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THE CONJECTURES OF BIRCH AMD SWINNERTON-DYER AND 
THE CLASS NUMBERS OF QUADRATIC FIELDS 

by 
Dorian M. GOLDFELD 

1. The Class Number Problem 

Let x be a real, primitive, Dirichlet character (mod d) • Associated to 
X we have a quadratic field 

K = Q(VX (-l)d) 

which is real or imaginary according as x(-1) = + 1 or -1 • If we let 

|' h if X(-1) = - 1 

H = I 

^ h.log ec if X(-1) = + 1 

where h is the class number and e is the fundamental unit of K , then C.L. 
o 

Siegel [4], [10] has proved the important result 
H > c(e)d 

where for all e > 0 , c(e )>0 is an ineffectively computable constant. 

Actually, one expects even more to be true, since if H = o(VcL / log d) , 
there exists a real number p satisfying (see [5], [7]) 

1 - P ~4r L (1 , X ) 
-1) = (e)d 
a,b, c 
-a<bsa<i7<l 
b2-4ac=x(-l)d 
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for which 
L(P,X) = 0 . 

This, of course, contradicts the Riemarm Hypothesis, and it is, therefore, likely 
that H. log d / /y/d never gets too small. 

The strongest known effective lower bounds for H have been obtained by Stark 
[11] and Baker [1], who established that there are only 9 imaginary quadratic fields 
with class number one, and that there are exactly 18 imaginary quadratic fields with 
class number two. As a consequence, the lower bound 

H «= 3 U > 427 , X(-1) = - 1) 

was obtained. The general Gauss problem of effectively determining how many imagi­

nary quadratic fields have a given class number h > 2 still remains open, 

S.Chowlahas raised an analogous problem for real quadratic fields. If d is 
2 

of the form d = m + 1 so that the fundamental unit is minimal, Chowla has con­
jectured that there will be only finitely many real quadratic fields of this type 
with a given class number, and that these fields can be effectively determined. 

2. The Birch-Swinnerton-Iyer Conjectures 

Let E be an elliptic curve over Q , with conductor N (see [13]) • If P 

does not divide N , the reduction of E modulo p is an elliptic curve over 
Z/pZ 5 let be its number of points, and put t^ = p + 1 - . The Hasse-
Weil L-function of E is defined to be s 

V > = T T d - p p " S ) _ 1 T J o - y " v - 2 s ) " 1 = I \ »- , 
pjN * p/N 

where the apt s (FOR P N) a r e ecpial to 0,1 or -1 (cf. [13])« 

Weil (loc« cit.) has conjectured that kg(s) i s entire and satisfies the 
functional equation 

(VN/27t)s r(s)LB(s) = + (VN/2H) 2 _ s r(2-s)LE(2-s) , 
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and that 
> E e *— n 

is a cusp form of weight 2 for the congruence subgroup 

Let E(Q) denote the group of rational points on E • Then if E(Q) has g 

independent generators of infinite order, Birch and Swinnerton-iQyer have conjectu­

red [2] 

CONJECTURE Lg(s) has a zero of order g at s = 1 

This conjecture may prove useful in the class number problem (for both real 

and imaginary fields), for we can show [6] 

THEOREM 1 - If Lg(s) satisfies Weil's conjecture and Lg(s) has a zero of  

order g at s = 1 , then for (d,N) = 1 

cp 1 i h i c-iNg^ \ 
H > ~4i~13 ( l o g exp(-21g (log log d) ) , ^ d > e e J 

where u = 1 ,2 is suitably chosen so that 

X(-N) = ( - 1 ) ^ U 

and the constants ° - |> c 2 > 0 can be effectively computed and are independent of 
g , N , and d • 

If we simply take u = 2 in the above Theorem, then the condition (d,N) = 1 

can be dispensed with. In this case, however, the proof of Theorem (1 ) will have 

to be slightly modified to take into account a finite number of bad primes divi­

ding (d,N) • 

3 . Example 1 

Stephens [12] has shown that the elliptic curve 
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E 1 : y 2 = x 3 - 2 4 . 3 7 . 73 2 

satisfies 

g = rank of E^ft) = 3 , N = 3 3 . 73 2 

(^/27l)S r(s)^(s) = - (VN/27I)2-8 r(2-s)L^(2-s) . 

Lg (s) satisfies Weil's conjecture since has complex multiplication by V-3 

so that by a Theorem of Deuring [3] (s) isa Hecke L-series with Grô'ssen-
charakter of . Moreover, since the functional equation has the - sign, 
Lg (s) must have a zero of odd order at s = 1 .It immediately follows that 

Lg (1) = 0 . 

As a consequence of Theorem ( 1 ) , we have 

THEOREM 2 - If L f
E (l) = 0 , then for every e > 0 there exists c(e) > 0 

such that 

H> c(e)(log d ) 1 " e , (d,3.73) = 1 

in the case X(-1) = - 1 , \ (3) = - 1 . The constant c(e) can be effectively  
computed and is independent of d • 

4. Example 2 

Consider the curve 

E 2 : y 2 = x 5 + ( 3 - 7 . 1 1 . 1 7 . 4 1 ) 2X 

found by Wiman [14]« For this example 

g = rank of E2(Q) = 4 , N = 2 6 (3.7.11.17-41 f 

(*M/2ll)S r(s)LE^(s) = + (VN/27i)2"S r(2-s)LE2(2-s) • 

Since E 2 has complex multiplication by *[^\ , Weil's conjecture is again satis­
fied. The + sign in the functional equation shows that (s) has a zero of even 
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order at s = 1 • Since (1) must be an integral multiple of a predictable 
^ 2 

number, one can show by computer computation that 

L ^ O ) = 0 , = 0 . 

THEOREM 3 - If L" (l) = 0 , then for every e > 0 , there exists c(e) > 0 — E 2 

such that 

H> c(e)(log d ) 2 ' e , (d ,2.3.7.11.17.41) = 1 

and 
H> c(e)(log (no condition on d ) 

in the case X(-1) = 1 • The constant c(e) can be effectively computed and is  
independent of d . 

It immediately follows that the vanishing of L" (1) would allow one to 
E 2 

effectively determine all imaginary quadratic fields having a given class number, 
and, therefore, provide a solution to the class number problem. Unfortunately, the 
curves E^ and provide no information in the case of real quadratic fields. 
To get a solution to Chowla!s conjecture, for example, one would require an ellip­
tic curve E for which Lg(s) has a zero of order 5 a"t s = 1 

5* Some Generalizations 
Theorem (1) can be generalized to a rather wide class of L-functions associa­

ted to modular forms of arithmetic type. If 

M s ) = I l f r 0 - « iP" 8)" 1 , k J * 1 

' p i=1 p > 1 p > 1 

is such an L-function satisfying a functional equation of type 

M S 1(8)^(8) = w M ^ T O - s ^ O - s ) , |w| = 1 

where M is a positive real number and T(s) is some finite product of r-func-
tions (T(s) = f~[r(s+ai)) , and if the twisted series 
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k ^ 
^ ( B . X ) = f i n O-X(p) a ,.p-s)"1 

p i=1 

satisfies 

M x T x ( s ) L i ( s ' x ) = W X M X " S T X ( 1 " S ) L I ( 1 " s ' x ) ' 'wx' = 1 

where T (s) is again some finite product of r-functions and 
X 

(*) M x « d M , 

one can in general show that for every e > 0 , there exists an effectively compu­
table constant c(e) > 0 such that 

(**) H> c(e)(log d ) g - u _ p " e . 

Here, g is the order of the zero of (s) at s = 77 ; u = 1 or 2 according 
as 

1 + (-l)g-1ww 4 0 or = 0 , 
X 

and p is the order of the zero of 
k - 1 

L2(s) = [1 FT 0 - ^ ±P" S) 
p i=1 P , : L 

at s = 1 • The condition (*) seems to force k $ 2 

If L^(s) is an L-function associated to an elliptic curve, one can show by 
Rankin's method [9] that p = 1 , and this is the main reason why zeros of order 
^ 3 are needed to get non-trivial lower bounds for H • It would be of conside­
rable interest to find examples of L-functions for which g - p ̂  2 and p < 1 

The proof of these results is based on the general principle that if H is 
too small then x( n) behaves like Liouville's function \(n) 

(where C(2s)/C(s) X(n)n'S) 

for n « d • This can easily be seen in the case of an imaginary quadratic field 
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with class number one. If the field has discriminant -d , then for a prime 

p < d , x ( p ) = + 1 if and only i f w e "the representation 

2 (d+1) 2 p = x + xy + s ^ / y , 

from which it follows that x(p) = -1 for all p < (d+l)/4 • This implies that 

x(n) = \(n) for n < (d+1)/4 • 

If one writes 

L 1( B)L 1 (B f x) = G(s)L2(2s) , 

then G(s) measures the deviation by which x( n) differs from Liouville's func­

tion \(n) . We show that this deviation can be measured in terms of H . 

Let 

G(s) = £ fi^n"8 , G(s,x) = ] T g nn"
S . 

n<x 

It is not hard to see that G(s) is majorized by 

P(S) = ( C( S)L( S,x)/ £(2 S))
k , 

that is to say \g^\ is bounded by the n̂ *1 coefficient in the Dirichlet series 

expansion for F(s) . By expanding F(s) into a rapidly converging series of 

Bessel functions it is possible to estimate G(-̂ ,d) in terms of L(l,x) • 

On using a general method of A.F. Lavrik [8] one can expand 

MSM8T(s)Tx(s)L1(s)L1(s,X) 

into a rapidly converging series of incomplete r-functions whose main contribution 

comes from the terms n « MNL , and in this way it can be proved that 

(^) S _ 1 [(M^)ST(S)Tx(s)L1(s)L1(S,X)] 

, g-1 
= [(M^)BT(s)Tx(S)G(s,ïï)L2(2S)] + 0(MMxL(l,X)(log d)

e) . 
8 = i 
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where 

6 = 1 + (-l)g"1wwx 

and U is a power of log d • Since L^(s) has a zero of order g at s = 

and G(-£,U) can be bounded from below if H is sufficiently small it follows 

that one can obtain results of type (**) . Note that there will be a loss of p 

powers of log d if L2(s) has a zero of order p at s = 1 , and a loss of 

one log d if 6 = 0 . 
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