The transcendence of definite integrals of algebraic functions
Journées arithmétiques de Caen, Astérisque, no. 41-42 (1977), pp. 231-238.
@incollection{AST_1977__41-42__231_0,
     author = {Masser, David William},
     title = {The transcendence of definite integrals of algebraic functions},
     booktitle = {Journ\'ees arithm\'etiques de Caen},
     series = {Ast\'erisque},
     pages = {231--238},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {41-42},
     year = {1977},
     mrnumber = {441883},
     zbl = {0348.10026},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1977__41-42__231_0/}
}
TY  - CHAP
AU  - Masser, David William
TI  - The transcendence of definite integrals of algebraic functions
BT  - Journées arithmétiques de Caen
AU  - Collectif
T3  - Astérisque
PY  - 1977
SP  - 231
EP  - 238
IS  - 41-42
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1977__41-42__231_0/
LA  - en
ID  - AST_1977__41-42__231_0
ER  - 
%0 Book Section
%A Masser, David William
%T The transcendence of definite integrals of algebraic functions
%B Journées arithmétiques de Caen
%A Collectif
%S Astérisque
%D 1977
%P 231-238
%N 41-42
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1977__41-42__231_0/
%G en
%F AST_1977__41-42__231_0
Masser, David William. The transcendence of definite integrals of algebraic functions, dans Journées arithmétiques de Caen, Astérisque, no. 41-42 (1977), pp. 231-238. http://archive.numdam.org/item/AST_1977__41-42__231_0/

[1] A. Baker.- On the periods of the Weierstrass p-function. Symposia Math. IV, INDAM Rome, 1968 (Academic Press, London, 1970), pp. 155-174. | MR | Zbl

[2] A. Baker.- On the quasi-periods of the Weierstrass ξ-function. Göttinger Nachr. (1969) N° 16, 145-157. | MR | Zbl

[3] J. Coates.- Linear forms in the periods of the exponential and elliptic functions. Inventiones Math. 12 (1971), 290-299. | DOI | EuDML | MR | Zbl

[4] J. Coates.- The transcendence of linear forms in ω 1 ,ω 2 ,η 1 ,η 2 ,2πi. Amer. J. Math. 93 (1971), 385-397. | MR | Zbl

[5] J. Coates.- Linear relations between 2 π i and the periods of two elliptic curves, Diophantine approximation and its applications. (Academic Press, London, 1973), pp.77-99. | MR | Zbl

[6] D. W. Masser.- Elliptic functions and transcendence (Lecture Notes in Math. N° 437, Springer, Berlin, 1975). | MR | Zbl

[7] D. W. Masser.- On the periods of Abelian functions in two variables. Mathematika 22 (1975), 97-107. | DOI | MR | Zbl

[8] D. W. Masser.- Some vector spaces associated with two elliptic functions. To appear in Advances in transcendence theory (Academic Press, London, 1977). | MR | Zbl

[9] D. W. Masser.- The transcendence of certain quasi-periods associated with Abelian functions in two variables. To appear in Compositio Math. | EuDML | Numdam | MR | Zbl

[10] A.J. Van Der Poorten.- On the arithmetic nature of definite integrals of rational functions. Proc. Amer. Math. Soc. 29 (1971), 451-456. | DOI | MR | Zbl

[11] Th. Schneider.- Zur Theorie der Abelschen Funktionen und Integrale. J. reine angew. Math. 183 (1941), 110-128. | EuDML | JFM | MR

[12] C. L. Siegel.- Transcendental numbers (Princeton Univ. Press, 1949). | MR | Zbl

[13] E. T. Whittaker and G. N. Watson.- Modern analysis (Cambridge Univ. Press, 1965).