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Formal Groups and p-adic Interpolation  

Nicholas M. Katz 

The ideas in this paper grew out of discussions with Lichtenbaum 

about the "meaning" of Leopoldt's r-transform, and out of reading a 

letter of Tate to Serre dated January 12, 19&5 which was kindly made 

available to me by Serre. I would like to thank them. 

I. Statement of the problem 

Let K be a field of characteristic zero, complete under a real-valued 

non-archimedean valuation "ord", with integer ring & > and residue field 
K 

k. We assume that k has characteristic p > 0, and we normalize the 

valuation so that ord(p) = 1. We denote by Œ the completion of the 

algebraic closure K of K, and by its ring of integers. We denote 

by Gal the galois group of K/K, which we will also view as the group of 

all continuous automorphisms of Œ/K. 

Let G be a one-parameter formal group over & , of finite height 
K 

h, and denote by A(G) its coordinate ring. In terms of a parameter X 

for G, A(G) is just ^.[[X]]- Let D be the unique translation-invariant 

derivation of A(G) into itself satisfying DX(o) = 1. Given a function 

on G, i.e., an element f e A(G), consider the sequence c(n) of elements 
of <y defined by K 

c(n) = (Dnf)(0). 

It is natural to ask: 

1. What are the divisibility properties of the numbers c(n)? 
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Give an explicit integer-valued function *(n) such that ord(c(n)) > *(n). 

2. What are the interpolation properties of the numbers 
c(n)/*(n)? Give p-adic congruences among them. 

II. Two examples 
1. Begin with the algebraic group ffi over & , GE = Spec (^ [T, T" 1]), 

m is. m A. 
and take for G the associated formal group ffi , with parameter X = T - 1. 

Then D is T~- = (l + X) Given a K-rational function f e K(T) 
on CE , f lies in A(G) if and only if its Laurent series expansion at 
the origin, a priori in K((x)), actually lies in & ((x)) D K[[x]] = — K 
^L[[x]]. Choose any integer b > 1 prime to p. Then the functions K — 

f M = _J— _ b ^ — b U ; 1 - T 0
 1 _ Tb 

fb(T) = fb(T) - fb(TP). 

both lie in A(G). As was firsts observed by Euler, the c(n) for 
these functions are essentially the values at negative integers -n of 
the Riemann zeta function: 

D\(0) = (1 - bn+1)£(-n). 

Dnrfc(0) = (1 - bn+1)(l - pn)?(-n). 

2. Begin with an elliptic curve E over To fix ideas, suppose that 
K 

2 3 
p ̂  2,3, and write a Weierstrass equation for E : y = kx - ĝ x - ĝ , 
with (g0) - 27(g) invertible in & . Take for G the associated 
formal group E, with parameter X = -2x/y. Then D is the derivation 
ya"x' G i v e n a K-rational function f € K(x,y) on E, it lies in A(G) 
if and only if its Laurent series expansion at the origin, a priori in 
K((X)), actually lies in &( (x)) D K[[x]] = ^[[X]]. Choose any 56 



p-ADIC INTERPOLATION 

element [b] € End^ (E) which has degree prime to p, and let b e &^ 
K K 

be the effect of fb] on the invariant differential dx/y : [b] (dx/y) = b-dx/y. 
Then the function 

fb = x - b2-[b]*(x) 

lies in A(G). Suppose further that E admits an endomorphism [TT] whose 
kernel on all of E is precisely the kernel of [p] on E. Then we define 

?b = f b - d ^ T 7 M * ( V -

[If E has super singular reduction, such an endomorphism always exists, namely 
[p] itself, and the factor TT /deg([7r]) disappears. If E has ordinary re
duction, such a [TT] exists if and only if E is definable over anc^- ^ 
E is the canonical lifting of its reduction.] 

The c(n) for these functions were first studied by Hurwitz [2], and 
more recently by H. Lang [6] and G. Robert [9]; they are essentially the 
"Bernoulli-Hurwitz numbers" of [3]: 

•OTJ 
D \ ( O ) = (i - b n + 2) 

D n? (0) = (1 - bn+2)(i - . 
bv v / v deg([7rj) n+2 

Recall that the BHn are defined in terms of the Weierstrass -function 
with invariants ĝ  and ĝ  by the power series expansion 

-. \" BH 0 n 

III. An apparent digression; galois measures on Tate modules 
We denote by T̂ Ĝ  Tate module of the "p-divisible dual" G of G, i.e. 

the 7L -module P 

T G = Hom_ , / {fi 3 (ffi ) ) p formal gp's/tf̂  v ^ ,K m'^' 
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of all formal group homomorphisms, defined over from G to ffi . 
ÍC m 

Elements t e T̂ G are precisely the series t(x) € A(G) ® 6^ = ¿9^[[X]] 

which satisfy 
t(0) = 1 

J t(x + Y) = t(x) · t(Y) 
I G 

where 

X + Y = X + Y+... € <y [[X,Y]] 

G K 

is the formal group law. As a Ẑ -module, T̂ G is free of rank h, and Gal 

operates continuously (by conjugating the coefficients of the series t(x)). 

By Tate [11], the formal group G over 0^ is uniquely determined by 
K 

T G as a 7L [Gal]-module, p p 

Let us denote by Contin(TpG , the (5̂ -module of all continuous 

^-valued functions on T̂ G , and by Gal-Contin(TpG , (9^,) the .̂-submodule 

of those continuous functions h(t) which are Gal-equivariant: 

h(crt) = o"(h(t)J for all cr G Gal, t e T 

fbr any p-adically complete and separated - algebra S, we define an 
K 

"S-valued galois measure" M on T G to be an ^-linear map from 

P K 

Gal-Contin(T G , ¿9"̂ ,) to S, which we write symbolically as 

h I > Jh(t)du . 
We denote by T XG^ C T Ĝ  the complement of p · T G * it is open, 

P P P 
closed, and stable by Gal. A galois measure M- on T̂ G is said to be 

X v 

supported in T^ G if 

/
X v 

h(t)djo. = 0 whenever h vanishes on all of G . 
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Obvious Lemma If g,h € Gal-Contin(T G'', ¿5̂ ) satisfy g(t) = h(t) mod pN- ^ 

X ̂  ^ 

for all t € 1^ G , then for any S-valued galois measure n on T̂ G which 

X ̂  
is supported in G , we have 

Jg(t)d[i = J h(t)du mod pN-S . 

Let us denote by Diff(G) the commutative algebra of all translation-

invariant differential operators on G, and by Diff (G) its p-adic com

pletion, which is itself the algebra of all (p,x)-adically continuous, 

translation-invariant -linear endomorphisms of A(G)(the (x)-adically 
K 

continuous ones are precisely the elements of Diff(G)). We denote by 

< , > : Diff"(G) X A(G) > &* 

the ¿9̂  -linear pairing 
K 

f> (^(f)(o). 

This pairing makes A(G) the algebraic <̂ -dual of Diff (G), and it makes 
K 

Diff̂ (G) the (p,x)-adically continuous ¿9̂ -dual of A(G). 

Every element t € T̂ G , viewed as a function t(x) e A(G) ® fr^ is 

an eigenfunction of every od^e Diff (G), with eigenvalue <(*J\ t)>: 

<P(t) = 0<T, t> · t(x). 

For fixed Diff"(G), the ^-valued function t t> 

on TpG is Gal-equivariant and continuous, and the map 

(*) Diff"(G) > Gal-Contin(TPG", 

> the function t I > <̂ ?", t)> 

is an -algebra homomorphism. 
K 

Applying the functor Horn̂  l i n (? , s), we obtain an S-linear map 
K" 

(**) [S-valued galois measures on T̂ G } > A(G) ® S. 
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It is not hard to show that this map is infective, at least if S is flat 
over & and if the valuation on K is discrete, and that its image is 
contained in 

{f e A(G) £> S for all n > 1, the function \ f(X + 0 lies in pnh-A(G) <£> S) . 

5 e Ker[pn]((̂ E) 

We can be more precise about the image of (**) only in some special cases. 

IV. The main theorem 

Theorem Suppose that either h = 1, with K arbitrary, or that h = 2 and that K is 
absolutely unramified (in the sense that p is a uniformizing parameter 
for K). Then: 
1. For each p-adically complete and separated flat ^ -algebra S, the 
(inverse of the)(**) construction establishes a bisection f I > uf between 

f € A(G) ® S for all n > 1, \ f (X + £) lies in p A(G) ® S I 

5 e Ker[pn](^) J 

and 

{S-valued galois measures on T̂ G ) , 

in such a way that we have the integration formulas 

j J <^-, t> · h(t)duf = f h( t )dn^ ( f ) 

| J<<*5K, t> duf = <<^, f> = (̂ (f))(0) . 

for any ^ £ Diff"(G) and any h € Gal-Contin(T G , · 
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2. The galois measure u f is supported in T *G if and only if f satisfies 

/_ f(x + 0 = o. 
5 € Ker[p]( f̂fi) G 

Remarks For h = 1, the map (*) is itself an isomorphism. To see this, 
one first reduces to the case G = ffi over &'m itself. Then Mahler's 

m ffi 
theorem [8], representing continuous functions on 7L ^ in terms of the 
"binomial coefficient" functions, says exactly that (*) is an isomorphism. 
The resulting identification of measures on 7L with elements of A((£ ) 

p v m 
occurs prominently in the work of Iwasawa, where A((£ ) is viewed as the 

v m 
group ring of 7L ^ 

For h = 2, the proof depends heavily upon the fact that Ĝ  is a 
one-parameter formal group over an unramified ground-ring (so that by 

x v 

Eisenstein any two elements of T̂  G are conjugate by Gal) and upon 
the Tate-Ax-Sen theorem ([l], [10], [11]) on the invariants of closed sub
groups of Gal acting on <9^/p n (3^. 
V. Some applications 

The congruence properties which flow from having a measure on 2^ , 
X ̂  

or more generally on T^ G with G of height one, have been voluminously 
documented. In the first (G = ffi ) example given in II, the function f̂  
satisfies 

— f b ( E T ) = o . 
£ p = 1 

and the corresponding measure on 7L ^ gives the theory of the Kubota-Leopoldt 
L-function for $(c.f. [h], [5], [7]). In the height one case of the second 
(G = E) example given in II, the function f̂  differs by an additive constant 
from a function which satisfies b 
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/ ?: (x + s) = o , 
I b G 
? e Ker[p]G 

and the corresponding measure on T̂ (E) gives the theory of the "one-variable" 

p-adic L-function attached to an elliptic curve with ordinary reduction (c.f. 

[5], [7]). 

Only in the case of height two do we obtain new results. For the re

mainder of this section, we consider a one-parameter, height two formal group 

G over & where K is absolutely unramified, given with a parameter X, 

and a function f e A(G) satisfying 

\ 
/_ f ( x + 5 ) = 0 , 

5 6 Ker[p]GI^FFI)
 G 

so that the corresponding galois measure (J. = is supported in 

Let us denote by â (t), a^t),... the Gal-equivariant continuous 

functions on T G obtained by writing an element t € T G as a series 
P P 

in X: 

t(x) = 1 + a (t)X + a2(t)x2 + . . . . 

The function â (t) is none other than the function <̂ D, t> corresponding 

to the invariant derivation D. Thus for n > 0 we have 

jT(a1(t))
ndnf = J<D, t>ndn f =/<D

n, t>dnf = D
nf(0) = c(n) . 

Therefore, divisibility and congruence properties of the numbers c(n) 

follow from the corresponding properties of the functions (a1(t))
n on 

T V , which we given in Lemmas 1 and 2 below. 

Lemma 1 If t e T^G", then ord(a1(t)) = p/(p
2 - l). 

2 

Corollary 1 The function (a1(t))
n is divisible by p f n p A p 1 ^ 

Gal-Contin(TpG", ¿9^). 

62 



p-ADIC INTERPOLATION 

2 
Corollary 2 ord(c(n)) > [np/(p - l)]. 
Lemma 2 Let u e (<9̂ ) be the coefficient of X P in the series 
[plG(x)- Then for t e TV', we have 

ord — - - - - 1 > 1 - ± . 
\ -u · pP J ~ P 

Corollary 3 Let v be a unit in an unramified extension of K, such 
2 

that = -u mod p. Then the function on non-negative integers 
n > L(n) defined by 

P (*-,(*) )* A c(n) 
L(n) = / --~— = L- Z2 

J vn . [np/(p -1)] yn p[np/(p -l)] 
satisfies the congruences 

1. L(n) = L(m) mod p N if n = m mod (p2 - l)p̂  

2 2 
2. L(n) = L(n + p - l) mod p if n ̂  0, p, 2p,. . . , (p - l)p mod p - 1. 

Suppose now that G is the formal group of an elliptic curve E over 
<5̂„ (K absolutely unramified) having super singular reduction, given with a K 
nowhere-vanishing invariant differential o>. Then the function does 
in fact satisfy 

" \ f b(x +?) = o , 
/ 

£ € Ker[p] 

and therefore corollaries 2 and 3 apply to its c(n): 

c(n) = D fb(0) = (1 - b )(1 - p ) · n + 2 . 
(A weaker version of corollary 2 for these c(n), namely ord c(n) > [n/p], 
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is due to H. Lang [ 6 ] ) . If in addition we suppose that is 7L , with 
K p 

p > 5) then we may take v = 1 in Corollary 3· 

VI A question In the case of height two, the Hodge-Tate decomposition 

of TpG , namely 

(T6V) ® Œ - Œ 0 Œ(l) , 

together with the natural inclusion T ^ T C (T̂ G ) <S> ffi, gives us Gal-equivariant 

7L -linear maps 
P 

T GV > Œ ; T Ĝ  > Œ (l) . 
P P 

The first of these is none other than the function â (t). We can view 

the second as a 7L -linear Œ-valued function bn(t) on T G , which P l w P 
satisfies the transformation rule 

b̂ crt) = X(o-) · o-(bi(t)) 

where X : Gal > 7L ̂  is the standard cyclotomic character. 

Suppose now that G is E, where E is a CM elliptic curve with 

CM field KQ in which p stays prime. What, if any, is the relation be

tween the divisibility and congruence properties of the monomials 

(a1(t))
n · (b1(t))

m, as functions on T*G , and the corresponding properties 

of the values at s = 0 of L-series with grossencharacter of type AQ of 

the field K ? 
o 
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