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A PROOF OF CHEN'S THEOREM
by
Heini HALBERSTAM

1. - THE WEIGHTED SIEVE

As usual, let P, denote any integer having at most k prime divisors,

k

equal or distinct. Let a, h be non-zero integers such that

a=%1, 2|h

and let x be a large enough positive number (1 . We shall prove :

THEOREM (Chen [1,2]).- There exists an absolute constant X such that, if

X2xX ,
o

[{p : 0<ap+h<x, ap+h=P2}[>

(0.689)T T (1-

2
p>2  (p-1)

) p-l _x
2<phP? log?x

1
) If a=1, let h be a fixed integer. If a = -1, let h=x=N, a large enough

even integer.
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H. HALBERSTAM

The special cases (i) a=-1, h=x=N; (ii) a=1, h=2 , give the closest

known approximations to the Goldbach and prime twins conjectures respectively.

Let B={p:(p,h)=1}, P(z)-= p, and consider the weighted sum

p<z
, pe P
1
- = 1-
{r-3
0<ap+h<x1/1o l/l < b <x 1/3
(ap+h, P(x "7 7))=1 pllap+h, P €D
1 : 1}
2 L '

X1/1osp<xl/3. RYVLE <p,<(x /p)/

1
p,lapth’, pe? pzlap+h pze P
apth=p p,p,

where Z' signifies that the summation extends only over those p's for which
(p,ab) =1 and ap+b is squarefree relative to all pairs of primes P P, of P

appearing in the inner sums.

Although the expression appears complicated, its arithmetical signifi-
cance is not difficult to perceive : the only primes p=<x counted in the sum that
have a positive weight (i. e. the expression in parentheses) attached to them are

precisely those for which ap+h = P2 . To see this, observe that the only positive

1
values taken by the weight are 1 and 2 Now if the weight is 1 , both the inner

k3
sums must be empty, so that in fact (ap+h, P(x>)) =1 ; and this is possible only

if apt+h = P2 . Suppose now that the weight is 3 . Then ap+h has no prime

1/10 . 1/10 . . 3

factor <x and precisely one between x (inclusive) and x> (exclusive).

1
Hence ap+h = pym, where (m,P(x%®))=1. Thus m has at most two prime fac-

tors. If m has precisely two prime factors, then

1

ap+h=p1p2p3 ) X35P2<P3 H
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CHEN'S THEOREM

clearly we must have p, < (x/pl)% , since otherwise ap+h = P,P,P; > pl(x/pl)=x ,
which is impossible. But in such a case the weight attached to ap+h receives a
further contribution of -3% from the double sum in parentheses, and so is reduced
to 0. Hence, if the weight is to be % , m has at most one prime factor and

aptb is againa PZ‘ Hence

(1. 1) X:=]{p:0<ap+h<x,ap+h=P2}I

is an upper bound of the weighted sum, and it remains to derive for this sum the

lower bound indicated in the statement of the theorem.

2. - THE LOWER BOUND SIEVE

Removing the restriction implied by £' induces, as is easy to confirm,

9/10

an error of magnitude << x

For any integer sequence § , let sq = {s:s5¢8, qls} and let

S(8;P,z)=|{s:8¢8, (s,P(z))=1}] .

Then we have proved in section 1 thatif C = {ap+h: O<ap+h< x}, then
1/10, 1 1/10
2.1 X= s(C ; , - s(C H , X
(2. 1) cip.x"N-5 J e, 9 )
1/10 .
X Spl<x3
pe?P
'l\ [ {p; : p,<x/(p,P,), (P,P,) P;-h = ap}|
2/ 303 17277 Y12’ T3
1 1
(110 p,<x’=<p,<(x/p)*
P P, €D
+ O(xg/lo).
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H. HALBERSTAM

The first two expressions on the right are part of the Selberg theory as it has been

developed by Jurkat-Richert [3] and Halberstam-Jurkat-Richert [4], and we
(1)

give no details (for these, see the forthcoming book on '"'Sieve methods' by

Halberstam and Richert, Academic Press, 1974),

9/10))

Their contribution is at least (including also the error term O0(x

(2.2) X :=2.653 (1- 12) , % ’; (x=x);
° p>2 (p-1)° 2<p|h P7™° 1og°x

and our sole concern from now on is with the third expression on the right of (2.1):

we require an upper bound for

(2.3) Y = I [{p':p'<x/q,lap'-hl =p}],
q€e Q
where
1/10 1/3 1/2
(2.4) Q={p1P2:x/ SPl<x/ < p,< (x/p)) 2, P+ P,€ B}

So far we have proved that X , the expression defined by (1.1), satisfies
(2.5) X=X -

where Xo is given by (2.2) and Yo by (2.3). Note that
(2. 6) |Q| < x2/3 ,

and that, since h is even, |qp'-h| = 1 for every qeQ .

(1) This book gives a full proof of Chen's theorem.
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CHEN'S THEOREM

3. - THE EXPRESSION Yo : APPLICATION OF THE SELBERG UPPER BOUND

SIEVE. - Let
@ =0(q) = {qp-h:p< x/q}.

Then

Y = £ |{n:ne@, |n| is a prime}]| ;
q€Q

if z is any number satisfying
3.1 2szs x°

it is certainly true that

Y < T {s(a;P,2z) +z}
o
qcQ
(3.2) < £ s@; P,z +x /12
q¢€Q

We tackle the upper bound for S(G; P, z) in the classical Selberg manner : for
any set fof real numbers )‘d satisfying )\l =1 and Xd= 0 if d=2 2z , defined on

the set of squarefree integers coprime with h, we have

S(@;%,2)=|{ap-h : p<x/q, (qp-h, P(2)) =1} |

SZ(Z xd)2= Z hdlxd221

p<x/q d[P(z) d,,d,|P(z) p<x/q
d|gp-h qp=h mod D

where we use the notation D = L. C. M. [dl,dZJ . For each q, the appropriate

choice of the A's is

\ = ——b(d) Gy(=/d)

d - 1
TTl-—=)  G(2)
pla P!

where, if g(p) = 1/(p-2) (p>2), and g is multiplicative,

(L@ #0, (d,h)=1)

G (&)= £ W(mglm) , G(8)=G,(8) ;
m<§g
(m, dh)=1
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H. HALBERSTAM

with this choice, it is routine to check that

(3.3) M1, A =0 if dzz, !xd151 if d|P(2)
and N A
(3. 4) \ dy 4 1
' %— (D) = G(z) °
d,d,[P(z)
Writing
(3.5) b(n) = / 1,
Pq=n
q9€Q

it follows from (3.2) that

Y < Z xdl )\dz b(n)
dl,dzfp(z) n< x
n=h modD
1 1
G) Zb(n)+ Z )\dl)sdz{ E(x; D’h)+<I>(D) b(n) }
n<x dl’dZ P(z) n< x
(n, D1

by (3.4), where

E(x;D, h) =Zb(n) -—5(-1-1)—)— Z b(n) .

n<x n<x
n=h mod D (n, D)=1

Hence (1) , by (3.3)

1N < 3V(D) <
(3. 6) Y < b(n) + z—q’(D) b(n)
n<x D<z n<x
D| P(z) (n,D)>1

+ Z 3v(D)|E(x ;D, h)|

D< zz
D| P(2)

=Y1+Y2+Y3:

(1)  v(D) denotes the number of distinct prime factors of D .
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CHEN’S THEOREM

say. It can be shown by standard methods (e. g. Halberstam-Richert [ 5]) that

1
{.
{1+0 Tog 2 )1,

SseTTa-—) TT 25 =

G(z) p>2 (p-l)2 z<p|hp'z log z

and also that

X

>
I b(n) < 0.490996 Tog (x= xo)

n<x
Choosing
1

_ 2-¢€ 1

3.7 z =z , O<e< o0

it follows that

(3. 8) Y,<(3.928) TT (1- 1 5) 11 %Lz (x=x).
p>2 (p-1)" 2<p|h P log™x

LEMMA 1. - lexo , Y2<< xlo/ll .

1
Proof. - Remember that if qeQ , q = PP, where pZZ x*> z . Hence

Zb(n)SZ ZH}__ Zl

n< x e Q p<x/q P<x P P,EQ
(nrD)>l plD
p, P, <x/p
1P2
p,|D

A

Rt 1
et L P Z P

p<x xl/loSplfD

A

vD)(|Q] + XQ/IOZ '}1;) , K xg/lo(log log x) v(D)
p<x

by (2. 6). Hence
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H. HALBERSTAM

v(D)
Y,<< xc}/10 (loglog x) Z _L(Q)%((g)lL_
D< 22
<< x9/10 log4x. loglog x ,

and this proves the lemma.

It follows from (3. 6), (3. 8), lemma 1, (2.5) and (2. 2) that

3.9 x= (0.689) T T (1-— 2._2_ 2 %Y3+ 0(x10/11)
P2 (p- 1) 2<plh log 'x

and it remains to deal with Y3 .

4. - THE EXPRESSION Y3 : TRANSITION TO PRIMITIVE CHARACTER SUMS

We have by Cauchy's inequality that

(4. 1) Y = : V(D) |E(x;D, )| . ; (x; D, h)|

D< z
D|P(z)

<< x(log x)9 Y4 R

(4.2) Y, = > 2;E(x;D,h)|;

D<z

where

here we have estimated the first factor on the right of (4.1) by applying the Brun-
Titchmarsh inequality to the first expression in E(x;D,h) and so arriving direc-
tly at the bound E(x ; D,h) << x/®(D). We are left now with the "Bombieri sum"
Y4 .

Clearly
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CHEN'S THEOREM

D<z X mod D
X 7 X,
where
(4.3) B, (x.x) = x(n) b(n)
n< x
(n, £)=1

Each non-principal character ¥ mod D is induced by a unique primitive charac-
ter Xl modd, 1<d|D ; and x(n) = X*(n) whenever (n,D) =1, so that

- *
Bl(x, X) = BD/d(x,x ). Hence

Y4572?q>(1_1377 | E Y(h)BD/d(x,x)l

D<z l<d|D X mod d

*

where ) indicates summation over primitive characters only. Two inter-

changes of summation bring us to

*

Y4S (log x) max2 i E)(‘ld_) g IBL(X» x)|

1<z” 1<d<z?® X mod d
(4. 4) = (log x) max YS(L) ,
1<z

say. Now

B,(x,x) = E x () > x(p)

qeQ p<x/q
(q,2)=1 pte

and by the Siegel-Walfisz theorem the inner sum is (remember that if qecQ ,

2/

3
then q<< x ') at most of order

ﬁexp(-cﬁog x)+ V(L) ,

R ‘s . 100
where c is an absolute positive constant, if d=<log x . Hence, for £z

BL(x,x) < x exp(-c/log x) + |Q] log x ,

whence, using (2. 6),
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\ 1
YS(L)<< 3@ ¥ 'BL(X, ¥) | +x(log x)looexp(-chogx)
logloox<d<z2 X
<Y, () + —= 1< 2®
6 1o > <7 -
log b4
say, with
(4. 5) Y, (2) = —1 3 B, (x,x)| L <z,
6 $(d) 4
1og100x<d< z2
Summing up,
2 10 2
(4. 6) Y << x(log x) max Y, (2) + X ,
3 2 6 100
i<z log
where YG(L) is given by (4. 5).
1 10
Let g =1+ and T =x . By Perron's formula
log x
1 0T o n) b(n). x° x log x
B,(xx,X) =377 (% ) o+ 0 )
AT n=1 n
O (n, )21
so that
1 x0T e (m)b(n) x2°1
(4.7) Y, (2) << z s = 1 (= >nh) Xy 2 _0RE
lo 100x<d<z2 X 6-iT 1=l n
g (n, 2)=1
We shall prove in the next section that if § < x , then
9+iT s
1 * oy b
(4. 8) by 5@—2 [ (= nsn X as |
d=sg X 9-iT n=1 n
(n, 2)=1
< (x+x5/6 é+§2) log 3/2 x + §3x-9 .

From this Abel summation applied to the first expression on the right of (4.7)

shows at once that
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CHEN'S THEOREM

D . S 2,
Y()(/(,)<<1 98 s L <z
og’ x

then, from (4. 6),

and, in view of (3.9), this completes the proof of the theorem of Chen.

5.- THE LARGE SIEVE : PROOF OF (4.8)

We require the following large sieve inequality : For any complex num-

bers a_,
—— "n
T M+N M+N
#* -it 2
z 'a% z f | = anx(n)n lt' lfltt| < I (n+§210gT)[a '2 ,
a<g x -T n=M#+l n=M+1 "
and this result remains valid for N =« provided that [an|<< n‘1 E.
For any function £(x,X), s = 0 +it , write
T
d . dt
®B(f;0,8)= L @ [ |f(o+it, X)) T
ds g X -T
then, by the inequalities of Cauchy and Schwarz,
1,2 . .2
(5. 1) (B(flfz;c,g)sos?(fl ;o,f;)daﬁ(f2 ;0,€) .

We now turn to (4.8). Remember that €< x . First of all, since b(n)

is an arithmetical convolution, we have

L x@mbmn=( £ x@aHE xpp ).
(n, £)=1 qeQ pti
(q’ L):I
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H. HALBERSTAM

We write

F(s,x) = & x(@a °,

€Q
(q’ £)=1
a finite sum, and
G(s,X) = sz(p)p_sy H(s,x)= Z_x(®p° ,
p=§ p>§
pt pte

a finite sum and the ''tail-end'" of an infinite series respectively. Hence the inte-
gral on the left of (4.8) is
6+iT xs 8+iT xs
I F(s,x)G(s,x)s—ds+J' F(s,¥) H(s,x)s— ds ;
0-iT g-iT
since FG is the product of two finite sums we may move the line of integration
1

to 0 = 4 atthe cost of a small contribution from the horizontal parts of the rec-

tangle of integration. In fact, the expression above is equal to

§+iT s 3+HIT s 5
Jﬂ (FH)(s,x)x—ds+‘f (FG)(S,X)L ds + O(EL) ,
B-iT S 3-iT s T

so that the expression on the left of (4. 8) is at most of order
3.3
1
xB(FH; 0,8) + x 2B (FG ; &, 8) + =2

We apply (5.1) and the large sieve inequality. We have, first of all,

B(FHi6, 8 <( T (a+€” log T )2( Z (p+6” log TIp %

q€eQ p>€
< ((1+§2x—13/30) log x)%(log x)%
<< (1+€ x_13/60) log x ;

and then
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1 2 -1.% 2 -1.%
B(FG; $,8)<<( & (q+§ logT)q )*( T (p+5 log T)p )
a€Q psg?

<< (x2/3+ §210g x)%(é'2 logzx)%

:
<< x*€log x + gz log3/2x .

We conclude that the expression on the left of (4.8) is

<< (x+x5/6 g+§2) log?’/szr—TLX3 ,
and this proves (4. 8).

In conclusion, let me remark that this proof is in essence Chen's argu-
ment, but it incorporates substantial technical simplifications shown to me by
Dr. R.C. Vaughan, in the use of the analytic and large sieve methods. The proof
of Mr Ross is simples still ; it will appear in the Journal of the London Mathe -

matical Society.
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