Astérisque

Nicholas M. Katz
 Formal groups and p-adic interpolation

Astérisque, tome 41-42 (1977), p. 55-65
http://www.numdam.org/item?id=AST_1977__41-42__55_0
© Société mathématique de France, 1977, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Société Mathématique de France Astérisque 41-42. (1977) p.55-65

Formal Groups and p-adic Interpolation

Nicholas M. Katz

The ideas in this paper grew out of discussions with Lichtenbaum about the "meaning" of Leopoldt's Γ-transform, and out of reading a letter of Tate to Serre dated January 12, 1965 which was kindly made available to me by Serre. I would like to thank them.

I. Statement of the problem

Let K be a field of characteristic zero, complete under a real-valued non-archimedean valuation "ord", with integer ring θ_{K}, and residue field k. We assume that k has characteristic $p>0$, and we normalize the valuation so that $\operatorname{ord}(p)=1$. We denote by $\mathbb{\mathbb { L }}$ the completion of the algebraic closure $\overline{\mathrm{K}}$ of K , and by $\theta_{\mathbb{\mathbb { L }}}$ its ring of integers. We denote by Gal the galois group of \bar{K} / K, which we will also view as the group of all continuous automorphisms of \mathbb{d} / K.

Let G be a one-parameter formal group over θ_{K}, of finite height h, and denote by $A(G)$ its coordinate ring. In terms of a parameter X for $G, A(G)$ is just $\theta_{K}[[X]]$. Let D be the unique translation-invariant derivation of $A(G)$ into itself satisfying $D X(0)=1$. Given a function on G, i.e., an element $f \in A(G)$, consider the sequence $c(n)$ of elements of θ_{K} defined by

$$
c(n)=\left(D^{n} f\right)(0)
$$

It is natural to ask:

1. What are the divisibility properties of the numbers $c(n)$?

Give an explicit integer-valued function $*(n)$ such that $\operatorname{ord}(c(n)) \geq *(n)$.
2. What are the interpolation properties of the numbers $\mathrm{c}(\mathrm{n}) / *(\mathrm{n})$? Give p -adic congruences among them.
II. Two examples

1. Begin with the algebraic group \mathbb{a}_{m} over $\theta_{\mathrm{K}}, \mathbb{F}_{\mathrm{m}}=\operatorname{Spec}\left(\theta_{\mathrm{K}}\left[\mathrm{T}, \mathrm{T}^{-1}\right]\right)$, and take for G the associated formal group $\hat{\mathbb{I}}_{\mathrm{m}}$, with parameter $\mathrm{X}=\mathrm{T}-1$.

Then D is $T \frac{d}{d t}=(l+X) \frac{d}{d X}$. Given a K-rational function $f \in K(T)$ on \mathbb{a}_{m}, f lies in $\mathrm{A}(\mathrm{G})$ if and only if its Laurent series expansion at the origin, a priori in $K((x))$, actually lies in $\left.\theta_{K}(X)\right) \cap K[[x]]=$ $\left.\sigma_{\mathrm{K}}[\mathrm{x}]\right]$. Choose any integer $\mathrm{b} \geq 1$ prime to p . Then the functions

$$
\begin{aligned}
& f_{b}(T)=\frac{T}{I-T}-b \frac{T^{b}}{l-T^{b}} \\
& \widetilde{f}_{b}(T)=f_{b}(T)-f_{b}\left(T^{p}\right) .
\end{aligned}
$$

both lie in $A(G)$. As was first observed by Euler, the $c(n)$ for these functions are essentially the values at negative integers -n of the Riemann zeta function:

$$
\begin{aligned}
& D^{n} f_{b}(0)=\left(1-b^{n+1}\right) \zeta(-n) \\
& D^{n} \widetilde{f}_{b}(0)=\left(1-b^{n+1}\right)\left(1-p^{n}\right) \zeta(-n) .
\end{aligned}
$$

2. Begin with an elliptic curve E over $\boldsymbol{\theta}_{\mathrm{K}}$. To fix ideas, suppose that $p \neq 2,3$, and write a Weierstrass equation for $E: y^{2}=4 x^{3}-g_{2} x-g_{3}$, with $\left(g_{2}\right)^{3}-27\left(g_{3}\right)^{2}$ invertible in θ_{K}. Take for G the associated formal group \hat{E}, with parameter $X=-2 x / y$. Then D is the derivation $y \frac{d}{d x}$. Given a K-rational function $f \in K(x, y)$ on E, it lies in $A(G)$ if and only if its Laurent series expansion at the origin, a priori in $K((X))$, actually lies in $\theta_{K}((X)) \cap K[[x]]=\theta_{K}[[x]]$. Choose any
element $[b] \in E \operatorname{End} \theta_{K}(E)$ which has degree prime to p, and let $b \in \theta_{K}$ be the effect of $[b]$ on the invariant differential $d x / y:[b]^{*}(d x / y)=b \cdot d x / y$. Then the function

$$
f_{b}=x-b^{2} \cdot[b]^{*}(x)
$$

lies in $A(G)$. Suppose further that E admits an endomorphism [π] whose kernel on all of E is precisely the kernel of [p] on \hat{E}. Then we define

$$
\widetilde{f_{b}}=f_{b}-\frac{\pi^{2}}{\operatorname{deg}([\pi])}[\pi]^{*}\left(f_{b}\right)
$$

[If E has supersingular reduction, such an endomorphism always exists, namely [p] itself, and the factor $\pi^{2} / \operatorname{deg}([\pi])$ disappears. If E has ordinary reduction, such a $[\pi]$ exists if and only if E is definable over \mathbb{Z}_{p}, and if E is the canonical lifting of its reduction.]

The $c(n)$ for these functions were first studied by Hurwitz [2], and more recently by H. Lang [6] and G. Robert [9]; they are essentially the "Bernoulli-Hurwitz numbers" of [3]:

$$
\begin{aligned}
& D^{n} f_{b}(0)=\left(1-b^{n+2}\right) \frac{B_{n+2}}{n+2} \\
& D^{n} \widetilde{f_{b}}(0)=\left(1-b^{n+2}\right)\left(1-\frac{\pi^{n+2}}{\operatorname{deg}([\pi])}\right) \frac{\mathrm{BH}_{n+2}}{n+2}
\end{aligned}
$$

Recall that the BH_{n} are defined in terms of the Weierstrass \oint-function with invariants g_{2} and g_{3} by the power series expansion

$$
P(z)=\frac{1}{z^{2}}+\sum_{n \geq 2} \frac{B H_{n+2}}{n+2} \cdot \frac{z^{n}}{n!}
$$

III. An apparent digression: galois measures on Tate modules

We denote by $T_{p} G^{\vee}$ Tate module of the "p-divisible dual" $G ้$ of G, i.e. the \mathbb{Z}_{p}-module

$$
T_{p} G^{2}=\operatorname{Hom}_{\text {formal }} \mathrm{gp} \text { 's } / \theta_{\mathbb{L}}\left(G_{\theta_{\mathbb{I}}},\left(\hat{\mathbb{G}}_{m}\right)_{\mathbb{\mathbb { Z }}}\right)
$$

of all formal group homomorphisms, defined over $\theta_{\mathbb{L}}$, from G to $\hat{\mathbb{F}}_{\mathrm{m}}$. Elements $t \in T_{p} G^{2}$ are precisely the series $t(X) \in A(G) \hat{\otimes} \theta_{\mathbb{L}}=\theta_{\mathbb{L}}[[X]]$ which satisfy

$$
\left\{\begin{array}{l}
t(0)=1 \\
t(X+Y)=t(X) \cdot t(Y)
\end{array}\right.
$$

where

$$
\underset{\mathrm{G}}{\mathrm{X}}+\mathrm{Y}=\mathrm{X}+\mathrm{Y}+\ldots \in \theta_{\mathrm{K}}[[\mathrm{X}, \mathrm{Y}]]
$$

is the formal group law. As a \mathbb{Z}_{p}-module, $T_{p} G^{2}$ is free of rank h, and Gal operates continuously (by conjugating the coefficients of the series $t(X)$). By Tate [1l], the formal group G over θ_{K} is uniquely determined by $T_{p} G^{2}$ as a $\mathbb{Z}_{p}[G a l]-m o d u l e$.

Let us denote by $\operatorname{Contin}\left(T_{p} G^{\imath}, \theta_{\mathbb{C}}\right)$ the $\theta_{\mathbb{\mathbb { L }}}$-module of all continuous $\theta_{\mathbb{C}}$-valued functions on $T_{p} G^{2}$, and by Gal-Contin $\left(T_{p}{ }^{〔}, \theta_{\mathbb{C}}\right)$ the θ_{K}-submodule of those continuous functions $h(t)$ which are Gal-equivariant:

$$
h(\sigma t)=\sigma(h(t)) \text { for all } \sigma \in G a l, t \in T_{p} G^{2}
$$

For any p-adically complete and separated θ_{K}-algebra S, we define an "S-valued galois measure" μ on $\mathrm{T}_{\mathrm{p}} \mathrm{G}^{2}$ to be an θ_{K}-linear map from

Gal-Contin($\left.\mathrm{T}_{\mathrm{p}} \mathrm{G}^{2}, \theta_{\mathbb{L}}\right)$ to S, which we write symbolically as

$$
\mathrm{h} \longmapsto \int \mathrm{~h}(\mathrm{t}) \mathrm{d} \mu
$$

We denote by $T_{p} \times^{2}{ }^{2} \subset T_{p} G^{2}$ the complement of $p \cdot T_{p}{ }^{2}$; it is open, closed, and stable by Gal. A galois measure μ on $T_{p} G^{\vee}$ is said to be supported in $T_{p}{ }^{\times}{ }_{G}{ }^{2}$ if

$$
\int h(t) d \mu=0 \quad \text { whenever } h \text { vanishes on all of } T_{p} X_{G}^{2}
$$

p-ADIC INTERPOLATION

Obvious Lemma If $g, h \in \operatorname{Gal-Contin}\left(T_{p} G^{2}, \mathcal{O}_{\mathbb{I}}\right)$ satisfy $g(t) \equiv h(t) \bmod p^{N} \cdot \theta_{\mathbb{E}}$ for all $t \in T_{p} \times_{G}{ }^{\nu}$, then for any S-valued galois measure μ on $T_{p}{ }^{\vee}{ }^{\nu}$ which is supported in $T_{p}{ }^{\prime}{ }^{2}$, we have

$$
\int g(t) d \mu \equiv \int h(t) d \mu \quad \bmod p^{N} \cdot S
$$

Let us denote by $\operatorname{Diff}(G)$ the commutative algebra of all translationinvariant differential operators on G, and by $\operatorname{Diff}{ }^{\wedge}(G)$ its p-adic completion, which is itself the algebra of all (p, X)-adically continuous, translation-invariant θ_{K}-linear endomorphisms of $A(G)$ (the (X)-adically continuous ones are precisely the elements of $\operatorname{Diff}(G))$. We denote by

$$
\langle,\rangle: \operatorname{Diff}^{\wedge}(G) \times A(G) \longrightarrow \theta_{K}
$$

the θ_{K}-linear pairing

$$
\langle\mathscr{D}, f\rangle \stackrel{\text { dfn }}{=}(\mathscr{D}(f)(0)
$$

This pairing makes $A(G)$ the algebraic θ_{K}-dual of $\operatorname{Diff} \hat{\wedge}(G)$, and it makes Diff^$(G)$ the (p, X)-adically continuous θ_{K}-dual of $A(G)$.

Every element $t \in T_{p} G^{\imath}$, viewed as a function $t(X) \in A(G) \hat{\otimes} \mathcal{C}_{\mathbb{Z}}$, is an eigenfunction of every $\quad \mathcal{D} \in \operatorname{Diff}^{\wedge}(G)$, with eigenvalue $\left\langle\chi^{Q}, t\right\rangle$:

$$
\mathscr{N}^{\prime}(\mathrm{t})=\left\langle\mathcal{L}^{\psi}, t\right\rangle \cdot \mathrm{t}(\mathrm{x}) .
$$

For fixed $\mathscr{W} \in \operatorname{Diff}^{\wedge}(G)$, the $\quad \mathbb{\mathbb { L }}^{-v a l u e d}$ function $t \longrightarrow\left\langle\alpha^{\prime}, t\right\rangle$ on $T_{p} G^{2}$ is Gal-equivariant and continuous, and the map

$$
\begin{align*}
\operatorname{Diff} \hat{}(G) & \longrightarrow \text { Gal-Contin }\left(T_{p} G^{\wedge}, \theta_{\mathbb{\mathbb { L }}}\right) \tag{*}\\
\mathcal{N}^{\prime} & \longrightarrow \text { the function } t \longmapsto\langle t, t\rangle
\end{align*}
$$

is an $\theta_{K}^{-a l g e b r a}$ homomorphism.
Applying the functor $\operatorname{Hom}_{\mathcal{K}^{-}}$-lin $(?, S)$, we obtain an S-linear map
(**)
$\left\{\right.$ S-valued galois measures on $\left.T_{p} G^{2}\right\} \longrightarrow A(G) \hat{\otimes} S$.

It is not hard to show that this map is injective, at least if S is flat over \overbrace{K} and if the valuation on K is discrete, and that its image is contained in
$\left\{f \in A(G) \hat{\otimes} S \mid\right.$ for all $n \geq 1$, the function $\sum_{\zeta \in \operatorname{Ker}\left[p^{n}\right]\left(\theta_{\mathbb{T}}\right)} f(X+\zeta)$ lies in $\left.p^{n h} \cdot A(G) \hat{\otimes} S\right\}$.

We can be more precise about the image of (**) only in some special cases.
IV. The main theorem

Theorem Suppose that either $h=1$, with K arbitrary, or that $h=2$ and that K is absolutely unramified (in the sense that p is a uniformizing parameter for K). Then:

1. For each p-adically complete and separated flat θ_{K}-algebra S, the (inverse of the) $\left({ }^{* *}\right)$ construction establishes a bijection $f \longmapsto \mu_{f}$ between

$$
\left\{f \in A(G) \hat{\otimes} S \mid \text { for all } n \geq 1, \sum_{\zeta \in \operatorname{Ker}\left[p^{n}\right]\left(\theta_{\mathbb{Z}}\right)}^{f(X+\zeta) \text { lies in } p^{n h} A(G) \hat{\otimes} S}\right\}
$$

and

$$
\left\{S \text {-valued galois measures on } T_{p} G^{2}\right\}
$$

in such a way that we have the integration formulas

$$
\left\{\begin{array}{l}
\int\langle\mathscr{A}, \mathrm{t}\rangle \cdot \mathrm{h}(\mathrm{t}) \mathrm{d} \mu_{\mathrm{f}}=\int \mathrm{h}(\mathrm{t}) \mathrm{d} \mathrm{\mu} \mathscr{\mathscr { O } (\mathrm { f })} \\
\int\langle\mathscr{O}, \mathrm{t}\rangle \mathrm{d} \mu_{\mathrm{f}}
\end{array}=\left\{\begin{array}{l}
\mathrm{Y}, \mathrm{f}\rangle=(\mathscr{O}(\mathrm{f}))(0) .
\end{array}\right.\right.
$$

for any $\mathscr{D} \in \operatorname{Diff}^{\wedge}(G)$ and any $h \in \operatorname{Gal}-\operatorname{Contin}\left(T{ }_{p}{ }^{\vee}, \mathcal{O}_{\mathbb{T}}\right)$.
2. The galois measure μ_{f} is supported in $T_{p} X_{G}{ }^{2}$ if and only if f satisfies

Remarks For $h=1$, the map (*) is itself an isomorphism. To see this, one first reduces to the case $G=\hat{\mathbb{G}}_{m}$ over $\theta_{\mathbb{Z}}$ itself. Then Mahler's theorem [8], representing continuous functions on \mathbb{Z}_{p} in terms of the "binomial coefficient" functions, says exactly that (*) is an isomorphism. The resulting identification of measures on \mathbb{Z}_{p} with elements of $A\left(\hat{\mathbb{T}}_{m}\right)$ occurs prominently in the work of Iwasawa, where $A\left(\hat{\mathbb{r}}_{m}\right)$ is viewed as the group ring of \mathbb{Z}_{p}.

For $h=2$, the proof depends heavily upon the fact that G is a one-parameter formal group over an unramified ground-ring (so that by Eisenstein any two elements of $T_{p} X_{G}{ }^{\vee}$ are conjugate by $G a l$) and upon the Tate-Ax-Sen theorem ([1], [10], [11]) on the invariants of closed subgroups of Gal acting on $\theta_{\mathbb{I}} / p^{n} \theta_{\mathbb{C}}$.

V. Some applications

The congruence properties which flow from having a measure on $\mathbb{Z} p$, or more generally on $T_{p}{ }^{\times}{ }^{2}$ with G of height one, have been voluminously documented. In the first $\left(G=\widehat{\mathbb{F}}_{m}\right)$ example given in II, the function $\widetilde{f_{b}}$ satisfies

$$
\frac{\bar{\zeta}}{\zeta^{p}=1} \widetilde{f_{b}}(\zeta T)=0
$$

and the corresponding measure on \mathbb{Z}_{p}^{\times}gives the theory of the Kubota-Leopoldt L-function for (c.f. [4], [5], [7]). In the height one case of the second ($G=\hat{E}$) example given in II, the function $\widetilde{f_{b}}$ differs by an additive constant from a function $\underset{\mathrm{f}_{b}}{\approx}$ which satisfies

and the corresponding measure on $T_{p}^{\times}(\hat{E})^{2}$ gives the theory of the "one-variable" p-adic L-function attached to an elliptic curve with ordinary reduction (c.f. [4], [5], [7]).

Only in the case of height two do we obtain new results. For the remainder of this section, we consider a one-parameter, height two formal group G over θ_{K} where K is absolutely unramified, given with a parameter X, and a function $f \in A(G)$ satisfying

so that the corresponding galois measure $\mu=\mu_{f}$ is supported in $T_{p}^{\times}{ }^{2}$.
Let us denote by $a_{1}(t), a_{2}(t), \ldots$ the Gal-equivariant continuous functions on $T_{p} G^{\vee}$ obtained by writing an element $t \in T_{p} G^{\vee}$ as a series in X :

$$
t(x)=1+a_{1}(t) x+a_{2}(t) x^{2}+\cdots
$$

The function $a_{1}(t)$ is none other than the function $\langle D, t\rangle$ corresponding to the invariant derivation D. Thus for $n \geq 0$ we have

$$
\int\left(a_{l}(t)\right)^{n} d \mu_{f}=\int\langle D, t\rangle^{n} d \mu_{f}=\int\left\langle D^{n}, t\right\rangle d \mu_{f}=D^{n} f(0)=c(n)
$$

Therefore, divisibility and congruence properties of the numbers $c(n)$ follow from the corresponding properties of the functions $\left(a_{1}(t)\right)^{n}$ on $T_{p}{ }_{\mathrm{G}}{ }^{\imath}$, which we given in Lemmas 1 and 2 below.

Lemma 1 If $t \in T_{p}{ }^{X^{2}}$, then $\operatorname{ord}\left(a_{1}(t)\right)=p /\left(p^{2}-1\right)$.
Corollary 1 The function $\left(a_{1}(t)\right)^{n}$ is divisible by $p^{\left[n p /\left(p^{2}-1\right)\right]}$ $\operatorname{GaI}-\operatorname{Contin}\left(T_{p} \times^{{ }^{`}}, \theta_{\mathbb{I}}\right)$.

Corollary $2 \quad$ ord $(c(n)) \geq\left[n p /\left(p^{2}-1\right)\right]$.
Lemma 2 Let $u \in\left(\mathcal{O}_{K}\right)^{x}$ be the coefficient of $x^{p^{2}}$ in the series $[p]_{G}(X)$. Then for $t \in T_{p}{ }^{2}{ }^{2}$, we have

$$
\operatorname{ord}\left(\frac{\left(a_{1}(t)\right)^{p^{2}-1}}{-u \cdot p^{p}}-1\right) \geq 1-\frac{1}{p}
$$

Corollary 3 Let v be a unit in an unramified extension of K, such that $v^{p^{2}-1} \equiv-u \bmod p$. Then the function on non-negative integers $\mathrm{n} \longrightarrow \mathrm{L}(\mathrm{n})$ defined by

$$
L(n)=\int \frac{\left(a_{1}(t)\right)^{n}}{v^{n} \cdot p^{\left[n p /\left(p^{2}-1\right)\right]}} d \mu_{f}=\frac{c(n)}{v^{n} p^{\left[n p /\left(p^{2}-1\right)\right]}}
$$

satisfies the congruences

1. $L(n) \equiv L(m) \quad \bmod p^{N} \quad$ if $n \equiv m \bmod \left(p^{2}-1\right) p^{N}$
2. $L(n) \equiv L\left(n+p^{2}-1\right) \quad \bmod p \quad$ if $n \neq 0, p, 2 p, \ldots,(p-1) p \bmod p^{2}-1$.

Suppose now that G is the formal group of an elliptic curve E over θ_{K} (K absolutely unramified) having supersingular reduction, given with a nowhere-vanishing invariant differential ω. Then the function $\widetilde{f_{b}}$ does in fact satisfy

and therefore corollaries 2 and 3 apply to its $c(n)$:

$$
c(n)=D^{n} \widetilde{f_{b}}(0)=\left(1-b^{n+2}\right)\left(1-p^{n}\right) \cdot \frac{B_{n+2}}{n+2}
$$

(A weaker version of corollary 2 for these $c(n)$, namely ord $c(n) \geq[n / p]$,

N. M. KATZ

is due to H. Lang [6]). If in addition we suppose that σ_{K} is \mathbb{Z}, with $\mathrm{p} \geq 5$, then we may take $\mathrm{v}=\mathrm{I}$ in Corollary 3.

VI A question In the case of height two, the Hodge-Tate decomposition of $T_{p} G^{2}$, namely

$$
\left(T_{p} G^{2}\right) \otimes \mathbb{I} \simeq \mathbb{E} \oplus \mathbb{I}(I)
$$

together with the natural inclusion $T_{p} G^{2} \subset\left(T_{p} G^{2}\right) \otimes \mathbb{d}$, gives us Gal-equivariant \mathbb{Z}_{p}-linear maps

The first of these is none other than the function $a_{1}(t)$. We can view the second as a \mathbb{Z}_{p}-linear \mathbb{E}-valued function $b_{1}(t)$ on $T_{p} G^{2}$, which satisfies the transformation rule

$$
\mathrm{b}_{1}(\sigma t)=X(\sigma) \cdot \sigma\left(\mathrm{b}_{1}(\mathrm{t})\right)
$$

where $\quad X: G a l \longrightarrow \mathbb{Z}_{p}^{\times}$is the standard cyclotomic character.
Suppose now that G is \hat{E}, where E is a $C M$ elliptic curve with CM field K_{o} in which p stays prime. What, if any, is the relation between the divisibility and congruence properties of the monomials $\left(a_{1}(t)\right)^{n} \cdot\left(b_{1}(t)\right)^{m}$, as functions on $T_{p} X_{G}{ }^{2}$, and the corresponding properties of the values at $s=0$ of L-series with grössencharacter of type A_{0} of the field K_{o} ?

References

1. J. Ax, Zeroes of Polynomials over Local Fields - The Galois Action, J. Algebra 15 (1970), 417-428.
2. A. Hurwitz, Über die Entwicklungskoeffitzienten der Lemniscatischen Funktionen, Math. Ann. 51 (1899), 196-226.
3. N. Katz, The Congruences of Clausen-von Staudt and Kummer for Bernoulli Hurwitz Numbers, Math. Ann. 216 (1975), 1-4.
4. , The Eisenstein Measure and p-adic Interpolation, to appear in Am. J. Math.
5. , P-adic L-Functions Via Moduli of Elliptic Curves, in Algebraic Geometry, Arcata 1974, Proc. Symp. Pure Math. 29, A.M.S. Providence (1975), 479-506.
6. H. Lang, Kummersche Kongruenzen für die normierten Entwicklungskoeffitzienten der Weierstrass'schen \bigcirc-Funktion, Abh. Math. Sem. Hamburg 33 (1969), 183-196.
7. S. Lichtenbaum, on p-adic L-functions associated to elliptic curves.
8. K. Mahler, An Interpolation Series for a Continuous Function of a p-adic variable. J. Reine Ang. Math. 199 (1958), 23-34.
9. G. Robert, Nombres de Hurwitz et Unités Elliptiques, to appear.
10. S. Sen, On Automorphisms of Local Fields, Ann. Math. (2) 90 (1969), 33-46.
11. J. Tate, p-divisible groups, in Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin (1967).
12. J. Tate, Letter to J.-P. Serre dated January 12, 1965.

Nicholas M. KATZ
Fine Hall
PRINCETON, N.J. 08540
(U.S.A.)

