Dorian M. Goldfeld
 The conjectures of Birch and Swinnerton-Dyer and the class numbers of quadratic fields

Astérisque, tome 41-42 (1977), p. 219-227
http://www.numdam.org/item?id=AST_1977__41-42__219_0

© Société mathématique de France, 1977, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE CONJECTURES OF BIRCH AND SWINNERTON-DYER AND THE CLASS NUMBERS OF QUADRATIC FIELDS
by

Dorian M. GOLDFELD

1. The Class Number Problem

Let X be a real, primitive, Dirichlet character (mod d) . Associated to x we have a quadratic field

$$
K=Q(\sqrt{X(-1) d})
$$

which is real or imaginary according as $x(-1)=+1$ or -1 . If we let

$$
H=\left\{\begin{array}{ll}
h & \text { if } x(-1)=-1 \\
h . \log & \varepsilon_{0}
\end{array} \quad \text { if } x(-1)=+1 ~ \$\right.
$$

where h is the class number and ε_{0} is the fundamental unit of K, then C.L. Siegel [4], [10] has proved the important result

$$
H>c(\varepsilon) d^{\frac{1}{2}-\varepsilon}
$$

where for all $\varepsilon>0, c(\varepsilon)>0$ is an ineffectively computable constant.
Actually, one expects even more to be true, since if $H=O(\sqrt{\alpha} / \log d)$,
there exists a real number β satisfying (see [5], [7])

$$
\left.1-\beta \sim \frac{6}{\pi^{2}} L(1, x) \sum_{\substack{a, b, c \\-a<b \leq a<\frac{1}{4} \sqrt{d} \\ b^{2}-4 a c=x(-1) d}} a^{-1}\right)^{-1}
$$

for which

$$
L(\beta, \chi)=0
$$

This, of course, contradicts the Riemann Hypothesis, and it is, therefore, likely that H. log d / \sqrt{d} never gets too small.

The strongest known effective lower bounds for H have been obtained by Stark [11] and Baker [1], who established that there are only 9 imaginary quadratic fields with class number one, and that there are exactly 18 imaginary quadratic fields with class number two. As a consequence, the lower bound

$$
H \geqq 3 \quad(d>427, x(-1)=-1)
$$

was obtained. The general Gauss problem of effectively determining how many imaginary quadratic fields have a given class number $h>2$ still remains open.
S. Chowla has raised an analogous problem for real quadratic fields. If d is of the form $d=m^{2}+1$ so that the fundamental unit is minimal, Chowla has conjectured that there will be only finitely many real quadratic fields of this type with a given class number, and that these fields can be effectively determined.

2. The Birch-Swinnerton-Dyer Conjectures

Let E be an elliptic curve over Q, with conductor N (see [13]). If p does not divide N, the reduction of E modulo p is an elliptic curve over Z / pZ; let N_{p} be its number of points, and put $t_{p}=p+1-N_{p}$. The HasseWeil I-function of E is defined to be :

$$
I_{E}(s)=\prod_{p \mid N}\left(1-a_{p} p^{-s}\right)^{-1} \prod_{\rho / K_{N}}\left(1-t_{p} p^{-s}+p^{1-2 s}\right)^{-1}=\sum E_{n} n^{-s}
$$

where the a_{p}, s (for $p \mid N$) are equal to 0,1 or -1 (cf. [13]).
Weil (loc. cit.) has conjectured that $I_{E}(s)$ is entire and satisfies the functional equation

$$
(\sqrt{N} / 2 \pi)^{s} \Gamma(s) I_{E}(s)= \pm(\sqrt{N} / 2 \pi)^{2-s} \Gamma(2-s) I_{E}(2-s)
$$

and that

$$
\sum E_{n} e^{2 \pi i n z}
$$

is a cusp form of weight 2 for the congruence subgroup $\Gamma_{0}(N)$.
Let $E(Q)$ denote the group of rational points on E. Then if $E(Q)$ has g independent generators of infinite order, Birch and Swinnerton-Dyer have conjectured [2]

CONJECTURE $L_{E}(s)$ has a zero of order g at $s=1$.
This conjecture may prove useful in the class number problem (for both real and imaginary fields), for we can show [6]

THEOREM 1 - If $I_{E}(s)$ satisfies Weil's conjecture and $I_{E}(s)$ has a zero of order g at $s=1$, then for $(d, N)=1$

$$
H>\frac{c_{2}}{g^{4 g_{N} 13}}(\log d)^{g^{-u-1}} \exp \left(-21 g^{\frac{1}{2}}(\log \log d)^{\frac{1}{2}}\right) \quad, \quad\left(d>e^{e^{c_{1} N g^{3}}}\right)
$$

where $u=1,2$ is suitably chosen so that

$$
x(-N)=(-1)^{g-u}
$$

and the constants $c_{1}, c_{2}>0$ can be effectively computed and are independent of g, N, and d .

If we simply take $u=2$ in the above Theorem, then the condition $(d, N)=1$ can be dispensed with. In this case, however, the proof of Theorem (1) will have to be slightly modified to take into account a finite number of bad primes dividing (d, N) .
3. Example 1

Stephens [12] has shown that the elliptic curve

$$
E_{1}: y^{2}=x^{3}-2^{4} \cdot 3^{7} \cdot 73^{2}
$$

satisfies

$$
\begin{gathered}
g=\text { rank of } E_{1}(Q)=3, \quad N=3^{3} \cdot 73^{2} \\
(\sqrt{N} / 2 \pi)^{s} \Gamma(s) I_{E_{1}}(s)=-(\sqrt{N} / 2 \pi)^{2-s} \Gamma(2-s) I_{E_{1}}(2-s) \quad .
\end{gathered}
$$

$\mathrm{L}_{\mathrm{E}_{1}}(\mathrm{~s})$ satisfies Weil's conjecture since E_{1} has complex multiplication by $\sqrt{-3}$ so that by a Theorem of Deuring [3] $\mathrm{L}_{\mathrm{E}_{1}}(\mathrm{~s})$ is a Hecke I-series with Grössencharakter of $Q(\sqrt{-3})$. Moreover, since the functional equation has the - sign, $\mathrm{I}_{\mathrm{E}_{1}}$ (s) must have a zero of odd order at $\mathrm{s}=1$. It immediately follows that

$$
I_{\mathrm{E}_{1}}(1)=0
$$

As a consequence of Theorem (1), we have

THEOREM $2-$ If $L^{\prime} E_{1}(1)=0$, then for every $\varepsilon>0$ there exists $c(\varepsilon)>0$ such that

$$
H>c(\varepsilon)(\log d)^{1-\varepsilon}, \quad(d, 3.73)=1
$$

in the case $X(-1)=-1, X(3)=-1$ - The constant $c(\varepsilon)$ can be effectively computed and is independent of d.

4. Example 2

Consider the curve

$$
E_{2}: y^{2}=x^{3}+(3 \cdot 7 \cdot 11 \cdot 17 \cdot 41)^{2} x
$$

found by Wiman [14]. For this example

$$
\begin{aligned}
& g=\operatorname{rank} \text { of } \mathrm{E}_{2}(Q)=4, \quad N=2^{6}(3.7 .11 .17 .41)^{2} \\
& (\sqrt{N} / 2 \pi)^{s} \Gamma(s) I_{\mathrm{E}_{2}}(\mathrm{~s})=+(\sqrt{N} / 2 \pi)^{2-s} \Gamma(2-s) I_{\mathrm{E}_{2}}(2-s)
\end{aligned}
$$

Since E_{2} has complex multiplication by $\sqrt{-1}$, Weil's conjecture is again satisfied. The $+\operatorname{sign}$ in the functional equation shows that $\mathrm{I}_{\mathrm{E}_{2}}$ (s) has a zero of even
order at $s=1$. Since $\mathrm{I}_{\mathrm{E}_{2}}(1)$ must be an integral multiple of a predictable number, one can show by computer computation that

$$
\mathrm{L}_{\mathrm{E}_{2}}(1)=0 \quad, \quad \mathrm{~L}_{\mathrm{E}_{2}^{\prime}}(1)=0
$$

THEOREM 3- If $L_{E_{2}}(1)=0$, then for every $\varepsilon>0$, there exists $c(\varepsilon)>0$ such that

$$
H>c(\varepsilon)(\log d)^{2-\epsilon}, \quad(d, 2 \cdot 3 \cdot 7 \cdot 11 \cdot 17 \cdot 41)=1
$$

and

$$
H>c(\varepsilon)(\log d)^{1-\varepsilon} \quad \text { (no condition on } d \text {) }
$$

in the case $x(-1)=1$. The constant $c(\varepsilon)$ can be effectively computed and is independent of d .

It immediately follows that the vanishing of $L_{E_{2}}(1)$ would allow one to effectively determine all imaginary quadratic fields having a given class number, and, therefore, provide a solution to the class number problem. Unfortunately, the curves E_{1} and E_{2} provide no information in the case of real quadratic fields. To get a solution to Chowla's conjecture, for example, one would require an elliptic curve E for which $I_{E}(s)$ has a zero of order 5 at $s=1$.

5. Some Generalizations

Theorem (1) can be generalized to a rather wide class of I-functions associated to modular forms of arithmetic type. If

$$
L_{1}(s)=\prod_{p} \prod_{i=1}^{k}\left(1-\alpha_{p, i} p^{-s}\right)^{-1}, \quad\left|\alpha_{p, i}\right| \leqq 1
$$

is such an I-function satisfying a functional equation of type

$$
M^{s} T(s) L_{1}(s)=w M^{1-s^{s}} T(1-s) L_{1}(1-s) \quad, \quad|w|=1
$$

where M is a positive real number and $T(s)$ is some finite product of Γ-functions $\left(T(s)=\prod \Gamma\left(s+a_{i}\right)\right)$, and if the twisted series

$$
L_{1}(s, x)=\prod_{p} \prod_{i=1}^{k}\left(1-x(p) \alpha_{p, i} p^{-s}\right)^{-1}
$$

satisfies

$$
M_{X}^{S_{T} T_{X}}(s) I_{1}(s, X)=W_{\chi} M_{X}^{1-s_{T}} T_{X}(1-s) L_{1}(1-s, x) \quad, \quad\left|W_{X}\right|=1
$$ where $T_{X}(s)$ is again some finite product of Γ-functions and (*)

$$
M_{X} \ll d M
$$

one can in general show that for every $\varepsilon>0$, there exists an effectively computable constant $c(\varepsilon)>0$ such that

$$
\begin{equation*}
H>c(\varepsilon)(\log d)^{g-u-p-\varepsilon} . \tag{**}
\end{equation*}
$$

Here, g is the order of the zero of $L_{1}(s)$ at $s=\frac{1}{2} ; u=1$ or 2 according as

$$
1+(-1)^{g-1}{ }_{w w_{x}} \neq 0 \text { or }=0
$$

and ρ is the order of the zero of

$$
L_{2}(s)=\prod_{p} \prod_{i=1}^{k}\left(1-\alpha_{p, i}^{2} p^{-s}\right)^{-1}
$$

at $s=1$. The condition (*) seems to force $k \leqq 2$.
If $L_{1}(s)$ is an L-function associated to an elliptic curve, one can show by Rankin's method [9] that $\rho=1$, and this is the main reason why zeros of order $\geqq 3$ are needed to get non-trivial lower bounds for H. It would be of considerable interest to find examples of I-functions for which $g-\rho \geqq 2$ and $\rho<1$ -

The proof of these results is based on the general principle that if H is too small then $X(n)$ behaves like Liouville's function $\lambda(n)$

$$
\text { (where } \left.\zeta(2 s) / \zeta(s)=\sum \lambda(n) n^{-s}\right)
$$

for $n \ll d$. This can easily be seen in the case of an imaginary quadratic field
with class number one. If the field has discriminant -d , then for a prime $p<d, x(p)=+1$ if and only if we have the representation

$$
p=x^{2}+x y+\frac{(d+1)}{4} y^{2}
$$

from which it follows that $X(p)=-1$ for all $p<(d+1) / 4$. This implies that $x(n)=\lambda(n)$ for $n<(d+1) / 4$.

If one writes

$$
L_{1}(s) I_{1}(s, x)=G(s) L_{2}(2 s),
$$

then $G(s)$ measures the deviation by which $X(n)$ differs from Liouville's function $\lambda(n)$. We show that this deviation can be measured in terms of H. Let

$$
G(s)=\sum g_{n} n^{-s}, \quad G(s, x)=\sum_{n<x} g_{n} n^{-s} .
$$

It is not hard to see that $G(s)$ is majorized by

$$
F(s)=(\zeta(s) L(s, x) / \zeta(2 s))^{k},
$$

that is to say $\left|g_{n}\right|$ is bounded by the $n^{\text {th }}$ coefficient in the Dirichlet series expansion for $F(s)$. By expanding $F(s)$ into a rapidly converging series of Bessel functions it is possible to estimate $G\left(\frac{1}{2}, d\right)$ in terms of $L(1, x)$.

On using a general method of A.F. Lavrik [8] one can expand

$$
M^{s} M_{X}^{s} \mathbf{s}^{T}(s) T_{\chi}(s) L_{1}(s) L_{1}(s, \chi)
$$

into a rapidly converging series of incomplete Γ-functions whose main contribution comes from the terms $n \ll M_{x}$, and in this way it can be proved that

$$
\begin{aligned}
& \left(\frac{d}{d s}\right)^{g-1}\left[\left(\mathbb{M M}_{\chi}\right)^{s_{T}(s) T_{X}}(s) L_{1}(s) L_{1}(s, x)\right]{ }_{s=\frac{d}{d}}= \\
& =\delta\left(\frac{d}{d s}\right)^{g-1}\left[\left(\operatorname{MM}_{X}\right)^{s} T(s) T_{X}(s) G(s, U) L_{2}(2 s)\right]_{s=\frac{1}{2}}+O\left(\operatorname{MM}_{X} L(1, X)(\log d)^{\varepsilon}\right) \quad .
\end{aligned}
$$

where

$$
\delta=1+(-1)^{g-1} w_{x}
$$

and U is a power of log d. Since $L_{1}(s)$ has a zero of order g at $s=\frac{1}{2}$ and $G\left(\frac{1}{2}, U\right)$ can be bounded from below if H is sufficiently small it follows that one can obtain results of type (${ }^{*}$) . Note that there will be a loss of ρ powers of log d if $L_{2}(s)$ has a zero of order ρ at $s=1$, and a loss of one $\log d$ if $\delta=0$.

BIBIIOGRAPHY

[1] BAKER A. - Imaginary quadratic fields with class number two. Annals of Math. 94 (1971), 139-152.
[2] BIRCH B.J. and SWINNERTON-DYERR H.P.F. - Notes on elliptic curves. J. reine angewandte Math. 218 (1965), 79-108.
[3] DEURTNG M. - Die Zetafunktion einer algebraischer Kurve von Geschlechte Eins. I, II, III, IV, Nachr. Akad. Wiss. Göttingen (1953), 85-94 ; (1954), 13-42 ; (1956), 37-76 ; (1957), 55-80.
[4] GOLDFELD D.M. - A simple proof of Siegel's theorem. Proc. Nat. Acad. Sci. U.S.A., 71 (1974), 1055.
[5] GOIDFEID D.M. - An asymptotic formula relating the Siegel zero and the class number of quadratic fields. Annali Scuola Normale Superiore, $\mathrm{Se}-$ rie IV, Vol. II (1975), 611-615.
[6] GOIDFEID D.M. - The class number of quadratic fields and the conjectures of Birch-Swinnerton-Dyer. To appear in Annali Scuola Normale Superiore.
[7] GOLDFELD D.M. and SCHINZEL A. - On Siegel's zero. Annali Scuola Normale Superiore, Serie IV, Vol. II (1975), 571-585.
[8] LAVRTK A.F. - Functional equations of Dirichlet functions. Soviet Math. Dokl. 7 (1966), 1471-1473.
[9] OGG A.P. - On a convolution of Imseries. Inventiones Math. 7 (1969), 297-312.
[10] SIEGEL C.I. - Über die Classenzahl quadratischer Zahlkörper. Acta Arith. 1 (1935), 83-86.
[11] STARK H.M. - A transcendence theorem for class number problems. Annals of

Math. 94 (1971), 153-173.
[12] STEPHENS N.M. - The diophantine equation $X^{3}+Y^{3}=D Z^{3}$ and the conjectures of Birch and Swinnerton-Dyer. J. reine angewandte Math. 231 (1968), 121-162.
[13] WEIL A. - Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann. 168 (1967), 149-156.
[14] WINAN A. - Über rational Punkte auf Kurven $y^{2}=x\left(x^{2}-c^{2}\right)$. Acta Math. 77 (1945), 281-320.

Dorian M. GOLDFELD
Math. Dept.
M.I.T.

CAMBRIDGE, MA 02139
(U.S.A.)

