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HONWANDERING POINTS OF MOSOV DIFFEOMORPHISMS. 

M.I.Brin. 

There are two well-known conjectures in the Anosov diffeomor-

phism (C-diffeomorphism) theory. Let f be a C-diffeomorphism of a 

smooth compact Riemannian manifold M n. Then (seep] and [ 2 ] ) : 

1 . The set NW(f) of nonwandering points of f is M n . 

2 . The covering manifold M is homeomorphic to R n. 

Many of the results in the C-diffeomorphism theory were got 

assuming that ail the points are nonwandering. The condition 

NW(f) = M n implies for instance that a C-diffeomorphism f is topo-

logically transitive (or simply "transitive"), the set Per(f) of 

ail the periodic points of f is dense in M n, every stable or un-

stable layer is dense in M n. 

Ail the existing examples of C-diffeomorphisms act on nilma-

nifolds (in particular on tori) and on their generalizations - in-

franilmanifolds. That 1s why proving the second statement (or find-

ing the conditions under which it is valid) is the natural fist 

step in the classification of C-diffeomorphisms. 

The sufficient conditions for the set NW(f) to coincide with 

M n and for the covering manifold M to be homeomorphic to R11 are 

stated in this paper. 

Every diffeomorphism f of a compact Riemannian manifold M in

duces a linear operator fm in the space of continuous vector fields: 
— 1 

(f^v)(x) = df f-1 xv(f x ) . C-diffeomorphisms are characterized (see 

f33) by the fact that the spectrum S of the complexification of the 
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operator f̂ . doesn't intersect the unit circle. So S is contained 

in the interiors of two rings with the radii 0<T^<T2<Î and 

1 < R 2 < R 1 < oo • There exist such a constant 0 <:C1 <: co that for 

every positive integer n 

q 1 r n l|v|| < l|dfnv(I < C 1 r£ ||v|| if v € E s 

C' 1 R^ ||v|l < |(dfnv[| ^ C 1 Rf ||v|| if v ^ E u 

here E s and E u are respectively the stable and unstable subbundles 

of the tangent bundle TM. 

Let's say that the correspondence mapping for the stable W s 

and unstable W u foliations can be infinitely extended if for every 

three points X É M , y € W s ( x ) , Z6ïlfu(x) there exists such a continuous 

2 

mapping g of the ufilt square I into M that: 1 ) g ( 0 , 0 ) = x, 

g ( 0 , 1 ) = y, g ( 1 , 0 ) = z; 2 ) g(t,.) is a continuous curve on a stable 

layer for every fixed t e l ; 3 ) g(.,t) is a continuous curve on an 

unstable layer for every fixed t é l . The existence of such a map

ping is obvious if the distancies between x,y,z measured along the 

corresponding layers are small enough. According to the given de-

finition this mapping can be extended beyond the boundaries of a 

small neibourhood. 

, p ln r.. In r 0 In R,. 
PROPOSITION 1 . If 1 + g - | 2 > 1 H ^ W o r 1 + i r ^ > ^ ( * * ) 

then the correspondence mapping for the foliations W s and W u can be 

infinitely extended. 

Let d 0 and d„ dénote the distancies induced by the internai 
s u 

metrics of stable and unstable layers, and l(c) be the length of 

a piecewise smooth curve c. 

LEMMA. 2 . Let c be a smooth curveonan unstable layer Wu(x,j) (respec

tively W8(x.j)) Connecting the points x^ and y^, and let x 2 € W
s ( x 1 ) 

(W u(x 1)). Suppose that there exists such a continuous mapping 

g(c,x 2) = g of the unit square I into M that: 1 ) g(t ,0 ) = c(t), 
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g(0 , l ) = x 2 ; 2) the points g C t . t - j ) and g ( t , t 2 ) belong to the stable 

(unstable) layer; 3 ) g(t,1)€ W u ( x 2 ) ( W
s ( x 2 ) ) ; 4) the restriction 

of g to the set I * £ o J i s bijective. 

Then there are such constants b 1 , b 2 > 0 that i f 

m 0(g) = max _ c l C g C t * * - ) , g ( t , t p ) ) < b 1 -min(l(c),b p) 
s 0 £ t <1, 0 4 ^ < t 2 ^ 1

 1 

(respectively for d y) then there is such a curve 

c*Connecting x 2 and y 2= g(1,1) on the layer W u ( x 2 ) (W s ( x 2 ) ) that 

l(c') < 2 l(c). 

Proof. If l(c) is sufficiently small then the statement of the 

lemma follows from the transversality and continuity of the stable 

and unstable foliations. L e , there are such b^ > 0 and q > 0 that 

the statement of lemma i s true i f l(c) < q and m ( g ) < b 1 l ( c ) . Let 

s i 
i 

b 2= T̂ q. The curve c can be divided into segments c^ with the ends 

g(z^,0) and g ( z^ +^,C), «^q^l(c^)<q. Let ' s consider for each 

segment c^ in the capacity of c^ the shortest géodésie on the layer 

W u ( x 2 ) (W s ( x 2 ) ) Connecting g ( z i,1) and g ( z i + 1 , 1 ) , Since 

l(c|) <2-l(c i) we have l(c
f ) < 2* l(c). Q.e.d. 

Let f s say that two unstable layers W u ( x 1 ) and W
u ( x 2 ) are 

( £ ,r)-close at points x^ and x 2 € W
s ( x ^ ) i f there exists such a 

continuous mapping h:B x I —* M of the direct product of the unit 

k-ball and unit segment into M that: 1) h(0,0) = x^, h(0,1) = x 2; 

2) h(0 , t ) is the géodésie segment Connecting x^ and x 2 on the layer 

W s ( x 1 ) ; 3 ) h(B k,C) is the r-ball on the layer W u ( x 1 ) with the 

centre x < 1; 4) h ( B k , t ) C W u(h(0, t ) ) ; 5) h(y,I)e W s(h(y,0) ) and 

d s ( h(y , t 1),h(y , t 2 ) ) ^ 6 for every y e B k , t r t 2 < = I; 6) the restric

tion of h on either (B k x{û}) or ( { o j x I) is bijective. 
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Let d(r,£ ) be tiie supremum of those d that for every x^ and 

x 2 é W
s ( x 1 ) with d s(x 1,x 2)^ïï the layers W u(x 1 ) and W

u ( x 2 ) are U,r) 

-close at the points x 1 a and x 2 . It follows from the continuity 

of the stable and unstable foliations that d(r, £ ) > 0 . Let 1 s déno

te by £ 0 the diameter of the neighbourhood with product structure 

for f (see [4j ). 

LEMMA 3* Let r be greater than L0 and £ = b^minC 60 > b 2 ) . Then 

there is such a constant C > 0 independent of r that 

d(r, £ ) ̂  C exp (-ln( ^ ) ). 

Proof. It follows from the compactness of M and continuity of the 

foliations that there are such points x^, x 2 é W
s ( x ^ ) , y. é W u ( x , ) , 

i=1,2 that 1) d s ( x r x 2 ) = d(r, £ ) = d; 2) the layers W u(x 1 ) and 

W u ( x 2 ) are ( £,r)-close at the points x 1 and x 2 ; 3) d u ( x 1 , y 1 ) ^ r , 

d s ( y r y 2 ) = £ 

Let c g= c g(x 1,x 2) be the géodésie segment Connecting x^ and 

x 2 on the layer W s(x^) and let c u= c^x^y^j) be the géodésie seg

ment Connecting x^ and y^ on the layer Wu(x.j). The points , y^, 

h(0,t), the curve c (x^y^) and the restriction of h on the set 

e x c, satisfy the condition of Lemma 2 for every t € 1 . Let 
s u 

h(z,C) = y^. It follows then from Lemma 2 that d u(h(0, t) ,h(z, t) )<c2r 

for every tel. Suppose n is the minimal integer for which 

d u(f"
nh(0,t),f" nh(z,t)) ^ b ^ é = ei , t é l . 

There is such a constant C f= C f ( £ 1 ) that n <(ln r)-(ln
 R 2 ^ ~ 1 + C'* 

The points f ^ x ^ f""nx2, f"
ny-| and the curve c = f~ n(c g) satisfy 

the condition of Lemma 2. That 1s why there's a pieeewise smooth 

curve c f, l(c l)<2»l(c) Connecting the points f""ny,| and f" ny 2 and 

c C W s ( f n

y i ) . Now l(c')>C~ 1 r 2

n d s ( y r y 2 ) and l(c)^ C 1r~
nd g(x 1 , x 2 ) . 
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Thèse inequalities imply the statement of Lemma 3. 

Proof of Proposition 1. Let y<£W s(x), Z é W u ( x ) , d o(x,y) = a, 
s 

d u(x,z) = b. The distancies between f
nx, f ûy, and f nz satisfy the 

following inequalities: d g(f
nx, f ny) ̂  C ^ a , d u(f

nx,f nz) ̂  C ^ b , 

Let 1s verify that for sufficiently large n one has 

d(d u(f
nx,f nz), i ) z d s(f

nx,f ny). 

Indeed in accordance with Lemma 3 
d ( d u ( f

n x , f n z ) , £ ) C e x p ( - l n ^ l n C C ^ b H l n R 2)~
1) 

^ 1 ^ 
d g ( f n x , f n y ) C ^ a 

c c 2 

* C7a" 
exp (-n r

l n R1 
'ln R 2 

r 2 
ln r 2 ) ) . 

It is clear now that the statement of Proposition 1 follows 

from (*). The inequality is treated by analogy. Q.e.d. 

REMARK 4. If the correspondence mapping can be infinitely extended 

then every stable layer W 8(x) intersects every unstable layer W u(y). 

Indeed let 1 s connect x and y by a smooth curve c and divide this 

curve into arcs (with the ends x i and Kc^,) ̂  ^ 6 C ( <5C 

is the diameter of the product structure neighbourhood). If the 

intersection W u(x i)D W
s(x) isn't empty then neither is the inter

section W u ( x i + 1 ) H W
s(x)• So the induction argument shows that 

W u(y)/lW s(x) * 0. 

THEOREM 5. Let f:M n-*M n be a C-diffeomorphism. Suppose that the 

correspondence mapping for the stable and unstable foliations can 

be infinitely extended, Then the set NW(f ) of nonwandering points 

coincides with M n and the universel covering manifold M is homeo-

morphic to R n. 

Proof. In accordance with the Smale spectral theorem (see [2] ) the 
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set NW(f) can be represented as a finite union of disjoint closed 

sets called basic sets. Let B^ be a repeller and B 2 - an attractor. 

It's well known that B^ consists of stable layers and B 2 consists 

of unstable layers. If x 6? B and y é B 2 then W s ( x ) c B 1 and W u(y)c B 2 

But W s(x)f|W u(y) £ 0 (see Remark 4 ) , hence B^/1B2 ji 0. It follows 

that there exists only one basic set B = M n. 

Now let x ^ M n . There are (see [1]) two diffeomorphisms 

F s: R k - » W s ( x ) and F u: R n ~ k - * W u ( x ) . If y*W u(x) and z*W s(x) then 

according to the infinité extendability of the correspondence map-

ping there's a continuous function g:I —* M • Let fs dénote 

g O , 1 ) = q(y>z). It's easy to verify that although xx g isn't 

uniquely defined the point q(y,z) is independent of the choise of 

g. This statement is obvious if the distancies d(x,y) and d 0(x,z) 
u s 

are sufficiently small. Indeed q(y,z) is the unique point of inter

section of the local layers in this case. Almost the same argument 

shows that q(y,z) is independent of g if either d (x,y) or d 0(x,z) 
u s 

is small enough, and to achieve such a situation it is sufficient

ly to apply the itérations of f• 

Let 1 s define the mapping p: R n=R kx R11"*—* M n by the formula 

p(v,w) = q(P u(w),F s(v)). It follows from the continuity and trans-

versality of the stable and unstable foliations that p is a local 

homeomorphism. I.e. for every point x e R n there's such a neighbour-

hood U(x) that the restriction p|U(x) maps it homeomorphically on-

to a neighbourhood of p(x). Let 1s show that for every curve c(t), 

te [0,1] on M n and for every point u p " 1 ( c ( 0 ) ) there is the uni

que curve c(t) on R n with p(c(t)) = c(t) and c(0) = x. Since p is 

a local homeomorphism it is sufficient to prove this statement for 
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piecewise smooth curves with the length less than £ 0 • Let c be 

such a curve, c(C) = x, p(x) = x, x = (x x̂" ), x \ e R k , x é R n " k . 
S U S U 

Since c is contained in the product structure neighbourhood with 

the centre x there are such curves c e W s(x) and c c W u(x) that 
s u 

the intersection point of the local layers wV" (c (t)) and 
10C s 

W^ Q C(c u(t)) coincides with c(t) for every t £ [0,1]. To construct 

the curve c it is sufficient toapply the property of the infinité 

correspondence mapping extension to the points c(t), c Q(t) and 

p(0,x u). The uniqueness of this curve follows from the fact that 

p is a local homeomorphism. So p is the covering mapping. Q.e.d. 

COROLLARY 6. Let f be a C-diffeomorphism of M n and 
ln R p ln r 1 ln r 9 ln R 1 

e i t h e r 1 + _ ^ > _ _ i ( ^ ) o r 1 + _ 2 > _ i ( ^ > ) . 

Then NW(f) = M n and the covering manifold for M n is homeomorphic 

to R n. 

Let A be a hyperbolic automorphism of a nilpotent Lie algebra 

N inducing a hyperbolic diffeomorphism of a compact nilmanifold. 

The eigenvalues of A are contained in two rings with the radii 

C < < r 2 < 1 and 1 < R^ < R^ < co . 

PROPOSITION 7. If either 

1. a) 1 + 
ln R 2 ln 

ln R 1

 > ln r 2 ' 
b) r 2R 1 ^ 1 

or 

2. a) 1 + 
ln r 2 ln R 1 

ln r 1

 > ln R 2

 ; b ) r-,R2 s 1 

then N is a commutative algebra. 

Proof. Let 1 s dénote V q=[x 6 N/ 3 k: (A-qE)k= OJ. It is easy to show 

that [ V

Q»V--JÇV-- . Let condition 1 be true and N be noncommuta-

tive. The intersection of the uniform discrète subgroup and the 
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commutator group is a uniform discrète subgroup of the commutator 

group (see [ 5 ] )• That 1s why among the eigenvalues of the restric

tion of A on the commutator algebra there are those numbers of mo-

dulo less and greater than 1. It is easy to show that there exists 

such a non-zero vector x £ V r > jr|< 1 that x =fy»zj» y 6' V^, zc-V-, 

There is an alternative: either Jq^jqf^l or one of thèse num-

2 

bers is greater than 1. In the first case we get r^ <: which con-

tradicts condition 1. Let's consider the second case. Let )q|>1. 

Since lnjr/ = lnfq| + ln/qf then ln r 2 > ln r^ + ln R 2 which also 

contradicts condition 1. Condition 2 is treated on the analogy. 

The proposition is proven. 

It seems that the conditions r^R^ ^ 1 and r^R^ ^1 are inessen-

tial. A.Katok noted that conditions 1a and 2a aren ft valid for 

the well-known Smale examples of C-diffeomorphisms of nilmanifolda 

CONJECTURE. If a C-diffeomorphism f:M—>M possesses the property 

(*) or (*#) (see proposition 1 and corollary 6) then M is a torus. 

I wish to express my gratitude to A.Katok and D.Anosov. 
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