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J. E. FRANKE

§1., Introduction.

Many people including S. Smale [8] have been interested in the problem
of finding structurally stable maps and classifying them. M. Shub in [7]
studied expanding maps and Z. Nitecki in [6] increased the set to
nonsingular endomorphisms. A singularity is a point where the derivative
is not an isomorphism. Other mathematicians such as H. Whitney [9, 10,
11], J. Mather [5], R. Thorn and H. I. Levine [4] have studied maps
between two manifolds which did have singularities and looked at the
stability of such maps. In this paper we will use the structural
stability of Smale because we are looking at maps from one manifold to
itself. We will allow singularities, in fact, there are always
singularities for contractions on a compact manifold.

In the paper M will always be a compact, c”, connected manifold
without boundary and 4 will be a fixed metric on M. An endomorphism
f: M > M is a contraction if for some A, 0 < X < 1, d(f(x),£f(y)) < x»d(x,y)
for all x,y € M. By the compactness of M we see that the set of ct
contractions is an open subset of Cr(M,M), the space of ct maps from M
to M with the cF topology.

The endomorphism f is said to be topologically conjugate to another
endomorphism g is there exists a homeomorphism h of M such that
h«f = g*h. If f is in Cr(M,M) then it is called Cr—structurally stable
if there is a neighborhood N of f such that each g in N is topologically
conjugate to f.

In [2] L. Block and I studied contracting endomorphisms on the circle
and showed that the subset of all Cz-structurally stable contractions

was open and dense in the c? topology. We also gave necessary and
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CONTRACTING ENDOMORPHISMS

sufficient conditions for a C? contraction to be c? structurally stable.
The major purpose of the present work is to extend those results to

two dimensional manifolds.

Theorem 1. The set of c’-structurally stable contractions on any

compact, connected, two dimensional, c” manifold M without boundary is

an open dense subset of all ¢’ contractions in the ct topology for

r > 12.

The reason for taking r > 12 is found in the work of H. Whitney
[9, 10, 11] who showed that for r > 12 the set of maps W is Cr(M,M)

which satisfy the following properties is open and dense in Cr(M,M):

A. At each point x and f (x) there are coordinate charts such that

f has one of the following normal forms:

X X
1. regular >

Y Yy

x x2
2. fold ->

Y y

X Xy - x3
3. cusp >

Y Y

B. The images of folds intersect only pair-wise and transversally,

whereas images of folds and cusps do not intersect.

H. Whitney also showed that f was in W if and only if given a
neighborhood U of the identity in c®(M,M) there is a neighborhood V of
f in Cr(M,M) such that if g ¢ V then there are two homeomorphisms h,

and h2 in U such that f-hl = h,-qg.
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We will call the maps in W Whitney maps.

J. Mather [5] extended these results to arbitrary dimensional
manifolds by showing that there is an open dense set A of c”(M,M)
such that if U is a neighborhood of the identity in CO(M,M) and £ ¢ A
then there is a neighborhood U of £ in CW(M,M) such that if g € V then
there are two homeomorphisms h, and h2 in U such that f-h, = h,-g. He
calls such maps topologically stable.

Using Mather's results we will show the following:

Theorem 5. On every n-dimensional compact c” manifold M without boundary

there is a Cw-structurally stable contraction.

Let us establish the following notation before we describe the
Cr—structurally stable contracting endomorphisms on two dimensional
manifolds M. We will use Zf for the set of singularities of an

endomorphism £ and x_ for the unique fixed point if f is a contraction.

£
Two distinct points, X,y € M are said to be coincident under f if there
exist non-negative integers, i and j, such that fl(x) = fj(y).

Let K be the subset of all Whitney maps £ which are contracting

endomorphisms and which satisfy the following conditions:

1. The unique fixed point Xe of £ is regular and is not coincident

with any singularity.
2. A cusp point is not coincident with any other singularity.

3. For any set of three singularities, there is at most one subset

of two elements which are coincident.
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4. If i < j and they are the smallest integers under which x

and y, two singularities, are coincident; then

i J =
Dfx(Tfo) (23] DfY (Ty):f) T M.

£ (x)

If i = 0 one has the added property that
j =
ny(Tny) ® ker Dfx TxM.

From the possible forms of singularities it is clear that Ie is a
one-dimensional manifold so that Tyzf is defined as its tangent space

at y.

Theorem 2. K is an open dense subset of the c’ contractions on M.

Theorem 3. K is the set of all Cr—structurally stable contractions on M.

In the proof of the last theorem, one constructs a stratification
S of M by using the singularities and distinguishing between cusps and
folds. One then adds a finite number of images of the singularities
and finally all the inverse images. These stratifications give

information about the topological conjugacy classes.

Theorem 4. 1If f,g ¢ K are topologically conjugate, then the conjugating

homeomorphism h is a strata preserving map between S(f) and S(g).
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S§II. Transversality Results

For definitions and theorems covering transversality theory see
Abraham and Robbin [1l]. 1In the notation of Levine [4], the one jet

J!(M,M) can be divided into three regular submanifolds So, S and S,

1
which correspond to jets having rank two, one and zero, respectively.

Every Whitney endomorphism f has the property that its l-extension

Jl(f): M > JI(M,M) is transverse to Sl. Since Jl(f) is basically the

1 1 {$.) is a Cr-l submanifold

and (31 (£))” ]

derivative of f, it is C*~
of M. Note that e = (Jl(f))—l(sl), hence the singularity set for any
f in W is a Cr_l submanifold.

This is also the setting for the transversal isotopy theorem (TIT)
see [l]. This theorem says that given a neighborhood N of the
inclusion map I in Cr-l(zf,M), there is a neighborhood A of f such
that, if g € A there is an h ¢ N sending I

£

section over zf in a total tubular neighborhood of ¢

flow isotopic to Ef.

to rg‘ In fact, h 1s a

£ whose image is

Cr-2

One should be aware of the following two theorems which will be

used many times in the lemmas of this section:

[1, pp. 46-47] Openness of Transversal Intersection (OTI): Let A,

X, and Y be ct manifolds with X finite dimensional, W C:Y is a closed

c! submanifold, K C:X a compact subset of X, and p: A - CI(X,Y) a c!

representation. Then the subset AKW C A defined by

AKW = {a ¢ A: pafﬁxw for x e Ki

is open.
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[1, pp. 47-50] Transversal Density Theorem (TDT): Let A, X, Y

be c manifolds, p: A = C'(X,Y) a c* representation, W Cya

submanifold and ev : A x X » Y the evaluation map. Define AW CAby

Ay = 1a e A:paﬁ\W}.

Assume that

1. X has finite dimension n and W has finite codimension g in Y.

2. A and X are second countable.

3. r > max{0, n-q}.

4. evpfh W.

Then Aw is residual (and hence dense) in A.

These basic transversality theorems will be used to prove Lemmas

1-5: Let W be the set of Whitney contracting endomorphisms.

Lemma 1: Let K, = {f ¢ W: The unique fixed point of f, Xeo is regular

and coincident with nc singularities:, then K, is open and dense in W.

Proof: (Openness) Let f ¢ K;,. Since x. is a regular point and f a
contraction, there 1is a ccmpact neighborhood U of Xg On which f is a
diffeomorphism and f (U) C:int U. Since f(U) is a finite distance from
3U and U 1is a finite distance from Zf; there is a neighborhood N, of

f in W such that 1f g « N, then g is a diffeomorphism on U and

g) C int U.
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There is a positive integer n such that fn(M) c:int U, since

f is a contraction. By the noncoincidence between Xe and

singularities, there exists an e¢ > 0 such that the distance
between Xe and fn(zf) is greater than €. There is a neighborhood
N, of £ in W such that, if g e N, then d(x ,x¢) < 5 and the

Also,

o

distance between gn(zg) and Xe is more than
g M) C int U.

To see that Nlr\ N, is a subset of K,, note that if g e Nl(\ N, i
then gn(zg) (: int U and does not contain the fixed point xg. Also
g maps U diffeomorphically into int U. Thus no higher power of g
can send an element of gn(tg) to xg, and there are no coincidences

between xg and elements of I

(Density) If there is coincidence between Xe and some X 1n

zf, then the smallest integers for which this happens are of the
form 0,j with j > 0. The proof will be by induction on j. Let
Co = {f ¢ W: Xe

is regular and there are no coincidences between x

f

and points of

is regular}; and for each j » 0, Cj = (f ¢ W: x

f
Ef with integers 0 and j}. Note that the proof of openness also

shows that each of these sets ig open.

Claim 1l: C_is dense in W.

) ——

Proof: Let Xe € Zf and take a neighbcrhood U of Xg on which f has

a normal form. If x_ is a cusp, let h be a c” diffeomorphism

b
which moves Xeo and is the identity outside of U. Note that hf has
the same singularity set as £ and each singularity retains its

type. By taking h close to the identity, hf is in W, and the
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fixed point of hf is still in U but is not Xg- Hence Xpf is
not a cusp. The remaining possibility is that the fixed point is

a fold. 1In this case if Txfzf (] Dfxf(TEf) + Tfo, take a C

vectorfield V, which is (y,-x) in local coordinates at Xee Let

hE be its time ¢ diffeomcrphism.
By taking e small, h_f is a
small c® perturbation of £ and
has the same fixed point and
singularity set, 1t does,
however, rotate the image of

.. Thus Tx Xt 2] D(hef)x (TL )

£ £ £

= Tx M. So suppose f satisfies
f

this condition. Now shrink U,

£

if necessary, to the extent that

f£(UNM Zf)f\ Zf = X Let

£
y e UM Lei ¥ # Xg o Look at

the arc in UM Lf connectinyg Figure 1

Xe and y and the arc in

U f\f(zf) connecting Xg and f(y). These two arcs form some angle
at Xee Let v be the unit vector bisecting the angle. Let V be the

c” vectorfield that 1s constant at v in somé neighborhood of Xe and
zero outside some larger neighborhocd. Let hE be the time €

diffeomorphism for V. If . 1s small enough, there is a neighborhood
U, of x

such that nc point in Ulfw I, is fixed under he-f. But

£ b
since this is a small c* perturbation, the fixed point for he-f

is in U,. Thus the fixed point is regular and Co is dense in W.
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Claim 2: C, is dense in C_.

Proof: Note that f_l(xf)(\ £, is a finite set because f is locally
one to one on Ig. Thus only a finite aumber of perturbations will

be needed. Suppose f(x) = Xe with x ¢ Zf. The perturbation will

consist of changing f on a compact neighborhoocd N of x which is
contained in an open neighborhood where f has a normal form. From
the normal forms, it is clear that there is only one point in N

that is coincident with Xee Thus f(dN) 1s a ftinite distance away

from Xee Let V be a vectorfield that is zero on a neighborhood

of £(3N) and he its time e¢ diffeomcrphism. Then changing f to

he-f on N and keeping f on the
complement of N gives a ct

perturbation of f. If x is a

cusp, take a vectorfield V so I'h f(z.)
£(r,) !
that V(x.) is of unit length ot )/
/
and in the opposite direction /
X, V4 )V(xf)
of the cusp. If x is a fold, t

take V so that V(xf) is of
unit length and perpendicular
to f(sz\N). Thus, in either

case, the perturbed function CUSP

has one less coincidence.

Hence C, is dense in CO. Figure 2

One is now ready for the induction step. Assume Cj is open
and dense in W. Thus if x ¢ Le is such that tl(x) e I for

1l <i< j+1, then f3+1(x) is at least as far from x_. as fj(z ) is.
1= f £
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Hence there is an open set N about x, such that f3+1(N) is at

as fj(zf) is. Let A be the union of
j+1

least half as far from Xe
all these open sets. Then Zf - A is a compact set on which £
is locally one to one. Hence f—(j+l)(xf)(w Le is a finite set.
The perturbations of f are like those in the proof that C, is
dense in Co with the role of Xe played by f(x) where fj+l(x) = Xg.
This is possible because fj(f(x)) is equal to Xe after such
perturbations and the orbit of f(x) consists entirely of regular
points. Thus each Cj is open and dense in W. Since K, is the

intersection of a countable number of open dense sets, it is

dense. Q.E.D

One should note that this lemma only uses the c® stability
of the singularity set. The fact that it is c! stable will be

used in the next lemma.

Lemma 2: Let K, = {f ¢ K,: for any x and y ¢ Lgr @ coincidence

between them with integers 0 and j implies that neither x nor y

, B : - |
is a cusp and ny(Tny) (::) Txif TxM ny(Tny) ® ker Dxf}.
Then K, is open and dense in K,.

Proof: (Openness) Let f ¢ K, then there is a compact neighborhood
U of X¢ and an integer n such that f is diffeomorphism on U,

£() Cint U, and £%(M) C int U. Thus the points of coincidence
that we are interested in can only happen with j < n. Note that

f has only a finite number of cusps and their first n images are
disjoint from Ef. Also note that fj(zf) is compact and a finite

distance from the set of cusps. From Whitney's stability theorem
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(see the introduction) it is clear that if g is close to f then
g will also have these properties.

Now filzf € Cl(Ef,M). Since filzf is transverse to I on
x I is transverse to the diagonal A in M x M. One can

Y fi]zf
now apply the Openness of Transversal Intersection Theorem, because
Zf is compact and A is closed. This theorem says that there are
neighborhoods N, of fi in Cl(zf,M) and N, of I in Cl(zf,M) such

that if ¢ x ¢y ¢ N, x N,, then ¢ is transverse to y. If g is a

small enough perturbation of £, and h is the diffeomorphism close

to I such that h(zf) = Zg given by TIT; then gih e N, and h ¢ Nz'
Hence gih is transverse to h. This means that gilzg is transverse
to Eg. "

Since Zf is one dimensional, fl(zf)fﬁ Ef is zero dimensional
and, in fact, finite, since Le is compact. If g is a perturbation
of £; then, as noted, gi(Zg) is transverse to Zg and the coincidence
points can be made arbitrarily close to those for f. So suppose
X,Y € Eg and gi(y) = X. Then by continuity of the eigen directions,

. i . .
one obtains that Dgy(Tyzg) and ker ng span TxM' Hence K, is

indeed open in Kl'

(Density) Let Cj = {f ¢ Kl: for any x and y ¢ ¢ a

£
coincidence between them with integers 0 and i, i < j, implies that
neither x nor y is a cusp and Df;(Tny) together with either szf
or ker Dxf span TxM}. Note that the openness of Cj in K, is

proven above. Also note that Cc = K so it is dense in Kl. One

ll
now proceeds by induction on j to show that each Cj is dense in

K-

152



CONTRACTING ENDOMORPHISMS

Suppose Cj 1s dense in K] and let f ¢ Cj’ Let A be an open
neighborhood of I in Diffr(M) such that, for h ¢ A, hf ¢ Cj'
Now consider the representation p: A + CZ(XF,M) given by
p(h) = (hf)j*l, This representation is at least c?, because
+ M can be thought of as first

f
sending h to (hf,...,hf) and then evaluating it j+1 times.

the evaluation evp: A x g

j+l
Composition on the left is smooth and evaluation is c?. since
the first three conditions stated in the Transversal Density
Theorem are clearly satisfied, the only one of interest is the

last. To check the iast one, let h ¢ A and y ¢ Zf. If

(hf)j+l at (h,y). So

£
suppose (hf)3+1(y) = X € Zf. If there is an integer i between

(y) ¢ I¢, then ev  is transverse to T

0 and j+1 such that (hf)i(y) =z ¢ I then the inductive

f’
hypothesis says that D(hf)ly(Tytf) together with either Tzz

hf
or ker Dzh§ span TzM' Note that th = Zf and ker Dzhf = ker sz.
Thus D(hf)3+ly(Tny) = D(hf)J+l'l(Tsz), and by the inductive

hypothesis D(hf)J*l_l(thf) together with either sz or ker Dxf

£
span TxM' So we can suppose that the orbit of y under hf is
regular between y and x. Take a smooth vectorfield V that is
zero outside a small neighborhcod of hf(y) and constant on some
smaller neighborhood. Look at the curve of diffeomorphisms ¢th
through h where ¢t 1s the flow of V, Now evp acting on the curve
(¢th,y) gives a curve i1n M at x which corresponds to some element
in TxM' Since the orbit of y 1s made up of regular points, any

vector in TxM can be realized by an appropriate choice of V.

Hence evp 1s transverse to L. at {h,y) -and therefore it is
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transverse everywhere. Thus there is an open dense set of

diffeomorphisms in A, such that if h is cne cf these, then
j+1 Lcu

(hf)? ! is transverse to tf. In particular, there 1s one

arbitrarily close to the identity. Since ¢ = I we have been

hf £7
successful in perturbing f to an endomcrphism that satisfies

the first transversality condition.

Le with
' £ ® T ¢ = T M. Note
that such maps are open in c,. It DfYJ‘L‘Tyzt) ® ker Dxf % T M,

Suppose f ¢ Cj such that a cocincidence between x,y ¢
integers 0 and j+1 implies that nyj+l(TyZ
then the inductive hypcthesis says that the orbit of y between y
and x consists ot reqular polints. Let V be the vectorfield which
is zero outside a small neighbochocd of f(y) and 1s (x,y) - (y,-Xx)
in local coordinates at £(y). D(@tt}yj*l(Tyzt; 1s basically
rotated from nyj+l(Ty£f) and ker Dxatf = ker Dxf, Thus taking
t small gives a perturbation of f which satisfies the spanning
condition. Since there are only a finite number ot i1ntersections
of this form and the spanning condition is open, we can do a
small perturbation and obtain the des:ired property.

Let £ € Cj and satisfy the two spanning conditions. 1f y 1s
a cusp then nyj+l(Tyzf) = 0, sc y must nct be coincident with
any singularity. To remove intersections between f3+l;y), y ¢ Zf,
and a cusp, use perturbations similar to those used in removing
coincidences between singularities and the fixed poinc. Thus one

sees that each Cj is open and dense in Kl. Since KZ = (F\CJ,
J=0
K, is dense in Kl.
It should be noted that if f ¢ K_, then fl, for any i, is
2

locally one to one on [ ; &nd £i|(folds} is an immersion.
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Lemma 3: Let K, = {f ¢ K,: If x,y,z ¢ Eer then there do not exist

integers i,j such that x = fl(y) = fJ(z)}. K3 is open and dense

in K,.

Proof: Let K if ¢ Kz: If %x,y,2 € Zf, then

1]
{(x}M {fl(y)}(ﬁ {£3(z)} = ¢}. Order the ordered pairs of

non-negative integers (1,j), i < j, by (a,b) < (¢,d) if b < d or
b =d and a ¢« ¢c. One now proceeds by induction to show that each

Kij is open and dense in K&. Note that if i = 0, then Kij = K2.

(Openness) C(onsider the representation

p: C2(M,M) x C2(M,M) x C?(M,M) » cz(zf X B x B Upg, Mox M ox M)

, where f ¢ Ki.

given by (9,,9;,9;5) » (9,/9,+95) 5 x5 x5, - U j
£ .

£ °f ij
and U,., = ¢ if 1 ¢ j. Here U,, = £_ x V.. where V.. is a small
ij ii £ ii ii

neighborhood of the diagonal in zf x tf. Note if Vii is small

enough, there 1s a neighborhood N of f such that if g ¢ N and

h: Zf > Eg, the map given by TIT, then gih X gih: Vii + M x M,

such that if (x,y) & Vii’ then gih(x) = gih(y) = x = y. This
follows from the local stability of Whitney maps and Lemma 2.

Since f ¢ Klj' Q(ld,fl,fj)fh AM where AM = {(x,%x,X): x ¢ M}.

Now by the openness of transversal intersection, there is a
neighborhcod N, x N, x N, of (id,£1,£3) in c2(M,M) x c2(M,M) x C2(M,M)
such that 1if (9,,9,+9;) € N, x N, x N,, then (91’92’93) also misses

M £ £ f

h: Zf > zg 1s given by TIT, then (h,glh,gjh) e N, x N2 x N, and

hence g ¢ Kij' Thus all the Kij are open in K,. Now since f ¢ K2,

4, on I_ x I_ x £ _ - Ui]. Now if g is close enough to f and

there 1s a neighbcrhocod N of £ in K2 and an integer n such that
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if g is in N, then gn(M) is contained in a neighborhood of xg
that gets mapped diffeomorphically into itself. Thus if j > n,
there are clearly no coincidences ot the type we are discussing;

and Kij contains N. Thus K; is open in K,.

(Density) For i = j, by the inductive hypothesis the orbit

of x between x and fl(x) consists of regular points 1f x ¢ Le

Since flz .+ M is transverse to Z,., the

£° £ t’
number of such X is finite, and the TIT says that for g close

and fl(x) e I

to £ there are corresponding points Yy close to the x_. Suppose

1

there are two points, say x, and Xy such that fl(xl) = £ (xz).

1

Change f in a small neighborhood U of x. by composing f with by -

)

Here ¢t is a small time diffeomorphnism coming from a vectorfield
V that is zero outside a small neighborhcod ot tix,). At f(xl),

V should be in the direction which corresponds to the tangent
at fl(x Yo In other words, Df. \l_l(V) e T . L
1 tix, )
i f (xl)

Note that (f¢t)l(szﬂ u)yM fl(xz) = ¢, Thus the point 1in

space to I

foj U that goes to I, under the perturbation does not go to

£
fl(xz). In this way, the number of such intersections can be

reduced to zero.

Suppose i ¥ j. Note that fj_l(zf)fh L fl(zf) H\zf, and
3 .
£ (Zf)ﬂi Zf because f ¢ K,. Let {xk}, {YZ}' and {zm} be the
finite set of points in Zf that are mapped tc zf under fj-l, fl,

and £’ respectively. By the inductive hypothesis, {fj-l(xk)} and
{fl(yz)} are in one to cne correspondence with {xk) ahd tyt}
respectively. Suppose there is an X such that fJ-l\st = Y-

Note that the orbit of Y, is regular between Yo and fl(yl).
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Thus one can do a perturbation of f in a neighborhood of Yp SO
that gl(yﬂ) ¢ zf = Zga Since g is a small perturbation of £,

the sets {x '}, (y,"'}, {z '}, and [gj-l(xk')}, {gl(yz')}r
{gJ(zm')} are arbitrarily close tc the corresponding sets for

. J-i.. j-1i ' .
f. Thus if f (%) ¢ {y,}, then g (x,") ¢ {y,"'}; and g has

at most one less point, namely, xs' = X such that

gj-i(xs') ¢ {ye'}, In this way one can reduce the number of such
coincidences to zero. In neighborhoods of ye where fi(yﬂ) = fj(zm),
one can do sim:lar perturbations so that Zg = Zf, gj(zm) = fj(zm)

but no singularity in the neighborhcod goes to gj(zm). Thus
Kij is dense in K,. Since K, = f\K{j, the Baire Category Theorem
says that K3 1s dense in Kz' Q.E.D.

Lemma 4: Let K“ = {f ¢ Kaz if x and y, two singularities, are

coincident and 1f i and j are the smallest integers under which

1, J -
they collide, then Dfx,Txtf) () ny(Tny) T . M}. Then K,

£ (x)

is open and dense in K, and hence in K,.

Proof: Let KlJ = {f e K;: {f x and y are two singularities and

i M where i'
£ (x)

and j' are the smallest integers under which x and y are coincident}.

£1(x) = £3(y), then Df* (T 1) @ DEJ (T z.) = T
! x x £ y y f

One can also take i < j and order the ordered pairs by (a,b) < (c,d)
if b <dor b=4dand a < ¢, Cne ncw proceeds by induction to
show that each Kij is open and dense in Kz’

The first step is done because Koo = K =K So assume

ol 3°
all Kl']' are open and dense in Kz for (i',3") < (i,3). The
inductive step breaks into two cases: first i = j, and second

i<3.
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Case 1l: Let i = j. Since the Whitney maps satisfy this
transversality condition with i = j = 1 (see introduction),

K

11 1s open and dense in Kz' If i >1, let

f e Kafﬂ (’\ Ki'"' and A be an open neighborhood of the
(1',39)<(i,i) *J

identity in Diffr(M), such that if h € A then

hf e K; M K.y.,. Consider the representation
(1',3"<(i,1) *)

£ - MM x M) given by p(h) = ((hD)¥, (hE)) [z, x I - &

where A is the diagonal. The interesting question to check before

p: A—»cz(xf x g

applying the TDT is that evp HSAM, where A, is the diagonal in

M
M x M, Let (x,y) € Zf x Ef - A such that (hf)l(x) = (hf)l(y).
Let i' be the smallest integer such that (hf)l (x) = (hf)l (y).
iy ; i’ i’ _ )
If i' # i, then D(hf) (T I.) @ D(hf)y (Tyzf) = Tfi. (X)M since

!
hf ¢ Ki'i" Note also that hf ¢ Ka' and thus f£* (x) 1s regular
and its orbit is regular. This tells us that the transversality

property is passed along to give D(hf);(Tfo) o D(hf);(Tyzf) =T, M.
£ (x)

Hence evpl*\AM at this point. So let us suppose i' = i. If the
orbit of y does not consist of regular points, let 2z be the
singularity. Note that there can be at most one singularity, and
it must be less than i iterates from y. Let us say that

k _ i _ i-k
(hf) " (y) = z. Then D(hf)y(Tny) = D(hf)z (Tzzf) and

i-k i _ ‘ _
D(hf)z (Tzzf) ® D(hf)x(szf) = T(hf)i(x)M' since hf ¢ Ki-k,l'

So again eV} a%AM. Now suppose the orbit of y i1s regular. Look
at the curve of functions ¢th through h, where ¢t is the flow of
a smooth vectorfield that is zero outside a small neighborhood

of hf(y). T(evp) sends the curve over to a vector of the

(h,x,y)
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i-1

form (V,0) and since D(hf)hf(y) is an isomorphism, one gets

M’ and there is an h arbitrarily

close to the identity that (hf)l x (hf)llz <5 = A is transverse
£ °f

to Bye This says that Kii is dense in K2 and in every Ki'j' where

(1',3") < (i,1).

every such vector. Thus evpaﬁ A

To see the openness of Kii in Kz, consider the representation

p: CZ(M,M) x CZ(M,M) . Cz(zf x T M x M), given by

£ Vii
(9,.,9,) ~ (g],gz)|£f‘(Zf -y, i where V.. is as defined in the
i

i
proof of Lemma 3 and £ is in Kii(\ Ky M ' I Kiviee Now
(L',3")<(i,i)
. A0 i
since f ¢ Kii’ e (£7,£7) fﬁ AM on zf x zf - Vii' By OTI, there

is a neighborhocd N, x N, of (f*,£) in c®(M,M) x c’(M,M) such

that if (g,,9,) € N, x N, then o(g,,g,) M a, on z. x . - v, ..
If g is close enough to f and h: zf -+ zg is the map given by TIT,

then (glh,glh) € N, x N,. Also, if (x,y) e Vii and glh(x) = glh(y)

z

then x = y. Thus Kli is open in K,.

Case 2: (Density) 1In this case i < j. The set of singular

points {x,}, such that fj-l(xk) e I; is finite for

£feK;M () K.,.,. In fact the orbit of such an x is
(1',39<(1,3) 3

regular except at fj—i(x), Note that Dfi-i(szf) ® Tfj-i( )zf
= Tfj'i(x)M and Dfi'i(szf) &® ker foj'i(x) = Tfj . M. Thus

the normal form for the fold tells one that there are neighborhoods
N, of x and N, of fJ_i(x) such that, if (a,b) e N; x sz\ e x Ig
then £373*1(p) = £'(a) = b = x and a = £3 Y (x). Since the orbit

of fJ_l(x) is made up of regular points, one obtains that
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£3(b) = f*(a) => b = x and a = £ Y (x). In fact, the OTI tells

us that if g is in a small neighborhood of f and h: ©_ » £ _ 1is

4 g
given by TIT, then gjh(b) = gih(a) = h(b) is the unique point in
Zg(ﬁ\Nl such that gj—i(h(b)) 3 Zg. Find such neighborhoods in

M x M for each X and let U be the union. Now consider the

representation p: A > C2(Zf x zf - U,M x M) given by

h » ((hf)l,(hf)J)Iz " , where A, an cpen neighborhood of the
g ~ U

identity in Diffr(M), is such that if h ¢ A then hf is close

enough to f to satisfy the conditions in defining U and

hf € K3f\ l | Ki,g,. The important condition to check
(i',3')<(i,3) J

before applying TDT is that evp ﬁiAM, Suppose (x,y) ¢ Leg x Lg = b
such that (hf)i(x) = (hf)j(y). If the orbit of x between x and
(hf)i(x) contains a singularity z, then D(hf)i(szf) = D(hf)t(Tzzf’
where (hf)i—k(x) = 2z, By the inductive hypothesis

-~

M. Hence evpﬂ\ 4, at this

k 3 ) =
D(hf), (T, z.) & D(hf)y(Ty):f) =T M

() (y)
point.

So suppose the orbit of x consists of regular points. If
there is an integer £ between 0 and i such that (hf)j-e(y)
= (hf)i-t(x), then the inductive hypothesis says that
=T

D(hf)g-L(Tyzf) ® D(hf)i_l(T T M. But since the

T eI )
orbit of x consists of regular points, this is translated to
(hf) I (y) and evpfﬁ o, at this point.

So suppose the smallest integers under which x and y are

coincident are i and j. 1If the orbit of y contains a singularity,

then one obtains evplf\AM at this point just as when the orbit
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of x contained a singularity. Thus we can assume the orbits of x
and y are both made up of regular points. Look at the curve ¢th
of diffeomorphisms through h where ¢t is the flow of a vector-
field that is zero outside a small neighborhood of hf (y).

D(ev ) sends this curve to a vector of the form (0,V).
P (h:xly)

Since (hf):’“1 is regular at hf(y), one can obtain all such vectors
M Thus TDT says that there exists
h arbitrarily close to the identity such that hf is in Kij and that

in this manner. Hence evp(ﬁ A

K.. is dense in K, M (”\ K.,., and hence in K,.
) (1',31<(i,3) 1

j consider the representation

- U,M x M) given by

(Openness) To see the openness of Ki
p: CE(M,M) x cP(M,M) » CP(Z, x I,

(g,,9,) ~ (91'92)ltfxzf-u where £ ¢ K, M 0.3 <lt j)Ki'j' and U
’ ’

is as above. Since (fi,fj)fﬁ AM, the OTI says that there is a
neighborhood N, x N, of (fi,fj) such that if (g,,9,) € N1 x N,
then (gl,g2)fﬁ AM. Now if g is close enough to f; then
(gih,gjh) € N, x N, where h: Ie > Zg is given by TIT. By the
definition of U, the points (x,y) € UM Iz x I such that

glh(x) = th(y) are also coincident in the form gj-lh(y) = X.
Hence g ¢ K ., and K . is open in K, M ' ' K.,., and thus
J ] (1',3")<(i,3) *
in K_.
2
Now K, = K, M [ i K;5- Thus K, is dense in K,. To see that

(1,3)
K, is open in K,, let f = K, . There is an integer n such that

fn(M) 1s in a neighborhood A of x

f
Then fn(M) - fn+1(M) = F is a fundamental domain of Xge There is

an integer J such that fJ(F) contains an iterate of every

on which f is a diffeomorphism.

singularity. Thus this set expresses all of the different types
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of intersections between singularities. That is, any intersection
. J+n+ . R s . .

in £°70 1(M) of iterates of singularities is an iterate of such
an intersection in fJ(F), and if the one in fJ(F) is transverse,

JT+n+
the one in £ +n+l

(M) {s also transverse. Thus a neighborhood
of £ in K, is just a finite intersection of neighborhoods of £

in Kij with j < J+n+l. Hence K, is open and dense in K,.

It should be noted that the endomorphisms in K, have the

property that if x,y ¢ I., £ (x) = £J(y), and x % £27 (y) then

fl

i j - A . i! .
Dfx(Tfo) (2] ny(Tyzf) T M. This is because f~ (x) is

£ (x)
regular and its orbit is also regular. i' and j' are the
smallest integers under which x and y are coincident. This also
shows that a cusp x is coincident with no other singularity,
because Df (T Zf) = 0.

We are now ready to prove Lemma 5 which can be done with a

finite number of perturbations.

Lemma 5: Let Ky = {f ¢ K,: for any set of three singularities

there is at most one subset of two elements which are coincident}.

K5 is open and dense in Ku and hence in K,

Proof: Order the set of triples {(i,j,k)} e Z @ Z & Z : 0

| A
-
IA

by (a,b,c) < (a',b',c') if c < ¢' or ¢ = c¢' and b < b'; or ¢

[}
Q

= ' ' = o i 7
b b', and a < a'. Let K(i,j,k) {f ¢ K,: if x, y and z are

different singularities of £ and (i',3',k') < (i,j,k) then
{fll(x)}(j {fJ'(y)}(\ {fk'(z)} = ¢}. We will prove by induction

that each K,, . is open and dense in K(i' if

(i,3,k) k"N
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(i',3',k") < (iljlk) .

Note that Lemma 3 shows that K(O,j,k) is

open and dense in Kz' which shows that the first step is finished.

So suppose (i,j,k) is an arbitrary triple.

There are three sets

((allbl)}l {(cl'dl)}' and {(el;’f!;)} of points in zf x Zf - A

s . . k
which are the points of intersection between £f! and fJ, fl and £ ,

and fj and fk respectively.

Lemma 4 says that each of these sets

is finite and that the intersections are transverse, except when

j-i =
£ (bp) =

ag, fk-l(dl) = c,, or fk-J(fL) = e,. Thus a small

perturbation will keep the number of such points the same and

their position and k iterates arbitrarily close.

We will do a

3J 1
I £7(0g)  £7(xg)
d
r
k
j-i
e3i ) ’
/ After the
f(al) \perturbatior
b, / \
fj-i+1(z )
A f(Zf) v £
£
Le
Figure 3
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finite number of perturbations to obtain that no a, is a -

Suppose that some at =cC.. By the inductive hypothesis, either
j=i k-i . .

£77 7 (by) + ?l or £ 7(d.) ¢ ?r'and the orbit of a, is regular.

Suppose fk-l(dr) # c . If fJ-l(bl) = a,, let V be the vector-
field that is zero outside of a small neighborhood of f(at) and

V(f(az)) € DfaL(Tatzf). Let h = L for some small €. Now

consider the perturbation of £ which is f outside of a small

neighborhood of a, and hf on the neighborhood.

Note that the perturbed map has fJ(bl) = fl(at), but
fl(az) ¢ fk(zf). There is, however, a singularity very close to
a, that does go to fk(zf). In this way, one can decrease the

number of a, that equal .- Note that this perturbation also

works in the case where fk_l(dr) =c. If fj-l(bt) + a, and

fk-i(dr) + C,.r We use the same type of perturbation, except that

V(f(az)) is perpendicular to Df_ (T_ r_.). Under this perturbation
a, ‘a, £

k = £]
£ (dr) £ (bt)’ but

fl(az) $ fk(dr) and neither does
any point in a neighborhood of

a, in Zf. In this case, we have

also reduced the number of points
where a, = c.. Thus in a finite
number of steps, we change f so

that it is in K Hence

(i,3,k)°
K(i,j,k) is dense in all other

1 Al 3! Ll
K(i',j',k') with (i',3',k"')

< (i,3,k) if i # k. I1f i =k

this type of perturbation can

also be used to reduce the number

of triple intersections to zero. Figure 4
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To see the openness of K(i 5,K) " consider the representation
’ ’

p: CZ(M,M) x CZ(M,M) x CZ(M,M) - C®(xp x Tp x Ig - U500 M x M x M,
given by restricting (gl,gz,ga) to (91'92193)lzfxzfxzf_uijk' Here
fe K(i,j,k) and

Uijk = ¢ if i+ 34k

Uijk=Viifolfl=]+k

Uigk = Zg % ij ifit3j=xk

Uik

{(X,Y,Z): (er)r (x,z), or (YIZ) € Vll} if i = J =k,

where Vii was defined in Lemma 3 as an open neighborhood of A in

. i .3 2k
Zf x Xf. Now since (f7,f°,f") ﬂ\ AM on Zf X zf x I

is a neighborhood N, x N, x N, such that; if

£ - Uijk' there

(9,09,+9,) € N, x N, x N, then (91'92'93) dﬂ AM on I x I x Io - Uijk

Thus if g is close to f and h: zf > zg is given by TIT, then

(glh,gjh,gkh) e N, x N, x N, Hence (glh,gjh,gkh) ﬂ\‘M' which

means that there are no triple intersections from Ef x Zf x Ef = Uijk'
But by the definition of Uijk’ there can be no triple coincidences
from Uijk either. Hence Kijk is open in each Ki'j'k' where

(1',3',k") < (i,3.,k).
. . : n n+l
As in Lemma 4, there is an integer n such that £ (M) - £ (M)
is a fundamental domain F; and there is an integer J such that
fJ(F) contains an image of each singularity. Thus if there are no
triple intersections with k < n + J, there will be no triple

coincidences. This finiteness property tells us that K5 is open

in K, and hence in Kz. The density of Ks follows from the Baire

Category Theorem since K5 = ' l K..ka
(i,3,%)
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These lemmas combine to give the following theorem:

Theorem 2: K is an open dense subset of c’ contractions on M.

§III. Stratifications and Density of Cr—structurallxistable
Contractions.

In the first part of this section, subdivisions of M are
constructed and shown to be stratifications. These stratifications
are then used to show necessary and sufficient conditions for a
contraction to be Cr-structurally stable and also to give many
topological invariants of the topological conjugacy class. The
last part deals with the problem of generalizing these results to

higher dimensions.

Definition: A stratification of M is a finite collection of
connected disjoint submanifolds without boundary {Li) such that

(1) Ur; =M and (2) if L,MN Ly $ ¢, then Ei)Lj and
i

dim L, < dim L,.
J 1

When one has a stratification S and an endomorphism £, there
are three basic operations that can be pertormed to give different
subdivisions of M. 1In certain cases these subdivisions are
stratifications. The first new subdivision is indicated by f(S).
To obtain the stratum of f£(S) that contains x, let P be the set
of all points y such that there is a one to cne correspondence
between f-l(x) ML, and f-l(y)fW L; for each stratum L, in S. The

connected component of P that contains x is the desired set.
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The second operation is indicated by intersection. To find
the stratum of S{\ £(5) which contains a given point x, take the
connected compcnent of the set of points that belong to exactly
the same strata as x. The strata of the third subdivision, f-l(S),
are the connected components of the inverse images of the strata
in S.

Let S, be the stratification of M using the singularities of
an endomorphism f in k as follows: the zero dimensional strata
are the cusps, the cne dimensicnal strata are the connected

components of & fx ¢ £_,: x is a cusp}, and the two dimensional

£ £

strata are the connected compcnents of M - From the normal

£
forms, it is clear that S] is a stratification of M.

5

s, = £(8))

s, = s,f\sZ

é2n = f(SZn—l)
Sons1 SanS:'

Proof: Since S, 1s a stratification, one can proceed with the
inductive step and show that Si is a stratification. Suppose i
is even. Then the zero dimensional strata of Si are £ of the zero

dimensionali strata of $,.; plus the first coincidences with
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integers and 0 < j < % . Since there are only a finite number

-

of such coincidences, there are only a finite number ¢f zerc
dimensional strata in Si. The one dimensional strata are f of
the one dimensional strata in Si-l' which may be subdivided because
of a new coincidence between singularities. There are only a
finite number of one dimensional strata, and the closure of any
one of them only adds at most two points which are zero dimensional
strata. The two dimensional strata are the connected components of
M minus the one and zerc dimensional strata. There are only a
finite number of such sets and they satisfy the condit:ions to make
Si a stratification.

-~

So suppose i is odd, then Si =8, f tsl .. The zeroc dimensional
S

i

strata are the zero dimensional strata of 5. and 51-1 plus the

points on Ie which are imayges cf other singularities under j
iterates of f where 0 < j <« 1—%4L . The set Sf such coincidences
is finite, and hence there are only a finite number of zero
dimensional strata. The one dimensicnal strata are the one
dimensional strata for S, and Si-l with scme subd:vision because
of the coincidences. Since there are only a finite number ot
subdivisions, there are only & tinite number of one dimensicnal
strata and the closure of any one adds at meost two zero dimensional
strata. The two dimensional strata are the connected ccmponents
of M minus the one and zero dimensiocnal strata Just as in the
case where i was even; there are only a finite number c¢f such

strata, and they satisfy the necessary ccnditions to make sl a

stratification. Q.E.D.
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It should be noted that this proposition is a simple

consequence of the lemmas proved in §II as is the next proposition.

Proposition 2: If f ¢ K then there is a positive integer N such

that for any integer n > N, each subdivision in the following

sequence is a stratification of M:

v, = £ l(s )Ms,

2n+l n+l
-1
v, = £ (¥, My,
v = f’l(w )My
n n-1 n-1°

Also,

YN ¥ ¥nele

Proof: As in lemma 4, there is an integer m such that

fm(M) - fm*l(M) = F, a fundamental domain; and there is an integer

J such that fJ(F) contains an image of every singularity. So let

N=m+ J. Ifn>N, the difference between Sop+y 2nd S, .3 is
. N : )

in £ (M), where S2n+3 is a refinement of szn+l’ The new strata
in 52n+3 are i1mages of strata in SZn+l°

From the normal forms and the fact that M is compact, it is
clear that f is finite to one. Thus f-l of any zero dimensional
strata is a finite number of points. There are several local
pictures that should be studied at this point. First, if x is
a regular point, f-1 of a neighborhocod of f(x) in a neighborhood

of x has the same subdivisions as the neighborhood of f£(x). This
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is because f is a diffeomorphism in a neighborhood of x. If x is
a cusp; then, from the normal form, we get the following picture:

X xy - x°

Y Y

\

LN /
TCRINN
=5

-

H'\\
n

alw
»

x,2/3 3 .2/3
2

y = 3(

Figure 5

Note that in this local picture there are four two dimensional

strata, four one dimensional strata and one zero dimensional
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stratum. It is important to see that £ is one to one on the
closure of each of the two dimensional stratum.

If x is a fold point, then it is either a zero dimensional
stratum or it is on a one dimensional stratum. If it is on a
one dimensional stratum and f(x) is also on a one dimensional
stratum, then £ © adds nothing to the local picture at x. If
f(x) is a zero dimensional stratum, then x and some other
singularity are coincident at f(x). Since this is the first time
they are coincident, the intersection is transverse. Thus f_1
introduces a curve transversal to zf at x. Actually, x becomes
a zero dimensional stratum; and the curves break up into four one
dimensional strata. In looking at the local picture for an
arbitrary wl, f (x) would not have to be the coincident point
between x and some other singularity. The other possibility is
that f(x) is the inverse image of the point of coincidence
between x and some other singularity. But the picture at £ (x)
would still be two curves intersecting transversely and hence f-l
would introduce the same picture at x.

If x 1s a fold which is a zero dimensional stratum, then
there are two curves passing transversely through x which locally
form four one dimensional strata. The local picture at f(x) is
two curves that are tangent at f(x) giving four one dimensional
strata and one zero dimensional stratum. Now each of the two
one dimensional strata that are not first images of Ef have two

inverse images near x, This gives six two dimensional, six one

dimensional and one zero dimensional strata.
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Thus f-1(¢i) has a finite number of zero and one dimensional
strata, and the closure of the one dimensional strata add at most
two points which are zero dimensional strata. Since the two
dimensional strata are the connected compcnents of the complement
of the union of the zero and one dimensiocnal strata, f-l(wi) is a
stratification of M. f-l(wi)fﬁ\wi is a refinement of f_l(wi),
which one obtains by adding the 2zero and one dimensional strata
of SZn+l in fn(M) whose images are not strata of 52n+l' Thus
each wi is a stratification of M.

To see that wN = wN+l’ one can think Of obtaining the v, by
adding inverse images to the stratification ot fN(M) given by
52n+1° A point x will be & zerv dimensicnal strata for vy if

fj(x), j < i, is a zero dimensional stratum. Let fJ(x) be a zero

dimensional stratum., Then there is &n integer k, 0 < k < N, such

that fk(x) € fN(M) is a zerc dimensional stratum of S Hence

2n+1°
x is a zero dimensional strata of ¥y as well as ?N+l' The same
argument shows that the one dimensional strata of Yn and WN+1

are the same. Hence WN = wN+1'

Let us improve the notion slightly betore centinuing. Let
f ¢ K and m the smallest integer such that f 1s « homeomorphism
on £1(M) and £ (M) NI, = ¢. Let £7(Mi - £™ (M) = F and J be
the smallest integer such that fJ[F) contains an image of each
singularity. Let N = m + J and S(f) = wN starting with
an+3) Y Sonese
of S(f) that shculd be noted.

b, = f_l(s There are several 1mportant properties
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Lemma 6: Let L be a stratum of §(f) outside of tN (M), then £(L)
is a stratum and f is 2 covering mep from L to £(L).

Proof: Since L is outside fN(M), L is a connected compconent of

f-l(L') for some stratum L'. From the normal forms, one sees
that f maps L lccally ditfeomcrphically into L'; thus £(L) is
open and connected in L', If it is also closed in L', then
f(L) = L',
To see that f(L) is closed in L' let x € L*MT(L) - £(1),
and [yl} be a seguence of points in L such that {f(yi)} > X.
Let z be a limit pcint of {yi}. By continuity, f£(z) = x; but
z ¢ f-l(L') and nct in L. This is impossible, sc £(L) = L'.
One now wants tO show thdat the cardinality of f—l, card f_1
is locally constant on L' with f|L. Since f is a local
diffeomorphism cntc L', card f"1 cannot locally decrease. So

suppose there is a point x where card f-1 increases. That is,

1

there 1s a sequence (y.} » x such that card f-l(x} < card f-l(y,).
4

Take neighborhoods of each point cf f—l(x) on which £ is a

diffeomorphism, Outside cof these neighborhoods, there is a set of

points {21) such that f(zi) = y;. Let b be a limit point of {zi}.

By continuity, f£(k) = X; but b is not one of the inverse images
of x, This ccntrzadiction shows that f-l is locally constant on
L'. Since L' is path connected, each pcint has the same number

of inverse :mages. Hernce f is a covering map.

Cne would expect that if two maps in K were close then the
stratificaticns of M that they produce should be close in some

sense. This 1s the ccntent of the next proposition.
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Proposition 3: Let f ¢ K and U be & neighborhood of the identity

C°(M,M)u Then there is a neighborhood N of f in K such that

g ¢ N then there exists a homeomorphism h ¢ U that sends strata

| (=S (8
Hh Hh

S(£f) to those of S(g)}.

Proof: The first step is to construct an open neighborhood of the
union of the zero and one dimensional strata cf S(f). For the zero
dimensional strata, Li' pick open sets vi whose closures are
disjoint and for which there are diffeomorphisms ¢t Vi + R® with
¢i(Li) = 0 which give the ncrmal local picture depending on the
type of zero dimensional strata. Let Ul be @ll of the cpen unit
disk in R?. Since the one dimensional strata are C° submanifolds,
they have tubular neighborhoods which can be taken to be disjoint.
The union of the Ui and the tubular neighborhoods give us an open
set containing the zero and one dimensional strata of S(f). The
open set we want is obtained from this cone by shrinking the
tubular neighborhoods if necessary so that if x is on a one
dimensional stratum outside of Ui then the fiber of the tubular

1

neighborhood through x is outside of ¢; (B(%)) where Bi%) 18 the

open ball of radius % centered at the origin :in R,

Now in each ¢i(Ui) let {x],.ﬂ,,xn3 be the i1ntersection of
the circle of radius % with the images under o of the ocne
dimensional strata in S(f). Since we have the normal picture 1in
¢i(Ui) there will be cne and cnly sne such point for each one
dimensional strata whose closure contains tne crigin. Let a be
the minimum distance between the xi‘sn Ncw if 0 < @ < a then the

set of points inside B(%) that are a distance i from the zero and

one dimensicnal strata forms a finite number of curves {c,,..,,cn}.
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In fact there are as many such curves as there are xi's. The set
of points in B(l)\\ B(%) which are a distance o« from the one
dimensional strata is a finite number of curves {21,...,£2n} the
number being twice the number of xi's. Two of these combine with
each c; to give n curves. By choosing a« small enough the Lj will
be in the tubular neighborhood of the one dimensional strata and
will be contained in the image of some section.

Let (x;,x;,...,x;} be the intersection of B(%) with the one
dimensional strata in oi(Ui). By choosing a even smaller if

necessary we can assume that the fiber through xi intersects two

of the £ 's and this part of the fiber stays in B(1) \ B(3). Now
the part of the fibers through the xi‘s connecting the Zj's union
the part of the Lj's from these intersections to the ci's union the
ci'a gives the boundary of an open set containing the origin which
is homeomorphic to a disk. If we take out the images of the strata

we get n open sets each homeomorphic to a disk.

Figure 6
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Before continuing with the proocf of this proposition let us
consider the following lemma which establishes some of the

properties of the maps near f.

Lemma 7: Let f ¢ K then there is a neighborhood N of f such that

if g ¢ N then

1. S8(g) has the same number of zero and one dimensional

strata as S(f).

2. g has the same normal structures on each iJl as t does.

3. each ¢; maps the zero and ovne dimensional strata of S(g)

in us into the o neighborhcod of those for $(f).

4. outside of LJ¢;1(B(%X the cne dimensicnal strata of S(g)
i

are in the tubular neighborhcods and are images of

sections.

Proof: 1In defining S(f) the smallest integer m such that tm(M)
contained no singularities and f was a homeomorph:ism on £ (M) was
found. Since Zf was defined by a transversal intersection, and

Zf is a finite distance, say ¢, frcm fm(M); there 1s a4 neighborhood

N1 of f such that if g ¢ N, then Lg is within % of Lg and gm(M)
is within 5 of £ (M). Thus g™ (M) M By ¢
Now since I_ is & finite distance from fm(M), tf is a local

f

diffeomorphism on any open neighborhood of fm(M) that does not
intersect Zf. In fact, by choosing a small open neighborhood of
fm(M), f is a diffeomorphism. Now by using the openness of

diffeomorphisms on compact manifolds we see that there is a
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neighborhood N, of f such thet 1f g ¢ N, then y is a diffeomorphism
on a fixed menifold that contains £°(M;. By shrinking N, i€
necessary we can uake suve that gm{M) is contained in the fixed

(M) and m satisfies the

manifold. Thus g is & houmeomorphism on g
two conditions for every map in i neighbornood of £.

We now want to make sure m 1s the smallest integer that will
work If fm_l(M)fW St # ¢ then the intericr of fm-l(M) contains
a singular:ty x because an intersection cf the boundary of fm_l(M)
and e would be transverse. Now by taking &« small neighborhood N3
of £ we can guarantee that if g ¢ N, then gm_l(M) contains a fixed
neighborhood of x and zq also hasg a4 point in this neighborhood.
Thus m-1 will not work it ™ LiM) M iy # ¢. Sc suppose
£ 1 ) f\tf = 4 but f 1s n3t a homeamdrphism on fm—l(M). The only
way for this to happen is fcr £ to fa:l to be one to one. In fact £
must send two interior po:nts to the same point. For suppose the
intersection 1s the 1mage of cne inter.cyr point with a boundary
point. Then since f is a local diffeuvmcrphism and there are
intericr points in every neighborhood of the boundary points we
could find two 1interior points that have the same image. If the
intersection was between twu boundary po:ints, this would be the
first coinc:dence between twe fold and thus be transversal., Hence
in this case we can aga.n find two intericr points which have the
same 1mage. Ncw pick disioint cpen sets about each ¢f these points
whose clilosures are :n the inteviocs cof fm-l\M)= Now there is a
neighborhood N of f such that 1t g € Nq then the two closed

m-1,

neighborhoods are in g (M} and the images of the two sets

intersect. Thus m is indeed locaily constant,
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The other number that was used in defining S(f) was J, the
smallest integer such that fJ(fm+l(M) - fm(M)) contained an image
of each singularity. Notice that if g is close to f then Le is
homeomorphic to zg and the number of zerc dimensional strata of
Zf and zg are the same because they come from transversal inter-
sections. We can, therefore, also assume they are of the same
type and pointwise close. Since their images must also be close

the boundary of fm(M) and gm(M) must be made up of corresponding

one dimensional strata. Thus the boundary of each fj(fm*l(M) - fm(M))
corresponds with that of gj(gm+l(M},gm(M)). Thus all other strata
have images in the interior of fJ(fm¢l(M) - fm(M)). So by c®

stability the corresponding strata in zg have images in the
interior of gJ(gm+l(M) - gm(M)), Also, since J was the smallest
integer for some strata under f it must also be the smallest for
the corresponding strata for g. Hence J is alsc locally constant.

As we have noticed the subdivision of Zf and :g corresponded
in both number and type. Since S(f) and S(g) are arrived at by
taking the same number of forward iterates and then all the inverse
iterates, we see that the number and type of zero and cne
dimensional strata in S(f} and S(g) are the same.

Parts 2 and 3 of this lemma now folilow easily from the c’

stability of the normal forms while 4 is a result cf the higher

stability of the one dimensional strata Q.E.D.

Now let us return to the proof of Proposition 3.
To define the homeomorphism h, let h be the .dentity outside

of the union of the tubular neighbcrhoods and the Ul. Cn the
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tubular neighborhoods between two xi, the new one dimensional
stratum is a section. Thus we can reparameterize the fibers so

it is the zero section. This reparameterization can be viewed as
a homeomcrphism of this part cf the tubular neighborhocd that
takes the old zero section to the new one. We can choose the
reparameterization so that the homeomorphism is the identity
outside of any fixed open set that contains the two sections and
the parts of the fibers bhetween them., Defining it this way we

see that the homeomorphism will extend to the identity. Now since
in B(l1) - B(%) the new zero section is within o of the old, we can
take the reparameterization to be the identity on each of the ﬂi.
Let Di be the closed disk in Ul bounded by the Ci’ the parts of
the fibers through the x;'s connecting the li's and the parts of
the Zl's connecting these intersections and the Ci. On Ui outside
of D.l union the parts of the tubular neighborhoods where h is
already defined we defined the map to be the identity. On the
closed set we use the definition we already have on the fiber
through x;, and the identity on the li's and Ci's. Since the part
of the stratum connecting x; and the crigin is homeomorphic to a
straight line and the part of the stratum for g connecting the
image of x; under the homecmorphism and the zero dimensicnal
stratum for g in Ui is also homecmorphic to a straight line, we
send the one to the other. We now fill in the rest any way we want.
This can be done because we have defined a homecmorphism from the
boundary cf a set that is homeomorphic to a disk to the boundary of
another set that is homeomorphic to a disk. It is clear that this

gives us a homeomecrphism that sends strata teo strata.
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By taking the diameter of each Ui less than e and the
arclength of each fiber in the tubular neighborhouds less than
e, the homeomorphism will move each point at most e. Thus the
homeomorphisms can be taken to ke in any neighborhood of the

identity. Q.E.D.

We are now ready to see the density of Cr-structurally

stable contractions.

Theorem 1: The set cf Cr-structurallxrstable contractions on

any compact two dimenszional, c” manifold M without boundary is an

open dense subset of all c’ contractions in the ct topology for

r > 12,

Proof: The openness of the set is clear from the definition.
Density will be shown by proving that every endomerphism £ in K
is Cr-structurally stable., If U is a small neighbcrhood of £

in K and g € U then gm(M) - gm+l(M) G is a fundamental domain

K

and gJ(G) contains an image of each singularity. Here m and J

are the integers used to define F and S$(f};. Frcm the last
proposition there is a homeomorphism h close to the identity which
sends the strata of S(f) to the strata of S(g). Although h does
nct have to be a topological conjugacy, being close to the identity
gives it another property that looks like a strata conjugacy. That
is, if L and f(L) are strata of S$(f); then h{L) and h{(f(L})) are
strata of S(g) and gh{L) = hf(L) as sets. Thus if L is a point

stratum, then h is a conjugacy at this pecint,
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Let L be a one dimensional strata that is in the boundary of
fN(M). Define another map frcm L to h(L) by g_l'h-f, This can
be done because f(L) is a stratum of S(f) and g is a diffeomorphism
from h(L}) to hf(L}. Note that this new map is also close to the
identity and would agree with h on L - L. There is an open
neighborhood A of L which contains no other one dimensional strata
and no zero dimensional strata. The closure of A contains L - L
and also L, but these are the only zero and one dimensional strata
it contains. Using h on the boundary of A and the new map on L,
one can construct a new homeomorphism on A to h(A) that is strata

preserving. Now construct similar homeomorphisms on corresponding

neighborhoods of each one dimensional strata in the boundary of

fN(M). Note that the new strata preserving homecmorphism H is a
. +i

conjugacy on the boundary of fN(M). Then change H on fJ l(F) to

ngF-l where £ * is taken in fJ(F)° Also send Xe to xg. One

should note that the new map K is a conjugacy on fN(M).

To define the conjugacy outside of fN(M), we will send the
strata of S(f) to the strata of S(g) that have already been
identified by K. To get the desired map, remember that fi and gi
are close and are covering maps on a given stratum L. They also
have their images 1in fJ(F) and gJ(G) for some i < N. Since K is
close to the identity and sends fi(L) to gi(K(L)), there is a
unique lift close to the identity sending L to K(L). It should
be noted that this lift is independent of i as long as fi(L) (: fN(M),
because K 1s a conjugacy on fN(M). Doing this on each stratum

gives a new map cf M that is one to one, onto, close to the
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identity, and greserves straia. In fact, it is a homeomorphism
on each stratum and satisfies the appropriate commutative diagram
to be a topoulegical conjugacy. The only thing that needs to be
checked is that it is ¢nontinuous where two diiferent strata come
together. To see this cne should lcok at the different local
pictures as in Proposition 2. Since the map is arbitrarily close
to the identity, it sends local strata to lccal strata correctly.
Since f is one to cne con the closure of every local stratum, the

map is indeed continucus and hence a homecmorphism. Q.E.D.

Although this is the basic result it can also be considered
as the first part of the next theorem, which gives necessary and
sufficient conditions for a contraction to be Cr-structurally

stable.

Theorem 3: K i1s precisely the c’-structurally stable contractions

on M.

Proof: From the proof of Theorem 1, we know that every endomorphism
in K is Cr-structurally stable. The C¥ endomcrphism of M, which
are stable using twe different hcmeomorphisms, are the Whitney
endomorphisms. Thus the Crmstructurally stable contractions
must also be Whitney endomcrphisms,

Suppose g is a Crustructurally stable contraction on M. Since
K is dense in the set ¢f contractions, there iz an f ¢ K such that
f and g are topologically conjugate. If h is a topological
conjugacy, then h(x) is regular, a fold, or a cusp according to

whether x is respectively regular, a fold, or a cusp. This is
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because a topological conjugacy must preserve the number of points
that go to a given point in a neighborhood of x. If x is regular,
it is one to one; at a fold, it is two to one; and at a cusp,

three to one. The fixed points and all orbits are also preserved
by h. Thus, x and y are coincident under f if h(x) and h(y) are
coincident under g. This establishes that g satisfies the following

three conditions:

1. The fixed point xq of g is regular and is not coincident

with any singularity.
2. A cusp point is not coincident with any other singularity.

3. For any set of three singularities there is at most one

subset of two eléments which are coincident.

It also shows that the folds for g have the same number and type
of intersections, Since g is Cr-structurally stable, there is a
neighborhood of g which also satisfies these conditions. Indeed,
if g did not satisfy one of the transversality conditions, an

arbitrarily small perturbation could change the number of inter-
sections of a given type, which is a contradiction. Hence g ¢ K.

Q.E.D.
Using methods very similar to the ones used in this proof,

one can prove the following:

Theorem 4: If f and g are two Ct—structurally stable contractions

which are topologically conjugate, then a conjugating homeomorphism

h is strata preserving between S(f) and S(g).
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Proof: Theorem 3 says that f and g ¢ K and hence S(f) and S(g)

can be defined. In the proof of the last theorem, it was pointed
out that h must send singularities to singularities; hence h is a
homeomorphism from Zf £
are cusps and folds which are coincident with other folds. As was

te Zg, The zero dimensicnal strata of

pointed out in the last theorem, this finite set of special points
also has to be preserved by h, Since the one dimensional strata

of S(f) in £_ are the connected components of :_ minus the finite

£ “f

set of special points, h must preserve these strata. Since h
preserves orbits, h(fi(M)) = gi(M). If fi(M) contains no
singularities, then neither does gi(M)o Also if £ is one to one
on fi(M), then g is also one to one on gi(M). Thus if m is the
smallest integer for which fm(M) - fm+1(M) = F is a fundamental
domain, then it is also the smallest integer for which

gm(M) - gm+l(M) = G is a fundamental domain. The smallest integer
J such that fJ(F) contains an image of each singularity also holds
for g and, in fact, h sends fJ(F) to fJ(G). Thus the integers
used to define S(f) and S(g) are the same.

The zero and one dimensional strata of S(f) and 3S(g) are
obtained from Le and Zg respectively by taking N iterates and then
the inverse images. Since h preserves orbits, the i1mages of
strata in Zf must go to images of the corresponding strata in Zg
and similarly for all inverse images. It is this orbit preserving
ability of h that guarantees that the zero and one dimensional
strata of S(f) go to zero and one dimensional strata of S(g).

The two dimensional strata are the connected components of the

complement of the zero and one dimensional strata. Hence h must
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must preserve these strata also, and h is strata preserving

between S(f) and S(g).

It should be ncoted that this theorem and its proof give
many invariants of the topological conjugacy class of an endo-
morphism in K, some of which are the numbers m, J, and N, and
the numbers of circles of singularities, of cusps, and folds that
are coincident with other folds. Since f is a covering map
from one stratum to another, its covering number is also an
invariant. It seems gquite reasonable that the topological
conjugacy classes could be characterized by using these invariants.
To begin studying the n dimensional case, we shall show that
there are structurally stable contractions on every n dimensional
manifold. This will be done for C~ contractions with the help of

Mather's topological stability of maps.

Theorem 5: On every n dimensicnal compact c” manifold M without

boundary, there is a Cm—structurally stable contraction.

Proof: Start with a topologically stable map f: M ~» R™ [see 5].
Since such maps have many regular values, let y be one of them
and let x ¢ f_l(y)° Let U be an open neighborhood of x such that
f is a diffeomorphism on U, and h be a diffeomorphism from R" into
U sending y to x. By taking h to be a strong contraction, one can
make sure that hf = g is a contracticn, Since y is a regular
value, x is a regular value as well as the tixed point of g.
Because g maps U diffeomcrphically inside itself and contains the

first image of every singularity, we see that x is coincident
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with no singularities. Also g(M) - gz(M) = G is a fundamental
domain. There is an integer J such that gJ(G) contains an :u.age

of every singularity. Now consider the map gJ+l. It has the

2
+

property that gJ l(M) - (gJ+1) (M) is a fundamental domain and

contains an image of each of the singularities. Let H be a

topologically stable map which is close to gJ+l. Since the

L ommy - BY M)

singularity set for H is close to the one for gJ
is a fundamental dcmain that contains an image of each singularity.
In fact, H and any contraction F close to H map U diffeomorphically
inside itself. Since F(M) - F%(M) as well as H(M) - H’(M) contain
the first image of each singularity, H’ (M) and F’(M) are contained
in the interior of H(M) and F (M) respectively. There also exist
two homeomorphisms h1 and h2 of M such that Fh; = th and the
homeomorphisms are arbitrarily close. Since HZ(M) is contained

in the interior of H(M), there is an open neighborhood V of H(M)

in U such that H(V), which is a neighborhood of H’ (M), contains no
first images of singularities. Since h, ‘and h2 can be made
arbitrarily close, a simple isotopy in V gives a new homeomorphism

h3 of M which is h1 outside of V and h, on H(M). Change h3 on

H(V) - HZ(M) to be Fth_l where Hn1 is taken in V. Note this

agrees with h2 on 3H(V). Now iterate this map inwards to Xy and
send Xy to Xp. This homeomorphism hl+ is a conjugacy everywhere
except on H-l(H(V)) - V. Since H(V) consists entirely of regular

1

values, H on the connected components of H - (H(V)) is a covering

map and F is a covering map from h, of the connected components

to h,H(V) = h H(V). One can take all of the homeomorphisms close
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to the identity so that there is a unique 1lift of h,. Note that
the lift agrees with h1 on the bcundaries of the connected
components of H—l(H(V)) - V. This is because hq agrees with h2
on the boundary of H(V). Using these lifts on H"l(H(V)) gives
the topological conjugacy. Hence H is topologically conjugate

to F and is, in fact; Cx—structurally stable.

It should be noted that this prcof gives sufficient

conditions for a C’ contraction to be Cm-structurally stable.

Corollary 1: 1If f is a c” contraction on M which is topologically

stable and f(M) - £7(M) is a fundamental domain which contains

no singularities but does have an image of each singularity,

then f is Cm—stxucturally stable.

These are certainly not all of the structurally stable
contractions. It is even reascnable to conjecture that the
structurally stable contractions are dense in the set of all

contractions as is true in the one and two dimensional cases.
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