Astérisque

Teturo Kamae
 Mutual singularity of spectra of dynamical systems given by "sums of digits" to different bases

Astérisque, tome 49 (1977), p. 109-114
<http://www.numdam.org/item?id=AST_1977__49
\qquad

© Société mathématique de France, 1977, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

MUTUAL SINGULARITY OF SPECTRA OF DYNAMICAL SYSTEMS

GIVEN BY "SUMS OF DIGITS" TO DIFFERENT BASES

Teturo Kamae

0 . Summary
In [3] , it was proved that if $(p, q)=1$ and a and b are irrational numbers, then the following two arithmetic functions α and β have mutually singular spectral measures :

```
\(\alpha(n)=\exp \left(2 \pi i \quad a \quad s_{p}(n)\right)\)
\(\beta(n)=\exp \left(2 \pi i \quad b \quad s_{q}(n)\right)\)
```

where $s_{p}(n)\left(s_{q}(n)\right)$ is the sum of digits in the p-adic (q-adic) representation of n. Here we prove a slightly stronger result that the two shift dynamical systems corresponding to the strictly ergodic sequences α and β have mutually singular spectral measures. That is to say that for any $f \varepsilon L_{2}\left(\mu_{\alpha}\right)$ and $g \varepsilon L_{2}\left(\mu_{\beta}\right)$ such that $\int \mathbf{f d} \mu_{\alpha}=\int \operatorname{gd} \mu_{\beta}=0$, where μ_{α} and μ_{β} are the measures on \mathbf{T}^{N} (\mathbb{T} being the unit circle in the complex plane)for which α and β are generic with respect to the shift, respectively, the spectral measures $\Lambda_{\alpha, f}$ and $\Lambda_{\beta, g}$ are mutually singular, where $\Lambda_{\alpha, f}\left(\Lambda_{\beta, g}\right)$ is the measure Λ on \mathbb{R} / \mathbb{Z} determined by the relation $\left(\mathrm{T}^{\mathrm{n}} \mathfrak{f}, \dot{f}\right)_{\mu_{\alpha}}=\int \mathrm{e}^{2 \pi i \lambda n} \mathrm{~d} \Lambda(\lambda)\left(\left(\mathrm{T}^{\mathrm{n}} \mathrm{g}, \mathrm{g}\right)_{\mu_{\beta}}=\int \mathrm{e}^{2 \pi i \lambda \mathrm{n}} \mathrm{d} \Lambda(\lambda)\right)$ for all $\mathrm{n} \varepsilon \mathbb{N}$
(T denoting the shift as well as the isometry on L_{2} induced by the shift).

1. Mutual singularity of spectra and disjointness

Given two dynamical systems $X=(X, \mu, S)$ and $Y=(Y, v, T)$. We consider, in the obvious way, $L_{2}(\mu)$ and $L_{2}(\nu)$ as subspaces of $L_{2}(\mu \times \nu)$. For $f \varepsilon L_{2}(\mu \times \nu), H(f)$ denotes the closed subspace of $L_{2}(\mu \times \nu)$ spanned by $f,(S \times T) f,(S \times T)^{2} f, \ldots$. The following theorem is essentielly due to A.N. Kolmogorov.

Theorem A.

X and Y have mutually singular spectral measures if and only if
(1) X and Y are disjoint in the sense of H. Furstenberg, and
(2) for any $f \varepsilon L_{2}(\mu)$ and $g \varepsilon L_{2}(\nu)$ such that $\int \mathrm{fd} \mu=\int \mathrm{gd} \nu=0 \quad, \quad \mathrm{f} \varepsilon \mathrm{H}(\mathrm{f}+\mathrm{g})$.

Proof :
We prove only that the mutual singularity of spectra implies the disjointness, since the other parts follows easily from [4]. Assume that X and Y are not disjoint. Then there exists a probability measure $\xi \neq \mu \times \nu$ on $X \times Y$ which is $S \times T$-invariant and satisfies that $\left.\quad \xi\right|_{X}=\mu$ and $\left.\lambda\right|_{Y}=\nu . \operatorname{Take} f \varepsilon L_{2}(\mu)$ and $g \varepsilon L_{2}(\nu)$ such that $\int f d \mu=\int g d \nu=0$ and $(f, g)_{\xi} \neq 0$. Since

$$
\begin{aligned}
& \frac{1}{N}\left|\left|\sum_{1}^{N} e^{-2 \pi i \lambda n} S^{n} f\right|\right|_{\mu}^{2} d \lambda \rightarrow \Lambda_{x, f} \\
& \frac{1}{N}\left|\left|\sum_{1}^{N} e^{-2 \pi i \lambda n} T^{n} g\right|_{\nu}^{2} d \lambda \rightarrow \Lambda_{y, g}\right.
\end{aligned}
$$

(weak1y)
and the property of the affinity $\rho[2]$, we have

$$
\begin{aligned}
& \rho\left(\Lambda_{x, f}, \Lambda_{y}, g\right) \\
\geq & \overline{\lim _{N}} \int \frac{1}{N}\left|\left|\sum_{1}^{N} e^{-2 \pi i \lambda n} S^{n} f\right|\right| \mu\left|\left|\sum e^{-2 \pi i \lambda n} T^{n} g\right|\right|_{V} d \lambda \\
\geq & \left.\left.\overline{\lim _{N}} \int \frac{1}{N} \right\rvert\, \sum_{1}^{N} e^{-2 \pi i \lambda n} S^{n} f, \sum_{1}^{N} e^{-2 \pi i \lambda n} T^{n} g\right)_{\xi} \mid d \lambda \\
\geq & \overline{\lim _{N}^{m}} \frac{1}{N}\left|\int\left(\sum_{1}^{N} e^{-2 i n} S^{n} f,{ }_{1}^{N} e^{-2 i n} T^{n} g\right)_{\xi} d \lambda\right| \\
= & \left|(f, g)_{\xi}\right|>0
\end{aligned}
$$

Thus $\Lambda_{x, f}$ and $\Lambda_{y, g}$ are not mutually singular.
2. Disjointness of α and β

To prove the disjointness of the two dynamical systems given by α and β in $\S 0$, it is sufficient to prove that any γ and δ in the orbit closures of α and β, respectively, with respect to the shift are independent of each other. The proof by J. Besineau [1] for the independency of α and β works well for these γ and δ. Thus, we have the disjointness of α and β.
3. Mutual singularity of dynamical systems given by α and β

Let (X, μ, S) be a dynamical system. Let f and g be in $L_{2}(\mu)$. Then we have

Lemma

(1) $\Lambda_{c f}=|c|^{2} \Lambda_{f}$, where c is a constant.
(2) $\Lambda_{f+g} \leq 2 \Lambda_{f}+2 \Lambda_{\mathrm{g}}$.

$$
\begin{equation*}
\left\|\Lambda_{f}-\Lambda_{g}| |<\right\| f-g\left\|^{2}+2| | f| |\right\| f-g| | \text {, where } \| \Lambda_{f}-\Lambda_{g}| | \tag{3}
\end{equation*}
$$

is the total variance of the measure $\Lambda_{f}-\Lambda_{g}$.

T. KAMAE

Proof :
(1) is clear. To prove (2), we have
$\Lambda_{f+g}=\underset{N}{w-1 i m} \frac{1}{N}\left\|\sum_{1}^{N} e^{-2 \pi i n \lambda} S^{n}(f+g)\right\|^{2} d \lambda \leq$
$\leq \underset{N}{ }-1 \operatorname{im}_{N} \frac{z}{N}\left(| | \sum_{1}^{N} e^{-2 \pi i n \lambda} S^{n} f\left\|^{2}+\right\| \sum_{1}^{N} e^{-2 \pi i n \lambda} S^{n} g \|^{2}\right) d \lambda=$
$=2 \Lambda_{f}+2 \Lambda_{g}$
(3) follows from the fact that

$$
\begin{aligned}
& \left\|\Lambda_{f}-\Lambda_{g}\right\| \leq \frac{1 i m}{N} \int \frac{1}{N}\left|\left\|\sum_{1}^{N} e^{-2 \pi i n \lambda} S^{n} f\right\|^{2}-\left\|\sum_{1}^{N} e^{-2 \pi i n \lambda} S^{n} g\right\|^{2}\right| d \lambda \leq \\
& \leq \frac{1 i m}{N} \int^{\frac{1}{N}}\left(\left\|\sum_{1}^{N} e^{-2 \pi i n \lambda} S^{n}(f-g)\right\|^{2}+\right. \\
& \left.+2\left\|\sum_{1}^{N} e^{-2 \pi i n \lambda} S^{n}(f-g)\right\|| | \sum_{1}^{N} e^{-2 \pi i \lambda n} S^{n} f \|\right) d \lambda \leq \\
& <\|f-g\|^{2}+2\|f-g \mid\|\|f\|
\end{aligned}
$$

Because of this lemma, to prove the mutual singularity of dynamical systems given by α and β, it is sufficient to show that $\Lambda_{\alpha, f}$ and $\Lambda_{\beta, g}$ are mutually singular for f and g of the form
$f(\gamma)=\gamma^{M_{o}}(T \gamma){ }^{M_{1}} \ldots\left(T^{k}\right)^{M_{K}}-C$
$g(\gamma)=\gamma^{N}{ }_{(T \gamma)}{ }^{N_{1}} \ldots\left(T^{k}{ }_{\gamma}{ }^{N_{k}}-D\right.$
$\left(k=1,2, \ldots, M_{i}, N_{i} \in \mathbb{Z} ; C, D\right.$ are constants such that $\left.\int f d \mu_{\alpha}=\int g d \mu_{\beta}=0\right)$

Let ϕ and ψ are sequences such that

$$
\begin{aligned}
& \phi(n)=\exp 2 \pi i\left(M_{o} s_{p}(n)+M_{1} s_{p}(n+1)+\ldots+M_{r} s_{p}(n+k)\right)-C \\
& \psi(n)=\exp 2 \pi i\left(N_{o} s_{q}(n)+N_{1} s_{q}(n+1)+\ldots+N_{r} s_{q}(n+k)\right)-D
\end{aligned}
$$

Then $\Lambda_{\alpha, f}$ and $\Lambda_{\beta, g}$ are the spectral measures Λ_{ϕ} and Λ_{ψ} of the sequences ϕ and ψ, respectively, in the sense of [2]. Let

$$
\begin{aligned}
\phi_{L}(n) & =e^{2 \pi i E a s_{p}\left(\left[\frac{n}{p}\right]\right)} A\left(n-p^{L}\left[-\frac{n}{p^{L}}\right]\right)-C \\
\psi_{L}(n) & =e^{2 \pi i F b s_{q}\left(\left[\frac{n}{q^{L}}\right]\right)} B\left(n-q^{L}\left[-\frac{n}{q^{L}}\right]\right)-D \\
\text { where } E & =\sum_{i=0}^{k} M_{i}, \quad F=\sum_{i=0}^{k} N_{i} \quad \text { and } \\
A(\ell) & =\exp 2 \pi i\left(M_{o} s_{p}(\ell)+\ldots+M_{k} s_{p}(\ell)\right) \\
B(\ell) & =\exp 2 \pi i\left(N_{o} s_{q}(\ell)+\ldots+N_{k} s_{q}(\ell)\right) .
\end{aligned}
$$

Then, it is easy to see that ϕ_{L} and ψ_{L} converge to ϕ and ψ, respectively, as $L \rightarrow \infty$ in the sense of Besicovich norm. Therefore $\Lambda_{\phi}\left(\Lambda_{\psi_{L}}\right)$ converges to $\quad \Lambda_{\phi}\left(\Lambda_{\psi}\right)$ in the sense of total variance (cf. Lemma). Therefore our conclusion follows from the statement that Λ_{ϕ} and $\Lambda_{\psi_{L}}$ are mutually singular. The last statement can be proved in the following way.

Case $1: E=F=0$. Then ϕ_{L} and ψ_{L} are cyclic sequences whose cycles are coprime. Thus $\Lambda_{\phi_{L}}$ and Λ_{ψ} are mutually singular

Case 2 : $\mathrm{E} \neq 0, \mathrm{~F}=0$. Since
(*) $\mathrm{d} \Lambda_{\phi_{L}+C}(\lambda)=\left|\frac{1}{p^{\mathbf{L}}} \sum_{\ell=0}^{\mathrm{L}-1} \mathrm{~A}(\ell) \mathrm{e}^{-2 \pi \mathbf{i} \lambda \ell}\right|^{2} d \Lambda_{\eta}\left(p^{L} \lambda\right)$
where $n(n)=e^{2 \pi i \text { Ea } s_{p}(n)}$ is known [2] to have a continuous spectral measure, $\Lambda_{\phi_{L}+C}$ is continuous. This implies that $C=0$ and Λ_{ϕ} is continuous. Since $\Lambda_{\psi_{L}}$ is discrete, $\Lambda_{\phi_{L}}$ and $\Lambda_{\psi_{L}}$ are mutually singular.

Case $3: E=0, F \neq 0$. Parallely as in case 2 .

Case 4 : $\mathrm{E} \neq 0, \mathrm{~F} \neq 0$. Then as was shown in case $2, \mathrm{C}=\mathrm{D}=0$. Let n be as in case 2 and $\zeta(n)=e^{2 \pi i f b s_{q}(n)}$. It is known[3] that Λ_{η} and Λ_{ζ} are mutually singular. Since (*) and

$$
d \Lambda_{\eta}\left(p^{L} \lambda\right)=\left|\frac{1}{p^{L}} p_{\ell=0}^{L}-1 e^{2 \pi i\left(E a s_{p}(\ell)-\ell \lambda\right)}\right|^{-2} d \Lambda_{\eta}(\lambda),
$$

Λ_{ϕ} is absolutely continuous with respect to Λ_{n}.
Parallely, Λ_{ψ} is absolutely continuous with respect to Λ_{ζ}. Thus Λ_{ϕ} and $\Lambda_{\psi_{L}}$ are mutually singular. Thus we proved

Theorem B.
The two dynamical systems given by α and β in $\S 0$ have mutually singular spectral measures.

References :

[1] J. Besineau, Indépendance statistique d'ensemble lié à la fonction "somme des chiffres", Acta Arithmetica XX (1972)
[2] J. Coquet, T. Kamae and M. Mendès-France, La mesure spectrale de certaines suites arithmétiques, Bull. Soc. Math. France (to appear)
[3] T. Kamae, Sum of digits to different bases and mutual singularity of their spectral measures, Osaka J. Math. (to appear)
[4] A.N. Kolmogorov, Stationary sequences in Hilbert space (Russien), Bul1. Math. Univ. Moscow vol. $2 \mathrm{n}^{\circ} 6$ (1941)

KAMAE Teturo Department of Mathematics Osaka City University

Osaka, Japan

