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MUTUAL SINGULARITY OF SPECTRA OF DYNAMICAL SYSTEMS 

GIVEN BY "SUMS OF DIGITS" TO DIFFERENT BASES 

Teturo Kamae 

0. Summary 

In [3] , it was proved that if (p,q) = 1 and a and b are 

irrational numbers, then the following two arithmetic functions a 

and 3 have mutually singular spectral measures : 

a (n) = exp (2-iïi a s f n) ) 
(n e N) , 

3(n) = exp (2-rri b s (n) ) 
H 

where s (n) (s (n)) is the sum of digits in the p-adic (q-adic) 
P H. 

représentation of n . Here we prove a slightly stronger resuit that 

the two shift dynamical Systems corresponding to the strictly ergo-

dic séquences a and 3 have mutually singular spectral measures. 

That is to say that for any f e L ^ y ^ ) and g e I^Cy^) such that 

/fdy = /gdy = 0 , where y and y are the measures on 

CL p Ot p 
(T being the unit circle in the complex plane) for which a and 3 
are generic with respect to the shift, respectively, the spectral 

measures A , and A are mutually singular, where A r (A ) 
c > £ 3>g o t , r p , g 

is the measure A on ^ determined by the relation 

(T n£,£) u - J e 2 7 r i X n dA (A ) ((T ng,g) u = J e 2 ï ï i A n dA(X)) for ail n E IN 
a M 3 
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(T denoting the shift as well as the isometry on induced by 

the shift). 

1. Mutual singularity of spectra and disjointness 

Given two dynamical S y s t e m s X = (X,y,S) and Y = (Y,v,T). We 

consider, in the obvious way, L^(y) and L 2 (v) as subspacesof 

L 2 ( y x v ) . For f e L 2 ( y x v ) , H(f) dénotes the closed subspace of 

L 2 ( y x v ) spanned by f, (SxT) f, (SxT) 2 f,... . The following theo-

rem is essentielly due to A.N. Kolmogorov. 

Theorem A. 

X and Y have mutually singular spectral measures if and only 

if 

(1) X and Y are disjoint in the sensé of H. Furstenberg, and 

(2) for any f £ ^(y) a n c* ^ ^ L 2 ̂  s u c n that 

/fdy = Jgdv = 0 , f e H(f+g) . 

Proof : 

We prove only that the mutual singularity of spectra implies 

the disjointness, since the other parts follows easily from [4]. 

Assume that X and Y are not disjoint. Then there exists a proba-

bility measure £ =)= y x v on X x Y which is S x T - invariant 

and satisfies that £ | ̂  = y and x|y = v . Take f e ^ ( y ) a n c* 

g e L

2 (
v ) s u c h t h a t / f d l J = / & d v = 0 a n d Cf >g) ̂  T" 0 • Since 

1 I I V — 2 7T i Xn c^ïir i i 2 j . . 
T f ) e S £ dX + A n 
N ^ 1 1 y x,f 

1 1 i r -2iriXn ^n 2 , 
e T g | | ^ dX - A y > g 

(weakly) 
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and the property of the affinity p[2] , we have 

p ( A x , f ' W 
N 

T~-— f1 i iv - 2 7 r i X n r,n r| ( i i v - 2 7 r i X n m n i i , > l i m Jv I II e S f| | y | | I e T g|| dX 
N 1 

^ T-ri r 1 i r - 2 - r r i X n c n ~ S - 2 7 r i X n „n . i , 
> l i m Jïï I /. e s f

 > L
 e T g) | dX 

~ N 1 1 K 

N N 
"T S — 1 i f r r -2 i n r.Tir -2 i n ^n . i 

> lim TT | J (I e S f , e T g) dX | 

N 1 1 ^ 

= | ( f , g ) ç l > o 

Thus A x and A are not mutually singular. x,f y,g 7 & 

2. Disjointness of a and g 

To prove the disjointness of the two dynamical S y s t e m s given 

by a and g in §0 , it is sufficient to prove that any y and 6 

in the orbit closures of a and g , respectively, with respect to 

the shift are independent of each other. The proof by J. Besineau [i] 

for the independency of a and g works well for thèse y and 6 . 

Thus, we have the disjointness of a and g 

^• Mutual singularity of dynamical S y s t e m s given by a and g 

Let (X,y,S) be a dynamical S y s t e m . Let f and g be in 

L^Cv) . Then we have 

Lemma 

2 
(1) = |c| , where c is a constant . 

(2) A £ + g < 2A £ + 2A g . 

(3) ||A f - A g|| < ||£-g||
2 + 2||£|| ||£-g|| , where ||A f - Â  

is the total variance of the measure A - A 
£ g 
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Proof : 

(1) is clear. To prove (2), we have 

A = w-liml M I e " 2 * i n A S n(£ +g)||
2 dX < 

* N 1 

* w-limf ( M I e - 2 * i n A S nf|| 2

 + ||? e " 2 ^ i n X S ng|| 2) dX 
N W 1 1 

= 2hr + 2A 
f g 

(3) follows from the fact that 

|A £ - A l | < U m Jl|||Ie-
2* i n XS nf|| 2-

8 N 1 

N 
ir -2^in* _n i i2 ,, 
|}. e S g| I dX < 

1 ~ 

< lim J± (III e " 2 , r i n X S n(f-g)|| 2

 + 

N w 1 

+ 2||Ç e - 2 T T i n A S n(f-g)|| III e " 2 7 r i X n

 S

n£||) dX < 

< ||f-g||2 + 2||f-g|| ||£|| 

Because of this lemma, to prove the mutual singularity of dyna

mical Systems given by a and B , it is sufficient to show that 

A^ ^ and A^ are mutually singular for f and g of the form 

f (y) = Y °(T Y)
 1 ... ( T \ ) * - c 

g(y) = Y °(T Y)
 1 . . . O Y ) * - D 

(k=1,2,..., , e £ ; C,D are constants such that 

/£dy a = Jgdy 6 = 0) 

Let (J) and are séquences such that 

(f>(n) = exp 27ri(M Q s p(n) + M 1 s p(n+1) +...+ M r s p(n+k)) - C 

*(n) = exp 2Tri(N Q s^(n) + N 1 s^(n+1) +...+ N r s^(n+k)) - D 

Then A r and A_ n are the spectral measures A. and A, 
a,f 3 , g • * 

of the séquences <j> and ^ , respectively, in the sensé of [2] . Let 

112 



MUTUAL SINGULARITY OF SPECTRA 

27riEa s ( [-—] ) 

*T (n) = e P A(n-pLr-̂ ]) - C 

2 , i F b s ( [ - £ ] ) 

* L(n) = e
 q B(n-qL[-^]) - D 

q 
k k 

where E = l M. , F = l N. and 
i=0 1 i=0 1 

A U ) = exp 27ri(Mo s p(£) + ...+ M k s p(£)) 

B(£) = exp 2 T T I ( N o s U ) + . . . + N K s q(£)) . 

Then, it is easy to see that cj>̂  and i/^ converge to <J> and 

, respectively, as L -> °° in the sensé of Besicovich norm. There-

fore A, (A, ) converges to A TA,) in the sensé of total va-

riance (cf. Lemma). Therefore our conclusion follows from the state-

ment that A, and A, are mutually singular. The last statement 

can be proved in the following way. 

Case 1 : E = F = 0 . Then <J> and are cyclic séquences whose 
E L 

cycles are coprime. Thus and A^ are mutually singular 
L L 

Case 2 : E f 0 , F = 0 . Since 

(*) d A ^ + c(X) = 4 P y" 1 A C O E -
2 " X A | 2 - - L 

p L £ = 0 
dA (p^X) 

2 - i r i Ea s (n) 

where n(n) = e ^ is known [2] to have a continuous spec

tral measure, A. is continuous. This implies that C = 0 and 

* L + C 

A, is continuous. Since A, is discrète, A. and A, are mu-

tually singular. 

Case 3 : E = 0 , F =(= 0 . Parallely as in case 2 
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Case 4 : E f 0 , F =)= 0 Then as was shown in case 2, C = D = 0 . 

Let n be as in case 2 and ç(n) 
Z T T I Fb s (nj 

= e q . It is known [3] 

that A and A are mutually singular. Since (*) and 

d A ^ X ) = 
1 p

L-1 27Ti(Ea s (£)-£A) 1 " 2 

~T l e P 

p £ = 0 
d A n ( X ) , 

A^ is absolutely continuous with respect to A^, 

Parallely, A. is absolutely continuous with respect to A . 
L c 

Thus A^ and A^ are mutually singular. Thus we proved 

Theorem B. 

The two d y n a m i c a l S y s t e m s g i v e n b y a a n d 3 in §0 h a v e m u t u a l 

l y s i n g u l a r s p e c t r a l m e a s u r e s . 
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