Astérisque

M. I. BRIN Nonwandering points of Anosov diffeomorphisms

Astérisque, tome 49 (1977), p. 11-18

<http://www.numdam.org/item?id=AST_1977__49__11_0>

© Société mathématique de France, 1977, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

NONWANDERING POINTS OF ANOSOV DIFFEOMORPHISMS.

M.I.Brin.

There are two well-known conjectures in the Anosov diffeomorphism (C-diffeomorphism) theory. Let f be a C-diffeomorphism of a smooth compact Riemannian manifold \mathbf{M}^{n} . Then (see [1] and [2]):

1. The set NW(f) of nonwandering points of f is M^n .

2. The covering manifold $\overline{\mathbf{M}}$ is homeomorphic to \mathbb{R}^{n} .

Many of the results in the C-diffeomorphism theory were got assuming that all the points are nonwandering. The condition $NW(f) = M^n$ implies for instance that a C-diffeomorphism f is topologically transitive (or simply "transitive"), the set Per(f) of all the periodic points of f is dense in M^n , every stable or unstable layer is dense in M^n .

All the existing examples of C-diffeomorphisms act on nilmanifolds (in particular on tori) and on their generalizations - infranilmanifolds. That's why proving the second statement (or finding the conditions under which it is valid) is the natural fist step in the classification of C-diffeomorphisms.

The sufficient conditions for the set NW(f) to coincide with M^n and for the covering manifold \overline{M} to be homeomorphic to R^n are stated in this paper.

Every diffeomorphism f of a compact Riemannian manifold M induces a linear operator $f_{\mathbf{x}}$ in the space of continuous vector fields: $(f_{\mathbf{x}}\mathbf{v})(\mathbf{x}) = df_{\mathbf{f}} - 1_{\mathbf{x}}\mathbf{v}(\mathbf{f}^{-1}\mathbf{x})$. C-diffeomorphisms are characterized (see [3]) by the fact that the spectrum S of the complexification of the

operator f_* doesn't intersect the unit circle. So S is contained in the interiors of two rings with the radii $0 < r_1 < r_2 < 1$ and $1 < R_2 < R_1 < \infty$. There exist such a constant $0 < C_1 < \infty$ that for every positive integer n

of the tangent bundle TM.

Let's say that the correspondence mapping for the stable W^S and unstable W^u foliations can be infinitely extended if for every three points $x \in M$, $y \in W^S(x)$, $z \in W^u(x)$ there exists such a continuous mapping g of the unit square I^2 into M that: 1) g(0,0) = x, g(0,1) = y, g(1,0) = z; 2) g(t,.) is a continuous curve on a stable layer for every fixed $t \in I$; 3) g(.,t) is a continuous curve on an unstable layer for every fixed $t \in I$. The existence of such a mapping is obvious if the distancies between x,y,z measured along the corresponding layers are small enough. According to the given definition this mapping can be extended beyond the boundaries of a small neibourhood.

<u>PROPOSITION 1.</u> If $1 + \frac{\ln R_2}{\ln R_1} > \frac{\ln r_1}{\ln r_2}$ (*) or $1 + \frac{\ln r_2}{\ln r_1} > \frac{\ln R_1}{\ln R_2}$ (**) then the correspondence mapping for the foliations W^S and W^U can be infinitely extended.

Let d_s and d_u denote the distancies induced by the internal metrics of stable and unstable layers, and l(c) be the length of a piecewise smooth curve c.

<u>LEMMA 2.</u> Let c be a smooth curve on an unstable layer $W^{u}(x_{1})$ (respectively $W^{s}(x_{1})$) connecting the points x_{1} and y_{1} , and let $x_{2} \in W^{s}(x_{1})$ ($W^{u}(x_{1})$). Suppose that there exists such a continuous mapping M g(c, x_{2}) = g of the unit square I^{2} into M that: 1) g(t,0) = c(t),

 $g(0,1) = x_2$; 2) the points $g(t,\overline{t}_1)$ and $g(t,\overline{t}_2)$ belong to the stable (unstable) layer; 3) $g(t,1) \in W^u(x_2)$ ($W^s(x_2)$); 4) the restriction of g to the set I $x\{0\}$ is bijective.

Then there are such constants $b_1, b_2 > 0$ that if $m_s(g) = \max_{0 \le t \le 1, 0 \le \overline{t}_1 \le \overline{t}_2 \le 1} d_s(g(t, \overline{t}_1), g(t, \overline{t}_2)) \le b_1 \cdot \min(l(c), b_2)$ (respectively for d_u) then there is such a curve c' connecting x_2 and $y_2 = g(1, 1)$ on the layer $W^u(x_2)$ ($W^s(x_2)$) that $l(c') < 2 \cdot l(c)$.

Proof. If 1(c) is sufficiently small then the statement of the lemma follows from the transversality and continuity of the stable and unstable foliations. I.e. there are such $b_1 > 0$ and q > 0 that the statement of lemma is true if 1(c) < q and $m_g(g) < b_1 1(c)$. Let $b_2 = \frac{1}{2}q$. The curve c can be divided into segments c_i with the ends $g(z_i, 0)$ and $g(z_{i+1}, 0)$, $\frac{1}{2}q \leq 1(c_i) < q$. Let's consider for each segment c_i in the capacity of c_i the shortest geodesic on the layer $W^u(x_2)$ ($W^S(x_2)$) connecting $g(z_i, 1)$ and $g(z_{i+1}, 1)$, Since $1(c_i) < 2 \cdot 1(c_i)$ we have $1(c') < 2 \cdot 1(c)$. Q.e.d.

Let's say that two unstable layers $W^{u}(x_{1})$ and $W^{u}(x_{2})$ are (ε, r) -close at points x_{1} and $x_{2} \in W^{s}(x_{1})$ if there exists such a continuous mapping $h:B^{k}x \to M$ of the direct product of the unit k-ball and unit segment into M that: 1) $h(0,0) = x_{1}$, $h(0,1) = x_{2}$; 2) h(0,t) is the geodesic segment connecting x_{1} and x_{2} on the layer $W^{s}(x_{1})$; 3) $h(B^{k},0)$ is the r-ball on the layer $W^{u}(x_{1})$ with the centre x_{1} ; 4) $h(B^{k},t) \in W^{u}(h(0,t))$; 5) $h(y,I) \in W^{s}(h(y,0))$ and $d_{s}(h(y,t_{1}),h(y,t_{2})) \leq \varepsilon$ for every $y \in B^{k}$, $t_{1},t_{2} \in I$; 6) the restriction of h on either $(B^{k}x\{0\})$ or $(\{0\}x I)$ is bijective. Let $d(r, \varepsilon)$ be the supremum of those \overline{d} that for every x_1 and $x_2 \in W^S(x_1)$ with $d_S(x_1, x_2) \leq \overline{d}$ the layers $W^U(x_1)$ and $W^U(x_2)$ are (ε, r) -close at the points $x_1 \equiv \text{and } x_2$. It follows from the continuity of the stable and unstable foliations that $d(r, \varepsilon) > 0$. Let's denote by ε_0 the diameter of the neighbourhood with product structure for f (see [4]).

<u>LEMMA 3.</u> Let r be greater than \mathcal{E}_{o} and $\mathcal{E} = b_{1}\min(\mathcal{E}_{o}, b_{2})$. Then there is such a constant C>O independent of r that

$$\begin{split} \mathrm{d}(\mathbf{r}, \varepsilon) &\geq \mathrm{C} \exp\left(-\ln\left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right) \frac{\ln \mathbf{r}}{\ln \mathbf{R}_2}\right). \end{split}$$
Proof. It follows from the compactness of M and continuity of the foliations that there are such points $\mathbf{x}_1, \mathbf{x}_2 \in \mathrm{W}^{\mathrm{S}}(\mathbf{x}_1), \mathbf{y}_1 \in \mathrm{W}^{\mathrm{U}}(\mathbf{x}_1), \\ \mathrm{i=1,2} \quad \mathrm{that} \ 1) \ \mathrm{d}_{\mathrm{S}}(\mathbf{x}_1, \mathbf{x}_2) = \mathrm{d}(\mathbf{r}, \varepsilon) = \mathrm{d}; \ 2) \ \mathrm{the} \ \mathrm{layers} \ \mathrm{W}^{\mathrm{U}}(\mathbf{x}_1) \ \mathrm{and} \\ \mathrm{W}^{\mathrm{U}}(\mathbf{x}_2) \ \mathrm{are} \ (\varepsilon, \mathbf{r}) - \mathrm{close} \ \mathrm{at} \ \mathrm{the} \ \mathrm{points} \ \mathbf{x}_1 \ \mathrm{and} \ \mathbf{x}_2; \ 3) \ \mathrm{d}_{\mathrm{U}}(\mathbf{x}_1, \mathbf{y}_1) \leq \mathbf{r}, \\ \mathrm{d}_{\mathrm{S}}(\mathbf{y}_1, \mathbf{y}_2) = \varepsilon \end{split}$

Let $c_s = c_s(x_1, x_2)$ be the geodesic segment connecting x_1 and x_2 on the layer $W^S(x_1)$ and let $c_u = c_u(x_1, y_1)$ be the geodesic segment connecting x_1 and y_1 on the layer $W^U(x_1)$. The points x_1, y_1 , h(0,t), the curve $c_u(x_1, y_1)$ and the restriction of h on the set $c_s x c_u$ satisfy the condition of Lemma 2 for every $t \in I$. Let $h(z, 0) = y_1$. It follows then from Lemma 2 that $d_u(h(0,t),h(z,t)) < 2r$ for every $t \in I$. Suppose n is the minimal integer for which

$$\begin{split} \mathrm{d}_{u}(\mathbf{f}^{-n}\mathbf{h}(0,t),\mathbf{f}^{-n}\mathbf{h}(\mathbf{z},t)) \leq \mathbf{b}_{1}\cdot\boldsymbol{\mathcal{E}} &= \boldsymbol{\mathcal{E}}_{1} \ , \ t \in \mathbf{I}. \end{split}$$
 There is such a constant C'= C'($\boldsymbol{\mathcal{E}}_{1}$) that $n \leq (\ln r) \cdot (\ln R_{2})^{-1} + C'. \end{split}$ The points $\mathbf{f}^{-n}\mathbf{x}_{1}, \ \mathbf{f}^{-n}\mathbf{x}_{2}, \ \mathbf{f}^{-n}\mathbf{y}_{1} \ \text{and} \ \text{the curve } \mathbf{c} &= \mathbf{f}^{-n}(\mathbf{c}_{s}) \ \text{satisfy} \ \text{the condition of Lemma 2. That's why there's a piecewise smooth} \ \text{curve c', } \mathbf{l}(\mathbf{c'}) < 2 \cdot \mathbf{l}(\mathbf{c}) \ \text{connecting the points } \mathbf{f}^{-n}\mathbf{y}_{1} \ \text{and} \ \mathbf{f}^{-n}\mathbf{y}_{2} \ \text{and} \ \mathbf{c} < \mathbf{W}^{\mathrm{S}}(\mathbf{f}^{-n}\mathbf{y}_{1}). \ \text{Now } \mathbf{l}(\mathbf{c'}) > C_{1}^{-1} \ \mathbf{r}_{2}^{-n}\mathbf{d}_{s}(\mathbf{y}_{1},\mathbf{y}_{2}) \ \text{and} \ \mathbf{l}(\mathbf{c}) \leq C_{1}\mathbf{r}_{1}^{-n}\mathbf{d}_{s}(\mathbf{x}_{1},\mathbf{x}_{2}). \end{split}$

These inequalities imply the statement of Lemma 3.

Proof of Proposition 1. Let $y \in W^{S}(x)$, $z \in W^{U}(x)$, $d_{S}(x,y) = a$, $d_{U}(x,z) = b$. The distancies between $f^{n}x$, $f^{n}y$, and $f^{n}z$ satisfy the following inequalities: $d_{S}(f^{n}x,f^{n}y) \leq C_{1}r_{2}^{n}a$, $d_{U}(f^{n}x,f^{n}z) \leq C_{1}R_{1}^{n}b$. Let's verify that for sufficiently large n one has

$$d(d_u(f^nx,f^nz),\varepsilon) \ge d_s(f^nx,f^ny).$$

Indeed in accordance with Lemma 3

$$\frac{d(d_{u}(\mathbf{f}^{n}\mathbf{x},\mathbf{f}^{n}\mathbf{z}),\varepsilon)}{d_{s}(\mathbf{f}^{n}\mathbf{x},\mathbf{f}^{n}\mathbf{y})} \geq \frac{C \exp(-\ln\frac{\mathbf{r}_{2}}{\mathbf{r}_{1}} \ln(C_{1}\mathbf{R}_{1}^{n}\mathbf{b})(\ln R_{2})^{-1})}{C_{1}\mathbf{r}_{2}^{n}\mathbf{a}} \geq$$

$$\geq \frac{C C_2}{C_1 a} \exp \left(-n \left(\frac{\ln R_1}{\ln R_2} \ln \frac{r_2}{r_1} + \ln r_2\right)\right).$$

It is clear now that the statement of Proposition 1 follows from (*). The inequality (**) is treated by analogy. Q.e.d. <u>REMARK 4.</u> If the correspondence mapping can be infinitely extended then every stable layer $W^{S}(x)$ intersects every unstable layer $W^{U}(y)$. Indeed let's connect x and y by a smooth curve c and divide this curve into arcs c_{i} (with the ends x_{i} and x_{i+1}), $l(c_{i}) \leq \frac{1}{2} \mathcal{E}_{c}$ (\mathcal{E}_{c} is the diameter of the product structure neighbourhood). If the intersection $W^{U}(x_{i}) \cap W^{S}(x)$ isn't empty then neither is the intersection $W^{U}(x_{i+1}) \cap W^{S}(x)$. So the induction argument shows that $W^{U}(y) \cap W^{S}(x) \neq \emptyset$.

<u>THEOREM 5.</u> Let $f:\mathbb{M}^n \to \mathbb{M}^n$ be a C-diffeomorphism. Suppose that the correspondence mapping for the stable and unstable foliations can be infinitely extended. Then the set NW(f) of nonwandering points coincides with \mathbb{M}^n and the universal covering manifold $\overline{\mathbb{M}}$ is homeomorphic to \mathbb{R}^n .

Proof. In accordance with the Smale spectral theorem (see [2]) the

set NW(f) can be represented as a finite union of disjoint closed sets called basic sets. Let B_1 be a repeller and B_2 - an attractor. It's well known that B_1 consists of stable layers and B_2 consists of unstable layers. If $x \in B_1$ and $y \in B_2$ then $W^S(x) \subset B_1$ and $W^U(y) \subset B_2$ Eut $W^S(x) \cap W^U(y) \neq \emptyset$ (see Remark 4), hence $B_1 \cap B_2 \neq \emptyset$. It follows that there exists only one basic set $B = M^n$.

Now let $x \in M^n$. There are (see [1]) two diffeomorphisms $F^s: R^k \rightarrow W^s(x)$ and $F^u: R^{n-k} \rightarrow W^u(x)$. If $y \in W^u(x)$ and $z \in W^s(x)$ then according to the infinite extendability of the correspondence mapping there's a continuous function $g:I^2 \rightarrow M^n$. Let's denote g(1,1) = q(y,z). It's easy to verify that although $\mathbf{x}x$ g isn't uniquely defined the point q(y,z) is independent of the choise of g. This statement is obvious if the distancies $d_u(x,y)$ and $d_s(x,z)$ are sufficiently small. Indeed q(y,z) is the unique point of intersection of the local layers in this case. Almost the same argument shows that q(y,z) is independent of g if either $d_u(x,y)$ or $d_s(x,z)$ is small enough, and to achieve such a situation it is sufficiently to apply the iterations of f.

Let's define the mapping p: $\mathbb{R}^n = \mathbb{R}^k x \ \mathbb{R}^{n-k} \to \mathbb{M}^n$ by the formula $p(v,w) = q(\mathbb{F}^u(w),\mathbb{F}^s(v))$. It follows from the continuity and transversality of the stable and unstable foliations that p is a local homeomorphism. I.e. for every point $\overline{x} \in \mathbb{R}^n$ there's such a neighbourhood $U(\overline{x})$ that the restriction $p|U(\overline{x})$ maps it homeomorphically onto a neighbourhood of $p(\overline{x})$. Let's show that for every curve c(t), $t \in [0,1]$ on \mathbb{M}^n and for every point $\overline{x} \in p^{-1}(c(0))$ there is the unique curve $\overline{c}(t)$ on \mathbb{R}^n with $p(\overline{c}(t)) = c(t)$ and $\overline{c}(0) = \overline{x}$. Since p is a local homeomorphism it is sufficient to prove this statement for

piecewise smooth curves with the length less than \mathcal{E}_{o} . Let c be such a curve, c(0) = x, $p(\overline{x}) = x$, $\overline{x} = (\overline{x}_{s}, \overline{x}_{u})$, $\overline{x}_{s} \in \mathbb{R}^{k}$, $\overline{x}_{u} \in \mathbb{R}^{n-k}$. Since c is contained in the product structure neighbourhood with the centre x there are such curves $c_{s} \in W^{s}(x)$ and $c_{u} \in W^{u}(x)$ that the intersection point of the local layers $W^{u}_{loc}(c_{s}(t))$ and $W^{s}_{loc}(c_{u}(t))$ coincides with c(t) for every $t \in [0,1]$. To construct the curve \overline{c} it is sufficient toapply the property of the infinite correspondence mapping extension to the points c(t), $c_{s}(t)$ and $p(0,\overline{x}_{u})$. The uniqueness of this curve follows from the fact that p is a local homeomorphism. So p is the covering mapping. Q.e.d. <u>COROLLARY 6</u>. Let f be a C-diffeomorphism of \mathbb{M}^{n} and

either
$$1 + \frac{\ln R_2}{\ln R_1} > \frac{\ln r_1}{\ln r_2}$$
 (*) or $1 + \frac{\ln r_2}{\ln r_1} > \frac{\ln R_1}{\ln R_2}$ (**).

Then $NW(f) = M^n$ and the covering manifold for M^n is homeomorphic to R^n .

Let A be a hyperbolic automorphism of a nilpotent Lie algebra N inducing a hyperbolic diffeomorphism of a compact nilmanifold. The eigenvalues of A are contained in two rings with the radii $0 < r_1 < r_2 < 1$ and $1 < R_2 < R_1 < \infty$.

PROPOSITION 7. If either

1. a)
$$1 + \frac{\ln R_2}{\ln R_1} > \frac{\ln r_1}{\ln r_2}$$
; b) $r_2 R_1 \ge 1$
2. a) $1 + \frac{\ln r_2}{\ln r_1} > \frac{\ln R_1}{\ln R_2}$; b) $r_1 R_2 \le 1$

or

Proof. Let's denote $V_q = \{x \in \mathbb{N} \mid \exists k: (A-qE)^k = 0\}$. It is easy to show that $[V_q, V_{\overline{q}}] \subseteq V_{q\overline{q}}$. Let condition 1 be true and N be noncommutative. The intersection of the uniform discrete subgroup and the

commutator group is a uniform discrete subgroup of the commutator group (see [5]). That's why among the eigenvalues of the restriction of A on the commutator algebra there are those numbers of modulo less and greater than 1. It is easy to show that there exists such a non-zero vector $x \in V_r$, |r| < 1 that x = [y,z], $y \in V_q$, $z \in V_{\overline{q}}$. There is an alternative: either $|q|, |\overline{q}| < 1$ or one of these numbers is greater than 1. In the first case we get $r_1 < r_2^2$ which contradicts condition 1. Let's consider the second case. Let |q| > 1. Since $\ln|r| = \ln|q| + \ln|\overline{q}|$ then $\ln r_2 > \ln r_1 + \ln R_2$ which also contradicts condition 1. Condition 2 is treated on the analogy. The proposition is proven.

It seems that the conditions $r_2R_1 \ge 1$ and $r_1R_2 \le 1$ are inessential. A.Katok noted that conditions 1a and 2a aren't valid for the well-known Smale examples of C-diffeomorphisms of nilmanifolds. <u>CONJECTURE</u>. If a C-diffeomorphism $f:M \longrightarrow M$ possesses the property (*) or (**) (see proposition 1 and corollary 6) then M is a torus. I wish to express my gratitude to A.Katok and D.Anosov.

REFERENCES

 Anosov D., Geodesic Flows on Closed Riemann Manifolds with Negative Curvature, Proc. Steklov Inst.of Math., No 90 (1967).
 Smale S., Differentiable Dynamical Systems, Bull.Amer.Math.Soc., 73 (1967), 747-817.

3. Mather I., Characteristic of Anosov Diffeomorphisms, Proc.Honipelijke Niderlandske Academie Oneweter schappen, Amsterdam, s.A., 71 (1968), 479-483.

4. Hirsch M., Palis J., Shub M., Neighbourhoods of Hyperbolic Sets, Inventions Math., 9 (1970), 121-134.

5. Malcev A., On a Class of Homogeneous Spaces, Amer.Math.Soc. Transl., 39 (1949).

M.I. Brin Prospekt Kalinina g 33 kb 55 Moscow 121099 - USSR