intersections. It is not hard to see 

that the invariant of this S 1 is (b,a)a G CS>2 x T ^ M ) [^M]. 

By iteration of this procedure one can construct several 

components of i+l/i intersections with arbitrary invariant in 

( Z 2 x T T^CTr-jM]. 
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Remarks. When i = n - 2 (and dually when i = 2) the 

( Z 2 x TT 2 ) tir ̂ D invariant associated to a graphic c a n 

i 
be destabilized to a (I x n^tir^ invariant. In effect, each 
S 1 component of i+l/i intersections is framed in Sn~^ x I, 

2 
and the bordism classes of such framed one-manifolds in S * I 

2 
are classified by Z « T ^ S . The construction in the preceding 
proposition realizes all elements of ( Z x i ^ H i r ^ ] as i+l/i 
invariants if n >-5. 

There is another unstable invariant when i = n - 2 (or i = 2) 
which measures the linking of components of i+l/i intersection 
Sj c S 1 1" 1 x I having different ir̂  invariants . This obstruct­
ion lies in the group X C T T D of skew-symmetric functions 
T T 1 x TT-L + TL which are zero almost everywhere. Geometrically 
« £ [ T T^] can be described as the group of closed oriented one-mani-

3 folds T = y T embedded in S , with T equivalent to atTT n a T = _ T if there is a compact oriented surface S - V„ S„ aeir1 a * a€ir̂  a 
embedded in S 3 x I such that 3S a = T Q U (-T a), S Q O S 3 x {o} = T Q, 

3 1 

and S n S x { l } = T for all a G i r , . Again all elements of o o -L 

JCCTT^] are realized as i+l/i invariants whenever n > 5. 
One is forced to consider these unstable obstructions when 

n = dim M = 5. For by Chapter VI a one-parameter family with 
vanishing Whgir^M invariant can have its graphic reduced to 
either 3 ---^ or J i " " " " " — > both of which lie in the 

2 > > 
unstable range if n = 5. The question then is, how much of this 
local ( Z x T T ^ C T ^ ] ® J C C ^ ] invariant survives to ^ ^ ( M ) ? 

Another problem is to decide whether the stable obstruction 
suffices in Lemma 3 when n = 6 and i = n - i = 3. 
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Note added in proof (May, 1973, upon seeing Volodin's announcement 
in Uspeki 1972 #5) 

It is very easy to extend Proposition 1 of this chapter, 
and hence the main theorem of the paper, to the case n = 6. !Phe 
only place where n > 7 was used was on p. VII.6 for the injectivity 
of 

y^VuS11-1)) — > ^ ( V ^ s 1 1 - 1 ) . 

In fact 3 < i < n-3 is sufficient for this. For by a sequence of 
"Whitney cancellations" (which take place each in a neighborhood of 
a two-disc and hence have no effect on provided n > 6) the 
intersection of and Sn"* can be made one point transverse. And 
in this standard position the injectivity is clear. 
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CHAPTER V I I I . Product and Duality Formulae. 

In this chapter we give product and duality formulae for the 

Wh 2 obstruction which are in every way analogous to the correspond­

ing formulae for the torsion of an h-cobordism. 

Let N be a closed manifold. Then a natural map 

f ( M , 3 M ) ^ ( M x N , 3 M x N ) is obtained by sending a pseudo-isotopy 

F: M x l + M x l to F x idXT: M x N x I + M x N x I . Denote the 
N 

standard inclusion M C M x N by i; this induces a homomorphism 

i* on W h 2 i r 1 . 

Product Formula I([F x id N]) = x ( N>i* 2<£F]), where x (N> i s t n e 

Euler characteristic of N . 

Proof. Let f t : M x ( 1 , 0 , 1 ) + ( 1 , 0 , 1 ) be a nice one-parameter 

family suitable for computing Z([F]) and let g : N + [ĵ jj'] be a 

morse function. Define h^: M x N x ( 1 , 0 , 1 ) ( 1 , 0 , 1 ) by 

/ (t)^(f.) v <Ç(tK;(f.) 
h t = I 1 2 - H f t + 2^-* 

where : I I is given by its graph: 

1 3 , 

Q ¥ ¥ 1 
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Since h Q = f Q and h 1 = f^, h t represents [F x id N] under 

the natural isomorphism T T Q ^ ) * T ^ O ^ Ê ) . 

Claim; (x,y,s) G M x N x I is a critical point of h t only if 

( x , s ) € M x I is a critical point of f . 

For consider a directional derivative in the M x I factor: 

/ <p(t)9(f.)\ , cp(t)cpf(f.) f 

h t « ^ 1 _ ^ . j f t + ( g - f t ) — _ ^ f t 

If f* i 0 and h^ = 0 then 

<J(f)G(f.. ) (?(t)$(f. ) 
1 t-^- = 5 <ft-g> 

which is impossible since the left side of this equation is > i 

while the right side is < 0. Thus the claim is established. 

If we suppose, as we may, that has critical points only 

if i < t < jj- and that all critical values of f t lie in the 

interval » then h t also has critical points only in 

ht1[^4l5
 ç <

 x< h w h e r e i n f a c t h t = l ( f t + g ) -

Next assume: 

(i) The critical values gCp-^ < g(p2>< • • •<6^P m^
 o f 6 a r e 

all distinct. 

(ii) All critical values of f t lie in + e) where 

e < min (g(Pj) - gCPj.^)} • 
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These assumptions guarantee that the critical points of h^ are 

separated into m disjoint layers by non-critical levels 

h ^ ( i + i g ( P j ) ) . 

The restriction ĥ . of h t to the j t n layer has (critical 

points of ĥ .} = {critical points of f^} x ^Pj^- Moreover ĥ . 

is a nice-one parameter family. The product of nice gradient-like 

vector fields for f^ and g is a nice gradient-like vector field 

for ĥ . which has the same intersections of stable and unstable 

manifolds as the vector field for f^ had. In particular, 
IndexCp•) 

Z([h^]) = (-1) 3 i AZ([f t]). 

The m-fold vertical adjunction of the nice one-parameter 

families h^ can easily be deformed to a horizontal adjunction, 

preserving intersections of stable and unstable manifolds within 

each layer. For example, 

ht1 

ht1 

can be deformed to 

ht1 

ht1 
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m . m Index( P j) 

Then Z([h t]) = jljZCCh*]) = ^ ( - 1 ) i ^ Z Œ f ^ ) 

= x(N)i^Z([f t]). 

We turn now to the duality formula. If F € ^ C M j S M ) , define 

F G *>(M,3M) by F = F*1© yoYoy , where F^: M x I M x I is 

the constant isotopy F| M x {1} , i.e., F ^ X j S ) = (F(x,l),s), 

and tp(x,s) = (x,l-s) for (x,s) e M x I. We seek a formula for 

Z([F]) in terms of Z([F]). 

Let X H - X be the anti-automorphism of ZCTT^M] induced 

from g H - w(g)g - 1 , where g e T ^ M and w r ^ M •+ {±1} is the 

orientation class. If (a^) € GLCXCTT-JM]) , let (a^ k) = ( 5 ^ ) . 

On ECXCTT-JM]) this "conjugation" is given by e^ k *• e ^ . The 

correspondence x^ k H - X ^ is easily seen to preserve the Steinberg 

relations between the generators x.£. for the Steinberg group 

StCZCî^M]) and so induces an anti-automorphism of StCZCir-jM]). 

This in turn gives automorphisms of KjXCir^M] and Wbgdr-jM) 

since w^(±g) = W j ^ * ? ) » g G • ^ e latter involution will be 

written Z Z . 

Duality Formula Z([F]) = (-l)nZ([F]), where n = dim M . 

Proof. We first observe that if f : M x I I is a nice one-

parameter family from which Z([F]) is computed, then the family 

1 - f t is suitable for computing Z([F]). 
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For simplicity we shall use the definition 

2'(Cft3) = (-l) 1 + 1Z i + 1([f t3) of V § 6 , where f t is assumed to 

have all its critical points of index i and i + 1 (and hence l-f t 

has critical points of index n - i and n - i + 1 ) . If M ^ , 

M 2 , . . . , M M is the sequence of algebraic i+l/i intersection matrices 

in E ( Z [ T T 1 M]) which is used to define Z^ + 1([f t]) as in V § 6 , so 

that i s obtained from M.. by multiplying by some elementary 

matrix corresponding to passing an i+l/i+1 or i/i intersection, then 

the corresponding sequence for 2
n_i+]/I-l-f^] ) "*"s ^i > ^ 2 ' * " * '^m" 

Thus 2 n _ i + 1 ( [ l - f t ] ) = Z i + 1(Cf t]) and 

z([i-f t]) = (-i) n" i + 12 n. i + 1(Ci-f t3) 

= (-l) n(-l) i + 1 r i + 1 ( C f t 3 ) 

= (-D n rccf t]) . 
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0§. Introduction. 

In this paper we complete the computation, begun in {H-W], of 

obstructions for pseudo-isotopies on a non-simply connected smooth 

compact manifold M of sufficiently large dimension. More precisely, 

we define and compute an algebraic K-theory functor 

Wh^(7TjM ;2Z 2 x ^ 2 * ^ ' a n < * w e define a homomorphism 

0 : T T O ( ? ( M , O M ) > Whjfr^ZZg x T ^ M ) , where <P(M,oM) is the group of 

diffeomorphisms of M x I which restrict to the identity on 

M x ( O ) U ôM x I. Combined with results of [H-W], 9 gives a homo­

morphism 2+0 -nJPQl,m) > Wr^jM e ^ ( ^ ^ 2 * which is 

surjective if dim M ;> 5 and injective if dim M ^ 7 . 

The computation of Wh^^MjZZ 2
 x h a s t w o striking corol­

laries: First, that WQ(P(M,dM) depends not only on Î T ^ M but also 

on 7 r 2M and the action of TC^M on ^ M . And second, that 

7T o^(M,ôM) » 0 if and only if TT^M - 0 (provided dim M ^ 5 ) . 

§1. Algebraic Preliminaries 

Let T be an abelian group acted on by a group 7 r , and let 

H*] be the additive group consisting of finite formal sums 
1 t 

2a ia 1, ol^T, O^CTT, with + - Z(ol^ + 0 ^ ) 0 ^ . We make the 
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product r [ T r ] x ZZ [TT] into a ring by the multiplication 

2(OL± + m i)a i • 2(Pj + n ^ ) ^ « ̂ ( m ^ * nj ai + mi nj) ai Tj where 

a^,£j€r,a£,Tj€7r, m^, n^eTZ, and 0 a denotes the action of a on P. 

In particular, r[7r] is given trivial multiplication, and there is a 

split exact sequence 

<*) 0 > T [TT] > T [TT] x ZZ (TT] * ZZ [TT] > 0. 

The example we have in mind is T - 2 2 x T ^ M , IT » 7 T ^ M , with 

the usual action of TT^ on -n^ and the trivial action on ZZ^* The 

sequence (*) in this case can be identified naturally with the se­

quence 

o — > a * r ( n M ) —> a * r (a M ) X a * r (a M ) — > « * r<u M ) —> o. 

Under this identification the multiplication described above corres-
fr 

ponds to the (graded) multiplication on 0 ̂  (AM) induced by the 

natural H-space structure of the loopspace ft M. See [H-Q], §3. 

Recall the definition of of an ideal in a ring /t?, 

according to [B] or [M]. Let 

GL( a ) « ker (GL( ̂  ) > GL( /£ ICL )) 

- (i + A € GL( iRj) IA has entries in # } 

and let E( CL ) be the mixed commutator subgroup LGL(/?,), Gh(^L)], 

which is also the subgroup of GL( C( ) generated by matrics STS"1 

for T an elementary matrix in GL( d ) and S € E( ). Then 

CI , which is sometimes written K^( $, d ), is defined as - 241 -
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GL<4 )/E( OJ). 

Proposition 1.1. If &2 - 0 then K, d * N via 

^ {ar-raj 

[I + A] > tr(A), where (ar-ra) denotes the additive subgroup 

of CL generated by (ar-ra | a € & ,r € 

Proof. If A - (a^) is a finite matrix over 6[ then tr(A), which 

is defined as 2 a ^ reduced modulo (ar-ra), satisfies 

tr(A + B) - tr(A) + tr(B) and tr(RA) - tr(AR) where B is also 

a finite matrix over # and R is a matrix over /£ . 

Define <p:GL( Ci) > CL/ by <p(I + A) - tr(A). Since 
tar-raj 

(I + A) (I + B) « I + A + B, q> is a homomorphlsm. Also, q> vanishes 

on E( Ci ). For let S € E( /£) and let T € GL( Ci ) be an ele­

mentary matrix. Then q^STS"1) - tr(STS-1-I) « tr(S(T-I)S-1) 

- tr(T-I) - 0. 

So (p induces Q Z V ^ (X. > ^ V ( a r . r a ) -

We show q> is injective. First a computation: For a € CL 

and r € , the product e ^ e*j e^£ in E( ÛL ) is given by 3 k 

j /l + ra -rar\ 

k I a 1-ar / 

with all other entries the same as in the identity matrix. Now if 

A - (a^) has tr(A) - 0, then by multiplying I + A by suitable 

e Tu e t 4 e 4 t w e c a n n^ke 2 a,, « 0. Next, multiply I + A by 
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suitable e*, e* e.} to make each diagonal entry of A zero, 
j K kj jK 

Finally, the off-diagonal entries of A can be killed by multiplying 

I + A by suitable e* . Thus I + A € E( & ) if tr(A) « 0. 

For any finite matrix A over C[t (I + A ) "
1 - I - A, so 

I + A € GL( Hence yil^ôL > ^ / ( a r . r a )
 i s surjective, and 

the proposition is proved. 

Choosing CL~ r[7rj and r[7r] x ZZ [TT], we have: 

Corollary 1.2. K ^ Î T ] * r[7r]/(aa- a T T a T " 1 ) , where a € V and 

a, T € TT. 

Remark. This computation shows that excision fails for K ^ r f r ] . 

That is, KjT[7r] depends not just on the intrinsic structure of 

r[7r], but also on the ring r[7r] x 2Z [IT] , since r[7r] ignores the 

multiplication in TT and the action of TT on T . See [S] for more 

general examples of this phenomenon. 

If 1 denotes the identity of TT, let r[l] > K^T^] be the 

map taking P • 1 to the class of I + (£ • 1), where (P • 1) is 

the l x i matrix with entry P • 1, Ê € T. 

Definition. Wh^ T^r) - coker (r[l] > K ^ T T ] ) 

T - I 

Corollary 1.3. W I ^ T T ^ ) * * r[7r]/(a a - a T a T , Ê • 1), where 

a, 3 € T and a,T € TT. 

For example, if the action of TT on T is trivial then 

Wh^(7r;r) is the direct sum of as many copies of T as there are 
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non-trivial (i.e., other than (l)) conjugacy classes in 7 r . This 

applies to the summand W h ^ ^ Z 2 ) of Wli^tt^TZ^ X tx^I) to show 

that V m I ( 7 T 1 M ; 2 2 x tt£A) - 0 if and only if tt^î « 0. 

§2. Definition of the Wkt^ ( Ï Ï ^ Z ^ X TT^) Obstruction 

Let x 1 > I be a nice one-parameter family having 

all nondegenerate critical points of index i and i + 1 , with f Q 

and f̂  having no critical points. By Theorem V. 3.1 of LH-W] any 

element of , is represented by such a family if 

2 £ i £ n - 2. A gradient-like vector field in general position is 

given for ffc, with birth-death points independent (See I §6 of 

[H-W]). Away from the isolated i + 1/i + 1 and i/i intersections 

the i + l/i intersections form a one-dimensional submanifold (of a 

suitable level surface)with one boundary point at each birth-death 

point. The way i + 1/i intersections fit together at i + 1/i + 1 

or i/i intersections is more complicated and will be described in 

some detail below, as it is the key piece of geometry which allows 

all the algebra to work. 

To define the Jdh^-n^ZZ 2 x n^) invariant of f t we begin by 

subdividing the t interval [0,1] into a finite number of sub-

intervals, with subdivisions occurring at least at t slices con­

taining i + l / i + 1 or i/i intersections or birth-death points, 

- 244 -



THE SBCOND OBSTRUCTION FOR PSBUDO-ISOTOPIBS 

and perhaps at other t slices too. Then by a suitable normaliza­

tion procedure at the subdivision slices we will assign an element 

of (2Z ^ x *2 M) I7 ]̂ t o e a c n component of i + 1/i intersection 

lying within a t interval. This will determine in the j***1 t 

interval a matrix over (ZZ 2 x ̂ MTI^] of "geometric" i + 1/i 

intersection numbers for the various i + 1 and i-handles. The 

Wh^îr^ZZ 2 x 7 T 2 ) invariant of ffc will be defined to be represented 

by the matrix 1 + 2 M j ^ A j * w n e r e M j € GL(Z [ 7 ^ ] ) is the usual 

matrix of "algebraic" i + 1/i intersection numbers for a t slice 

in the j t h t interval. 

k n+l-k 

Notation: A k-handle a will be written as x , with 

k k k-1 n+l-k 
D K the core disc, dD* « S* x the core sphere, D"^ * the trans-
a a a a 
verse disc, and èDjjj**"* 8 8 s^" k the transverse sphere. 

The matrices depend on several choices: 

i) a basepoint * € M x I x I, together with an orientation of 

M x I x I at *. 

it) a path 7(a) from * to each arc a of i + 1-handles, to­

gether with an orientation of the core disc (The orientation 

at * transposed along 7(a) then determines an orientation of the 

transverse disc D^"1.) 

iii) an ordering of all the arcs of i + 1-handles. 
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By insisting that at a birth point the two handles of an 

i + 1/i handle pair have algebraic intersection number +1, the 

choices in ii) for i + 1-handles determine analogous choices for 

i-handles. Likewise, the ordering of i + 1-handles in iii) trans­

fers via birth points to an ordering of the i-handles. 

Having made these choices, each i + 1/i + 1 or i/i inter­

section determines an elementary matrix e ^ , with a e + T I ^ M , S O 

that in passing an i + 1/i + 1 (i/i) intersection the algebraic 

i + 1/i intersection matrix changes by right (resp. left;) multiplica­

tion by e ^ (resp. e^)» M j " G j l p j w h e r e F j (Gj) 1 8  

the product of elementary matrices corresponding to i + l / i + 1 

(resp. i/i) intersections prior to the j1"*1 t interval. 

To define the matrices Aj we shall exploit the following con­

struction. Let x be a point of i + 1/i intersection, i.e., a 

trajectory of the gradient-like vector field connecting an 

i + 1-handle a with an i-handle b. Then X(x) is defined to be 

the loop proceeding from * € M x I x I to a along 7(a), from a 

to b along the trajectory x, and from b to * along 7(b). A 

similar definition holds if x is an i + l/i + 1 or i/i inter­

section point. 

Each component C of i + 1/i intersection determines an ele­

ment a(C) e TT M, the class of the loop 7(x) for x € C. Up to 
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sign this is just the usual algebraic intersection number associated 

to any x € C. 

Now choose the following: 

iv) a) A loop g(a) in M x I x I representing each 

a e 7T̂ ,(M x I x i, *) « 7 T j M and b) for a , T € 7r^M a homotopy from 

g(x a) to g ( T)g(a). (Composition of loops reads from right to 

left, just as for matrices.) 

Define î(x) to be g"1(x)X(x), the loop X(x) followed by 

g" 1(x), where V ^ x ) " means "g" 1( [X(x) ]). 1 1 Thus X(x) is con­

tract ib le. 

Figure 1. x ^ w ^ T ^ " " ^ ^ 

^ ^ ^ ^ ^ I \ S ^ l ( W x ) » 
b L 7(b) 

If a component C of i + l/i intersection lying within a t 

interval is a circle, then X gives a map X(C):S^—> CI M q , where 

ft M Q is the identity component of the loop space 

Q M ~ r t ( M x i x I,*). The identification of C with S 1 here de­

pends on a choice of orientation of C, say by the convention that, at 

a point of transverse i + 1/i intersection with algebraic inter­

section number + a(C), C is oriented in the +t direction. 
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Furthermore, the stable normal bundle of C is framed, as 

follows: C is a component of S 1 x I (1 S?" 1 x I C V x I, V an 

a D 

intermediate level surface. The orientations chosen above give a 

framing of 

v(D^ + 1x I, M x I x I)| l x j » v(S*x I, V x I) * v(C, S*"
1 x I). 

a 

Stabilizing by adding the direction of the trajectories through C, 

i.e., the radial direction in , we get a framing of 

v(C, D ^ 1 ' 1 x I). 
fr 

Thus C determines an element a(C) -€ Cl ̂  (ftM Q), the framed 

bordism group. 

Remarks 1) Under the natural isomorphism 

r ( Q M Q ) « fl^
r(*) x ^ r ( f l M o ) * Z Z 2 x 7r2M, a(C) corresponds to the 

2Z 2 x 7r2M obstruction for C defined in VII of [H-W]. 

This is clear for the 7L ^ component. The component as 
2 

defined in [H-W] is given by S C M x I x I, the closure of the tra 

jectories through points of C, joined to * by the path 7(a) 

from the i + 1-handle a to *. To compare this with the map 

s l x s
1 > M x I x I given by XCOiS 1 — > ft M Q, we identify 

7r2M with H 2ÎÏ, where M is the universal cover of M. Then the 
~ 2 

difference between the elements of H 2M determined by S and 
S 1 x S 1 is just the paths 7(b) and the loops g - 1(a(C)), each 
of which is counted once for each x € C. Clearly these contribute 
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zero to the element of l^M. 

2) Under the isomorphism fl^r(ft M) « fl^r(ft M Q ) [T^M] the element 

of î^r(ft M ) determined by X ^ . S 1 > Q M corresponds to 

a(C)a(C). 

Before extending the definition of a(C) to the case that C 

is an arc of i + 1/i intersection we must describe the way i + l / i 

intersections fit together near an i + 1/i + 1 or i/i intersection, 
i 

Let a and a be i + 1-handles near a t slice t = t contain-
o 

i 
ing an i + 1/i + 1 intersection of a over a , and let b be an 
i-handle. In a level surface below a one has the core spheres 

S^t x t and, for t ^ t • , S 1 x t. The i + 1/i + 1 intersection a o a 
at t causes S* x t to split open with the local structure of o a o * r 

i t 
(cone on 3 points) x S , i.e., the stable manifolds of a and a 

i 
intersect a level surface below a as in the diagram 

i 
a 

X S 1 

a ' 

For example when i - 0: 

a 
t < 
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Assuming the i + 1/i intersections of a and b are in general 

position near t , and hence form arcs transverse to t slices, then 
i 

in a level surface below a the intersection of the stable mani-
i 

folds of a and a with the unstable manifold of b has the local 

structure of a cone on 3 points: a/b^' 

a / b ^ ' 

at each arc of a /b intersection. In general position the arc of 

a/b intersection abutting the a/b arc may be taken to be trans­

verse to t-slices. 

This describes the i+l/i intersections in a level between 
t i a and b. In a level between a and a the picture is slightly 

different. Here in each t slice the unstable manifold of b meets 

the unstable manifold of a with the local structure of (cone on 

a finite set) x s11"1"1
 x t. The vertex of the "cone" is the trans­

verse sphere Sn"*" and there is one "sheet" coming into this ver-

tex for each point of a /b intersection. These unstable manifolds 

(cone) x S 1 1"*" 1 x I intersect S* x I in a one-complex which is 
a 

just a cone on the same finite set of a /b intersection points. 

The vertex of this cone is the i + 1/i + 1 intersection point. The 

arcs of a/b intersection emanating from this vertex will be 
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transverse to t slices in general position. 

All of this is illustrated in the following diagram where there 

are three points of a /b intersection in each t-slice: 

a i + 1 

t 
a - i + 1 

b i 

t t 
o 

Here the solid horizontal lines are the critical points a, a , and 

b, the horizontal dashed lines are the i + 1/i intersections in a 

level surface, and the vertical lines represent selected trajectories 

of the gradient-like vector field. Note that in t slices approach­

ing t Q a trajectory from b to a approaches a broken trajectory 
t t 

from b to a and a to a. 

The case of an i/i intersection is dual. 

Now choose 

v) a contraction of each loop X(x), for x an i + 1/i + 1 
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intersection lying in one of the subdividing t slices. 

This is meant to include the case of the "i + 1/i intersection" of 

a birth-death handle pair, where the trajectory joining the two 

critical points shrinks to zero. 

The contractions chosen in v) allow us to define 
~ 1 
X(C):S > QMq when C is an arc of i + 1/i intersection, by 

deforming X at the ends of the arc to * € Q M Q. This is clear ex­

cept perhaps at an end of C which lies at an i + 1/i + 1 or i/i 

intersection. Referring to figure 2, let x denote the trajectory 
i t from a to a , y a trajectory from a to b, and yx a nearby 

trajectory from a to b. We seek a contraction of 

X(yx) • g (yx)X(yx). Choice v) gives contractions of g (x)X(x) 

and g~*(y)X(y). These determine in a natural way successive con­

tractions of 

g"X(x) [g"1(y)X(y) ]g(x), [g"1(x)g"1(y)X(y)g(x) ] [g"1(x)X(x) ], 

g"1(x)g"1(y)X(y)X(x), g"1(x)g"1(y)X(yx), and, using iv.b.), 

g"1(yx)X(yx). 
~ 1 

To make X(C):S > Cl MQ a map in framed bordism we must con­

sider the following situation. Let P P and Q q be manifolds with 

singularities of the type encountered in the discussion preceding 

figure 2, that is, (cone on a finite set) x SP or x SQ for 

submanifolds 2P and 2Q of codimension one. Let P and Q be - 252 -
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embedded in a manifold W p + q " 1 in general position, so that P 0 Q 

is a one-dimensional complex with vertices Z(PnQ) » (PflSQ) U (2P0Q). 

Away from the singularities of P and Q (i.e., 2P and 2Q) it 

makes sense to talk of normal bundles and normal frames, and trans-

versality gives an isomorphism 

v(PHQ - 2 ( P N Q ) , P - 2P) « v(Q - 2 Q , W ) | p ( l Q _ 2 ( p n Q ) . 

Moreover it is possible to fit these normal bundles or frames to­

gether in a consistent way at the vertices 2(PflQ) : At vertices in 

SPOQ one can simply take a normal plane (frame) of SPflQ in ZP, 

while at vertices in PflSQ one takes a normal plane (frame) of SQ 

in W which is also normal to all the sheets of Q meeting in the 

given point of 2Q. (Note that such planes or frames are dense,) 

A typical situation of this sort is pictured in figure 3. 

^ y i / ' 
i • 

! _ _ _ _ _ _ t ^ ^ ^ ^ 

Figure 3 
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These considerations lead us to make the following choices: 

vi) (a) For each point x € S* x t (1 s£ - i x t of i + l / i 

intersection lying in a subdividing t slice, deformations of the 

framings of v(S* x t, V n x t) and TCSJJ"1 X t) so that they agree 

at x. 

(b) For each point x e x I fl Sn~l~l x I of i + l/i + 1 
a . 

intersection, deformations of the framings of v(S* x I, v n x I) and 
TCS11"1"1 x I) so that they agree at x. 

a 
(c) For each point x € S*^1 x I f| S^"1 x I of i/i inter-

b i-i 
section, deformations of (n-i)-frames in v(S , x i, v x I) and 

n-i b 

in T(Ŝ  x l) so that they agree at x. 

Remarks 1) By "agree" we mean "agree up to sign," i.e., after re­

placing one vector (say the first) of a frame by its negative if 

necessary, so that orientations agree. 

2) In (a) we mean to include the limiting case of an i+l/i 

intersection of a birth-death pair. 

3) In each case the choice of deformation is classified by 

22 2

 m
 ̂ SOCn-i), or ZZ 2 *

 ni\m±9 n . i + 1 * ̂ SOCn-i+l) in (c). 

Under the J homomorphism this ZZ 2 is identified with cfr(*). 
If C is an arc of i+l/i intersection of the i + 1-handle 

a with the i-handle b (in some t interval) we use the choices 

in vi) to deform the framing of v(C, SJJ"1 x I) induced from the 
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canonical framing of the normal bundle of the stable manifold of a 

so that this framing of v(C, S n - i x I) agrees with the standard one 

near the ends of C. Thus comparing the two framings of 

v(C, S ^ " 1 x I) along C gives an element of T ^ S O » fl£r (*), and 

this makes X(C):S* > Cl M Q a map in framed bordism, as desired. 

Except when an end of C abuts an i + 1/i + 1 or i/i inter­

section, the choice in (a) gives precisely the required deformation. 

At an i + l/i + 1 or i/i intersection the deformations of framings 

in (b) or (c) naturally extend to nearby points of i + l/i inter­

section. So for example at an i + 1/i + 1 intersection the framing 

of v(S* x I, v n x I) at all the i + 1/i intersections abutting 

the given i + 1/i intersection passes down trajectories past the 
t 

i + 1-handle a , where it now induces a simultaneous framing of 
v(Sl

t x I, v n x I) at each i + 1/i intersection. This is then 
a 

carried down to i-handles by the choice in (a). Similarly at i/i 

intersections. 

Thus for each component C of i+l/i intersection in a t 

interval we have defined a(C)a(C) € fl£r(fl M Q ) [ T ^ M ] . Let 

a£j - 2a(C)a(C), the sum over all components of i + 1/i inter-

section of the I i + 1-handle with the k i-handle in the 

j t h t interval, and let A.. - (a^). Recall € GL(2Z [TTJM] is 

the algebraic i+l/i intersection matrix for t slices in the 
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j t l 1 t interval. 
Definition. The W h ^ ^ M ; ^ x TT^) invariant of the given one-
parameter family is the class of the matrix 1 + 2 ML^A.. 

j J J 

Alternatively, we could use I + S A.M7*: 

Lemma 2.1. [I + SM^AjJ - [I + 2A..MJ1] in x ^ M ^ L hence 

also in Wh^ir^;^ x 7 ^ ) . 

Proof. In I + A.M. is equivalent to 

M ^ d + A.MT 1) M. - I + M ^ A . , so I + ZA.M? 1 - n(I + A . M ? 1 ) is 

equivalent to n(I + M^" 1^) » I + SM^Aj. 

§3. Proof that 0 is_ well-defined. 
Theorem 3.1. The association [ft] > [I + SM^A^] defined in the 
preceding section determines a homomorphism 

G:TFO <P(M,dM)~ irx< 9 £ ) > Wh^TT^ZZ 2 x T^M) . 

The proof will consist of showing that the class of I + ZM? A^ 

in Wh1(7T1M;ZZ2
 x is independent of the choices which were made 

in its definition, or at least those choices which depend on 
irx< 9 £) 

Proposition 3.2. The element [I + SM^Ajl € tth^ir^a^ x n2) is 
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independent of the choices made in i)-iii), v), and vi). 

Proof. Choices i), ii) and iii) correspond to "change of basis" 

and affect the and A y hence also I + ZM~^Ay by conjugating 

by an element of GL(ZZ [n]). By the definition of K^, such con­

jugation induces the identity on K^(ZZ ̂  X T ^ ) [w ], 

The choices in v) and vi), which we shall refer to as 

normalizations, are covered in the following three lemmas. 

Lemma 3.3. Renormalizing at an i «f 1/i intersection other than a 

birth-death point leaves the matrix I +
 2MJ1AJ or I + SAjMj1 

fixed. 

Proof. Suppose the i + 1/i intersection being renormalized involves 

the I i-handle b,. and the m i + 1-handle a , and that the l m 
i t renormalization changes A^ to A^ and to A^ +^ (i.e., the 

given i + 1/i intersection separates the k*"*1 t interval from 

the kfl s t.) 

Notation: d x is the matrix with one non-zero entry x in the (£,m) 

position. 

Case 1. The given t-slice contains neither i + 1/i + 1 nor i/i 

intersection. Then ^ - ^ V ^ and - A ^ - d ^ 

for some a e (2Z ̂  x 7 r2^ 7 rl^' a n d t h e r e 8 u l t i s immediate. 

Case 2. At a t-slice of an i + 1/i + 1 intersection of an 

i + 1-handle a over an i + 1-handle a . Here P q 
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"k+l " \ eqp f o r 8 0 m e 0 6 ± V 
a) q * m. Then ^ - ̂  + d^, A f c + 1 - A ^ - d^, and 

(A, M. + A, .,R T "k+l"k+l) •k+l 

dJ» eqp\il " £ j & " 0 8 t o c e dJaeqp-dJm " « ' 
b) q « m and the arc of a /b intersection which abuts the 

P "v 
a /a and a /b a intersections lies to the right of the i + 1/i + 1 p m m £ 
intersection. Then A^ • A^ + d^, 

A * A ,a ,aa A ,a a 

< A k \ 1 + \+Aii> - <\£l + w&i> • dirt - W p ^ i i • 0 

since ^ " • i K i l l f q " m -

c) q = m and the arc ... lies to the left of the i + 1/i + 1 
intersection. Then \ « ̂  + dj, - - dj,, and 

vt l + w & - + W i + i a s b e f o r e -

Thus in Case 2 I +
 ZAJMJ* i s Preserved. 

Case 3. At a t slice of an i/i intersection. This is similar to 

Case 2; we omit the details. 

Lemma 3.4. Renormalizing at a birth-death point changes 
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[I + XMj^Aj] € K^ZZ^ x ^ ' ^ l ' b y 6 1 X 1 e l e m e n t o f t* i e kernel o f 

K X(2Z 2 x T^MT^] > Whj^^jZZj x T T 2 ) . 

Proof. If the t interval to the right (left) of the birth (resp. 
T H 

death) point is the k t interval, and the birth-death point in­

volves the Ith i-handle and m t h i + 1-handle, then ^ has £ t h 

TVI 

row and m column consisting entirely of zeros except for some 
a € i 711 i n t b e (£'m) position (birth-death points are assumed 

independent;[H-W]see I§6). Renormalization changes to 

+ d ^ for some a e 2Z ̂  and fixes Aj,j ̂  k. Since 

" dSd<W " du ' 1 + 2Atf c h a n g e 8 t o 

I + SAjMj1 + - (I + 2A jMj 1)(I + d ^ 1 ) . But matrices I + d ^ 1 

for a e 2 2 x 7 r 2 lie in (in fact, generate), the kernel of 
^ 2 X 7 T 2 ) [ 7 T ] > W h ^ T T ^ ^ X 7 T 2 ) . 

Lemma 3.5. Renormalizing at an i + 1/i + 1 or i/i intersection 

preserves the class of I + SMj^Aj * n K].(2Z2 X 7 r2^ 7 rl'" 

Proof. Consider an i + 1/i + 1 intersection of the i + 1-handle 

a^ over the i + 1-handle a^, corresponding to changing to 

M^ + 1 - e^. Renormalization adds a € 7L 2 x -n^ to the 7L ^ x * 2 

invariant of each arc of i+l/i intersection which abuts the given 

i + 1/i + 1 intersection. The algebraic number of such arcs is 
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given by the m t h column of (which is also the m t h column of 

M ^ + 1 ) , so and A^ + 1 together are changed by adding aa times 

the m column of M. to their J, column, i.e., by adding 
dpAL-

The precise way in which this change is split between and 

A^ + 1, which depends on whether i + l/i arcs abutting the 

i + 1/i + 1 intersection lie to the left or to the right of the 

i + 1/i + 1 intersection, does not affect the resulting change in 
-1 1 1 

I + 2A..ML . For, if the new A^ and A^ + 1 are rewritten as. 

\ + d ^ a n d \+i - d p t * t h e n 

< \ + + <Vi - <t><ii - < v C + w & > - 0 s i n c e 

d p V & - dp^ ••JC " dpA L-

Thus we may assume A^ changes to A^ + a n d ^+1 * 8 

fixed. Then I + ZA M"* becomes 
J J 

I + SAjMT1 + l^d^MJj1 - (I + ZAjMJ^MI + ^ d ^ M ^ 1 ) , and the image in 

Kj^JZ^ x tr^yiTTj] is unchanged. 

The case of an i/i intersection is similar. 

Remark. The obstruction [I + ZM^Aj] is clearly independent of 

- 2 6 0 -



THE SECOND OBSTRUCTION FOR PSBUDO-ISOTOPIBS 

choice iv a), and it is probably independent of iv b) also, but we 

will not need this result. Note that iv b) was used only in the 

normalization at i + l / i + 1 or i/i intersections, and then only 

for the 7 ^ factor. 

Lemma 3.6. Subdivision of the t intervals preserves I + ZM^A^. 

Proof. Such subdivision of the k t interval splits into 
1 2 -1 A^ + A£ • A^ and preserves the underlying M^, so that I + ZM^ A. 

is unchanged. 

To complete the proof of the theorem it remains to show that 

[I + ZM'^A. 1 is unchanged by a homotopy of f and its gradient-like j J t 
vector field to another nice one-parameter family whose critical 

points are of index i and i + 1 . Such a homotopy may itself be de­

formed, relative to its ends, to a nice two-parameter family having 

critical points of index i and i + 1 only, provided that n and 

i are large enough (7 i n - 7 suffices by V. 3.1 of [H-W]). 

If n and i are not already in this stable range we may use the 

suspension construction of I§5 of [H-W] which takes functions and 
2k 

vector fields on M to functions and vector fields on M x D , in­

creasing the index of critical points by k. It is clear from the 

definition that this suspension preserves the matrix I + ZM^Aj. 

Thus there is no loss of generality in restricting attention to 

homotopies of ffc involving only the indices i and i + 1. It 
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suffices then to show that each catastrophe on the following list 

leaves [I + ZMj^Aj] invariant: 

I. Changes in the graphic 

A. 

B. 

II. Changes in i + 1/i + 1 or i/i intersections 

A. Cancelling or introducing a pair of consecutive i + 1/i + 1 

or i/i intersections 

B. Permuting two consecutive i + 1/i -f 1 or i/i intersections 

C. Permuting an i+l/i + 1 or i/i intersection and an adjacent 

birth-death point. 

D. An i/i + 1 intersection 

III. Changes in the i + 1/i intersections 

A. Surgery on the interior of an arc of i + 1/i intersections 

B. Failure of an arc of i + 1/i intersections to be transverse to 

a subdividing t slice. 

(See V§5 for an argument showing that it is not necessary to consider 

the catastrophe occurring at a dovetail singularity: 

' " fcr * or ^ Z \ ) 

Lemma 3.7. Normalizations can be chosen for all functions in a small 
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two-parameter neighborhood of each of the catastrophes listed above. 

Hence the matrices Aj for t intervals in such neighborhoods of the 

catastrophes can be taken to be zero. 

Proof. One proceeds just as in the one-parameter normalization of §2, 

the only appreciable difference being that now one has vertical align­

ments of up to four critical points connected by trajectories of the 

vector field. 

Consider, for example, an i/i + 1 intersection: 

i + 1 a 
x 

i 

i + 1 

b 

c 
y 

i 
z 

d 

To obtain the n^' normalizations one uses contractions of 

X(x), X(y), X(z) to get contractions of X(yx), X(zy), and X(zyx). 

For the 2 ^ part one looks in a level surface between b and c, 

where stable and unstable sets form manifolds with singularities of 

the type described in §2. 

Further details will be left to the reader. 

The conclusion of the proof of Theorem 3.1 follows easily from 

this lemma. For in every case except I.B. the only change in 

I + is a possible relabelling of the subscripts j, corres­

ponding to the process of subdividing t intervals to allow all A^ 
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near the catastrophe to be zero. 

In I. B. the splitting or joining of the arcs of critical 

points necessitates a certain change in basis for all the matrices 

Mj and Aj to the right of the catastrophe, say for j > k. Thus 

Mj and A^ are replaced by PMjQ and PA^Q for some 

P,Q € GL(2 [TT]), j > k. And 

I + ZMT3^. « (I + Z M" XA )(I + S mJ^A. ) becomes 
J J j_k 3 3 j)4c J J 

(I + Z m71A > Q* 1 (I + ZM^A.) Q. 
j£k 3 3 j>k 2 3 

So the image in ^(ffi^ x is unchanged. 

§4. Product and Duality Formulae; Applications 

The homomorphism e of Theorem 3.1 depends on the indices i 

and i + 1 of the critical points of the given family f„. This 

dependence will be expressed in this section by writing 0^ + 1 for 

the e above. 

Lemma 4.1. 0^ +^ • -0^ 

Thus a definition of the second obstruction which is independent 

of indices is 9 - (-l)^. 

The formula 0 ^ - -0^ would be a formal consequence of a 

general definition of the Wh^TT^a.^ x tt^) invariant for nice one-

parameter families with unrestricted indices, such as is given in 

[H-W] for the W h ^ invariant. Such a definition of the second 
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obstruction can in fact be given, although the proof of Theorem 3.1 

then becomes much more complicated. (The complication is more than 

just formal; Lemma 3.7 is no longer valid in the case of an i/i + 1 

intersection when critical points of index i - 1 or i + 2 are 

present.) We shall content ourselves here with an ad hoc proof of 

Lemma 4.1 for the special case of one-parameter families with vanish­

ing Who^-i invariant, i.e., with graphic (stably) reducible to 

i + 1 

i 
This will suffice for the applications below. 

In this special case it is sufficient to construct a deformation 
family 

carrying a one-parameter/with empty graphic to one with graphic: 

i + 1 

(1) i 

a 

b 

i - 1 
c 
d 

both components of which have prescribed i + 1/i or i/i-1 in­

variant a a e(ZZ £ x [w ]. To do this, first introduce critical 

points with the graphic (1) and with a/b and c/d intersections one 

point in each t slice and all other intersections empty. Next 

introduce a pair of i/i intersections of b over c so that a/c 

and b/d intersections become one point in each t slice between 
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the two i/i intersections, where the algebraic a/c (b/d) inter­

section number is -1 € ZZ[tt^] (respectively, + 1 € ZL [ T ^ ] ) . N O W , 

preserving the vector field, change the graphic to: 

* V A b t 
(2) 1 ^ v / I - i/i intersections 

i - ^ V ^ c 

In a level surface between c and b for t slices between the two 

crossings of the graphic one then has the stable manifolds D* and 
a 

S* " 1 - dD* and the unstable manifolds D^" i + 1 and 
c a a 

S ^ 1 - ÔD^- i + 1. 

Deform the vector field through a second parameter in such a way 

as to pass through a circle of c/b intersections with one-

dimensional intersection invariant eta. (We are free to suspend as 

in I§5 of [H-W] to make 1 and n - 1 large enough so that this 

deformation is possible; see [H-Q].) Then necessarily the result of 

this deformation has a/b and c/d intersections each with the in­

variant eta. For the a/b intersections with zero-dimensional in­

variant a c ÏÏ1 (we may assume a ̂  1) for the two-parameter family 

form a bordism between the circle of c/b intersections and the re­

sulting a/b intersections, and aa is by definition a bordism 
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invariant. Similarly for the c/d intersections. 

The graphic can then be returned to the form (1), preserving the 

vector field, so that each component of the graphic has the desired 

invariant a a . 

An immediate consequence of Lemma 4.1 is the product formula for 

the second obstruction. Let N be a smooth closed manifold and 

P € P (M,dM), so that F x ib^ e P ( H x N , dM x N ) . Denote by i^ 

the map on W h
1 ( 7 r

1 i Z Z 2 X i n d u c e d f r o m i : M C — > M x N . 

Product Formula 4.2. G([F x 16^]) » x ( N ) i*0([F]), where x(*0 is 
the Euler characteristic of N . 

The proof is formally the same as in the case of the Wh^n^ in­

variant. See VIII of [H-W]. 

If F e (P (M,dM), let F:M x I > M x I be the "dual" pseudo-

isotopy obtained from F by reversing the ends of the interval I, 

and then composing with the constant isotopy F *|M x (l) so that 

F € (P (M,dM). To compute 0([F]) in terms of e([F]) we may use 

the one-parameter family l-ft having critical points of index 

n - i and n - i + 1 and gradient-like vector field -u^, where f^, 

having critical points of index i and i + 1 and vector field p-t, 

is used to compute e([F]). Thus 0([F]) - (-l) i + 10 1 + 1( [F] ), and 

9 1 + 1([F]) » [I + SM^Aj] is defined as in §2. 

Lemma 4.3. Reversing the ends of I changes Mj - ^ k j ^ a n d 
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Aj - (aj^) t o Mj " a n d Aj " *̂J,k̂ ' w h e t e t h e involution 

m * • m of 2Z [^M] is given by a > W^(a)o*1, while the in­

volution a I—> a of (2Z2 x n^M) [^Mj takes the form 

(*t*2)o » > (o^ + W 2(a 2)), ^ ( o ) a* S a"1 for € (0,1> * Z2 2, 

a 2 € 7 r2 M* a n d a € 7 rl M* 
Here W^w^M > (+1> and W ^ * ^ > (0,1* are the 

"Stiefel-Whitney classes11 which classify the restriction of the 
tangent bundle of M to a circle or two-sphere representing a given 
element of rc^M or tt^I. 
Proof. Referring to figure 1 of §2, we see that the first effect of 
reversing the ends of I is to replace X(x) by x"1(x) and hence 
a by a"*". In addition, to compute the ir^l component the loops 

X(x) » g ([X(x)J)X(x) are to be replaced by the loops 
g'1([x"1(x)])\"1(x) - g^ax"1^)]) [g([x"1(x)])X(x)]"1g([x"1(x)]). 
These determine the same element of rr̂ M as the loops 
g([V(x)])[g"1([X(x)))X(x)]-1g"1([x(x)]); namely - a ° " \ 

To account for and W 2 we must consider the zero-

dimensional and one-dimensional framing invariants in fl£r(*) and 

H^ r(*). These are defined by comparing the canonical framings of 

v(S*,V) and T(S^ - i) at an i + 1/i intersection point x. Dually 
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we would frame v(S?"*,V) and x(S*) at x. The product of these 
o a 

framings is a pair of framings of V or, stabilizing by V C M x I, 

a pair of framings of M x I at x. These are just the translations 

of the orientation frame of M x I at the basepoint * along 7(a) 

and 7(b). The difference between these two framings is the element 

of 7To0(n+l) classifying T ( M X I)l^xj» i.e., W^a) or, for an arc 

C of i + 1/i intersections, the element of ^^(n+l) classifying 

T ( M x l ) l j ( C ) * i.e., W 2 ( a p . Thus dualizing multiplies the zero-

dimensional intersection number in 2Z by W^(a) and adds W2^°2^ 

to the one-dimensional intersection invariant in 2^ « (o,l). 

The involution I + (a^) > I + (a^) of 

G L ( ( Z Z 2 x T ^ M ) [7TjM] ) passes to an involution of Wh 1(7r 1M;2Z 2 x trJA) 

denoted 9 I > 0 . The lemma implies that 

e n. i + 1([F]) - [I + ZÂ^Mj"
1] = [I + SMj^Ajl « ê ± + 1([F]). Hence 

e([F]) - <-i) n" 1 + 1e n. 1 + 1(ÏF]) - ( - D n ( - D i + 1 e i + 1 ( [ F ] ) » (-l)ni([F]) 

and we have derived the following: 

Duality Formula 4.4. e([F]) « (-l) 1^ [F]), where n » dim M. 

We now give two simple applications of the duality formula, 

restricting attention to the factor Wh^(ir^;Z 2 ) of
 Whi(7ri*2Z2 X 

Recall from VII of [H-W] that T T Q fi (M,dM) > Wh ^ T r^Z^) is 

restricting attention to the factor Wh.. (w- ;2 9 ) of Wh- (7T ;2Z 9 X T\ ). 

Recall from VII of [H-W] that TT fi (M,dM) > \m (n ;2L) is 
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surjective if dim M _ 5. 

Let Diff(M x C <P (M,dM) denote the subgroup (with the 

induced C°° topology) of diffeomorphisms of M x I which are the 

identity on d(M x I). 
J x o not conjugate to 

Corollary 4.5. If 7r^M contains an element/ and dim M ^ 5, 

then in Diff(M x I,à) there exist diffeomorphisms pseudo-isotopic 

to the identity but not isotopic to it. 

Proof. Let F € (P(M,dM) have Wh^(7r^M;2Z £ invariant represented 

by a € TT^M C 2^[TT^M] under the isomorphism of Corollary 1.3. Then 

the "double" 2 F € Diff ( M x i,è), obtained by compressing F into 

M x [0>i] and then on M x [£,1]using the reflection of this through 

M x has V7h 1(TT 1M;ZZ 2 ) invariant the sum of the invariants for 

F and F, i.e., [a + a " 1 ] . By hypothesis [a + a " 1 ] is non-zero 

in Wh^OrjMjSZ £ 9 so 2F is not isotopic to the identity in 

(P (M,dM) nor, a fortiori, in Diff(M x But 2F is pseudo-

isotopic in Diff(M x l,o) to the identity. In fact, 2F is the 

restriction to M x I x (l> of the suspension SF € f O i x i,d( M x I)) 

as defined in I§5 of [H-W]. 

Corollary 4.5 has the following quantitative refinement: 

Corollary 4.6. The abelian group 7ToDiff(M x l,d) is not finitely 

generated if dim M _ 5 and n^M contains infinitely many con-

jugacy classes which are distinct from their inverse classes. 
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This condition on TT^M is satisfied, for example, if TTJM maps 

homomorphically onto 2Z. An interesting special case for both 

corollaries is M « S 1 x D 1 1" 1, n ^ 5. In fact, one can completely 

compute ^DiffCS 1 x Dn"*",d) for n ^ 7 . This will be done in the 

next section. 

§5 Pseudo-isotopy versus Isotopy 

In this section we indicate some things that the computation of 

7 T Q P (M,dM) implies about 7TQDiff ( M , d ) . Only in very special cases 

however can we give a complete answer, for example when M * S* x D n 1 

Let Diff(M,d) be the group of dif feomorphisms of M which 

restrict to the identity on dM, and let Diff^M,^) (Diff p l(M,d) be 

the normal subgroup of diffeomorphisms isotopic (respectively, pseudo-

isotopic) to the identity in Diff(M,d). One then has the funda­

mental exact sequence: 

n >

 D i f f p i < M > d > ^ Diff(M.è) > Diff(M.d) > n 

U D i f f ^ ô ) Diff^M,^) Diff p I(M,ô) 

<*> I! Il II 

0 —> 7r oDiff p i(M,d) — * 7rQDiff(M,è) — > S QDiff(M,d) > 0 

Proposition 5.1. 7r oDiff p x(M,ô)
wCoker(j), where 

j:7T oDiff(M x 1,0) > TT o £>(M,dM) is induced by inclusion. 

Proof : The quotient group (^(M,ôM)/Dif f (M x I,d) is naturally 

identified with Diff p l(M,d). 
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Thus the basic question is, what is Im(j)? In other words, 

which ^ 2 ^ 1 0 1 1 ( 1 Vh 1 (7T 1;2Z ^ x TT^) invariants arise from pseudo-

isotoples of the identity to Itself? In general this is undoubtedly 

a very hard question, just like the analogous question for 

h-cobordisms : When are the two ends of an h-cobordism diffeomorphic? 

For the remainder of this section we will assume n - dim M ;> 7, 

and TTO (p (M,dM) will be identified with 

W h ^ M e Wh 1 ( 7 T 1M;2 2 x T T ^ Q . On W h ^ © Vh^ir^jZ 2 x TJ^) let the 

differential be given by d±(x) • x-C-l)1^, and let Z± « K e r ^ ) , 

B t - Im(d i + 1). Thus » (x + (-l)1^) and Z± • (x - (-l^xl.By the 

"double" construction of 4.5 we have: 

Lemma 5.2. Im(j) 3 B r (n « dim M). 

In general that may be all that can be said about Im(j ). 

Lemma 5.3. If if1 - N 1 1" 1 x I, then Im(j) <= Z^. 

Proof. If F € Diff(M x I,d), consider the pseudo-isotopy F ob-
2 

tained by rotating F halfway around in the I factor of M x I « 

N x I 2: F is not quite the dual F of F, but F differs from F 

only by conjugation by the involution of M - N x I which reverses 

the ends of I. Such conjugation induces the identity on 7r^M, hence 
also on 7T <̂ P(M,dM), so F and F determine the same element of o 
71o ^CM^ôM). By construction F is isotopic to F in ^ ( M ^ M ) , 

and the result follows. 
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Proposition 5.4, (a) If M 1 1 - N 1 1" 1 x I and \ 9 Zn> then 

i r oDlff p i(M,ô) « B n - 1 . 

(b) If in addition N 1 1" 1 « Q n " 2 x I and « Z ^ , then the 

sequence (*) splits. 

Proof, (a) We have TT Diff p l(M,d) « Coker(j) « CokerCd^) * B n - 1 , 

with the composite map given by 

7r oDiff p I(M,d) > nQ & (N,dN) > W h ^ 0 Wh^ T T^ZZ.j X n£ . 

(b) Consider the map 

7T Diff(M,d) > TT £?(N,d) > Wh27T 0 Wh 1(?r 1;2Z 2 x T T 2 ) . 

The arguments of the preceding two lemmas applied to N instead of M 

show that this has image B n_^, hence is the desired splitting. 

The algebraic hypotheses of this proposition are satisfied if 

7 T ^ is free or free abelian (so that W l ^ l 8 0 by recent results of 

Quillen and Gersten) and, say, » 0. In this case \lh^(n^;2Z 2> and 

B n - 1 are both infinite sums of copies of Z 2- For example, when 

7 1 ^ « 2Z with generator T, then 

Wh-(ZZ ;2Z 0) « 2Z°[T,T!~l] and B « 2Z°[T + T " 1 ] , where the super-
l z z n-i z 

script "o" denotes polynomials with vanishing constant term. 

Corollary 5.5. TMttffp^S 1 x D n ,d) » 0 2Z 2 and 

TT Diff (slx D n - 1 ,a ) * e 2Z « © r 1 1 e r 1 ^ 1
 (n ^ 7). 

o x i 
The second statement follows from the computation of 

Diff (S 1 x D 1 1" 1,^) modulo pseudo-isotopy, as in {Br] and [ T ] . 
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( r n - 7r oDiff(D
n" 1,è) and r "* 1 * ^Diff (Dn,d) are mapped to 

7r oDiff(S
1 x Dn"*,è) in the obvious way.) 
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