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INEQUALITIES FOR DECOMPOSABLE FORMS 

by 

Hans Peter SCHLICKEWEI 

1.- Results. We shall indicate some inequalities for resultants of polynomials with 

integer coefficients and for decomposable forms in n variables with coefficients 

in © . A form f(x) = f(x ,x ) is called decomposable if it is a product of - 1 n 

linear forms with algebraic coefficients. 

In the sequel let M be an arbitrary but fixed finite set of valuations of 

containing the ar chime dean one. A point x £ Z*1 is called primitive for M if the 

greatest common divisor of the components of x is not divisible by the primes 

corresponding to the non-archimedean valuations in M • 

THEOREM 1.1. Let f(x) = f(x^,..0,x^) be a decomposable form of degree d with  

rational coefficients. Let k be an integer with d > k £ n > 1 and suppose that 

f is not divisible by a rational form of degree less than k and that moreover in  

the factorization f(x) = 1̂ (x)...l̂ (x) of. f in a product of linear forms with  

algebraic coefficients any k factors l̂ (x) have rank n . Then for every e > 0 

there are only finitely many integer points x = (x ,...,xn) , which are primitive  

for M , such that the inequality 

(1.1) H |f(x)| p<||_x||d-2(k-l)-E 

p€M * 
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is satisfied, where ||x|| = max{ |x̂  | ,..., | } . 

As a consequence of theorem 1.1 we can prove 

THEOREM 1.2, Let R(X) G Z[X] be of degree d and without multiple roots. Suppose 
0 < t < d , and R(X) has no factor of degree < t in z[x] . Let {p ,.,.,p } be 

1 s 
a finite set of primes and denote the archimedean prime by p̂  # For polynomials P 

and Q write r(p,Q) for their resultant. Then for every e > 0 there are only  
finitely many polynomials Q(X) £ of degree £ t , whose coefficients have no 
common factor, divisible by one of the p̂  (l < i < s) and with 
( 1 . 2 ) n |r(a,Q)| < H ( Q ) D - 2 T " E , 

i=o pi 
where H(Q) means the height of Q , i.e. the maximum of the absolute values of its  
coefficients. 

COROLLARY. Let the hypotheses be the same as in theorem 1.1, but suppose moreover 
d > 2t and that we are considering only polynomials Q with respectively coprime  
coefficients. Write P(Q) for the greatest prime factor of r(R,Q) . Then 

P(Q) -» 0 0 as H(Q) -» ~ . 

The following theorem gives an estimate for decomposable, irreducible forms* 
Let a ,...,a be elements of a number field K and write % for the norm from 

1 n 
K to Q . 

THEOREM 1.3. Suppose N(X) = 7l(ct̂ x̂  +...+ a
n

x
n ) is an irreducible norm form of  

degree d > n > 1 , whose coefficients ,...,are linearly independent over Q 
and ly in a number field K which has no nontrivial subfields. Then for every e > 0 

there are only finitely many integer points x , which are primitive for M , such  
that 
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(1.4) П |N(x)| <y| d~ d ,~ £ . 
рем * 

where 

0.5) d» = 2(n"2)/2 aU-a)/^)^ 

All these results have been proved by W.M. SCHMIDT [2] in the archimedean case. 

2 . - On the proofs. The method of proof is that by SCHMIDT [2] . The main work 
consists in reducing the assertions in such a way that the following criterion for 
the estimation of products of norm forms is applicable (this is a special version 
of theorem Щ [1]) : 

THEOREM 2.1. Suppose f(x) = f(x̂ ,.,.,xn) is a form with rational coefficients, 
which is decomposable in a product of d linear forms l̂ (x) 0 < i < d) with  
algebraic coefficients. If the inequality 

(2.1) П |f(x)| <c||xj|d^ 
PGM P 

has infinitely many solutions x , which are primitive for M , with positive cons 
tants с and л , then there is a rational subspace Ŝ  of dimension t with 
1 £ t < n and there are m forms 1 ^ , , , , , 1 ^ among the forms 1 , , , . , 1 ^ with 

1 1 \ t

 1 

1 < m < d and i <...< i , whose restrictions to S have rank r satisfying — — _ 1 M _ _ _ _ _ 

(2.2) r < t and r < — , 
- л 

Applying (2 02) of theorem 2.1 for the proof of theorem 1 .1 one sees that it 
suffices to show that 

(2.3) 0 < r < t implies i ^ - i l > I? , 
t — r 

since by the hypotheses of theorem 1 0 1 a linear factor 1 of f has l̂ (x) = 0 
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only for x = 0 . 

We take an arbitrary but fixed rational subspace of dimension t > 2 and 
we write m(r) for the maximum number of linear forms 1 . , . . . , 1 . of rank r on 
t m(r) ^ m 

S • Putting q(r) = and q = max q(r) one shows that the hypotheses of 
r ° 0<r<t 

theorem 1 .1 imply q < 2 ^ ^ , which proves by (2.3) the theorem (for more details o "* o 
cf. [2] , pp. 242-245). 

Theorem 1 .2 is proved by using theorem 1.1 . Let ĉ ,...,â  be the roots of R. 
Then 

r(R,Q) = a* Q(ai)...Q(ad) 

where q = deg Q and â  is the leading coefficient of R . 
Since deg Q < t , Q may be written as Q(X) = b̂ _X̂  +.. •+ b^X + b Q with 

t+1 
(k^, • • • »^ ,bQ) £ 2 . Therefore as Q runs through the polynomials in 5?[x] of 
degree < t , Q(OU ) runs through the values of the linear form 

t t+1 l^y) = ŷ cu +•••+ Y 1a i + YQ at points y G 1 . The hypotheses of theorem 1.2 

imply those of theorem 1.1 with t+1 = n = k ; thus by ( 1 .1 ) the assertion follows. 
(it should be noted that the condition that R has no multiple roots guarantees 
that any k of the linear forms l̂ (y) (1 < i < d) have rank n .) 

Theorem 1.2 is also obtained as an application of theorem 2 . 1 . But the necessary 
considerations to obtain the shape of d* as in (1.5) are more intricated. For the 
precise details we refer the reader to [2] , pp. 245-253« 
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