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GENERATORS AND ALMOST TOPOLOGICAL ISOMORPHISMS 

by 

Manfred Denker 

Summary: 

For many (classical) measure theoretic dynamical Systems 

there are natural m.t. isomorphisms which are at the same 

time homeomorphisms between sets of measure one or residual 

sets. Among many other examples the 2x mod 1 transforma

tion, irrational rotations, Meshalkin's isomorphism of 

Bernoulli shifts and axiom-A-diffeomorphisms are naturally 

isomorphic to a suitable subshift and thèse correspondences 

explain the situation of this paper. Isomorphisms of this 

type are called almost topological and will be studied in 

forthcoming papers by M.Keane and myself. Here some of the 

results about invariants and about generators defining 

such isomorphisms are presented. 
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In topological dynamics the notion of (measure theoretic) 

isomorphism (m. t. isomorphism) does not make any sensé 

since no topological property is invariant, while on the 

other hand in measure theoretic ergodic theory (topologi

cal) conjugacy is irrelevant for the isomorphism problem 

since ail topological invariants are independent of the 

probabilistic structure. This not very surprising observa

tion gets of greater value and interest when looking at 

examples of isomorphisms. Many of them arise in a natural 

context in ergodic theory and analysing their properties 

they should be arrangea in between conjugacy and isomor

phism. It is not quite apparent what the right définition 

for an analogue isomorphism notion should be when trying 

to get "at least some" topological invariants and - at 

the same time - to keep the isomorphism classes "large 

enough". (From the viewpoint of conjugacy this means en-

larging the conjugacy classes by reducing the number of 

topological invariants.) From the measure theoretic point 

of view it seems to be reascnable to demand the validity 

of Rohlin's and Krieger's generator theorems, since they 

are the most gênerai isomorphism theorems in some sensé. 

It is important to remark here that a generator in this 

context must get another meaning, because the existence 

of such a generator should give an isomorphism of the 

desired type. A theorem like this clearly tells something 

about the largeness of the isomorphism classes. On the 

other hand, in topological dynamics some of the most impor

tant topological invariants for conjugacy are transitivity. 
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mixing, almost periodicity and strict ergodicity. Clearly 

one should try to leave them invariant for our notion. 

Having in mind thèse two principles, it should not be for-

gotten that a reasonable définition should be applicable 

to many of the natural examples in ergodic theory. For this 

reason one is led to study some examples first. 

Consider the 2x mod 1 transformation on Q = [0,l[ which 

is invariant with respect to Lebesgue measure. The unique 

dyadic représentation for a.e. x E Q defines a.e. a 

homeomorphism cp : Q •* {0,1} which commutes with the shift 

IN 

on {0,1} . More precisely, cp is defined on the residual 

set of ail points having a unique dyadic représentation. 

Next let T be an irrational rotation on the unit circle 

X in the plane. Every partition a = (A^^^A^) of X, where 

each A i (i = 0,1) is an interval of positive length is 

a gênerator for T. The restriction map of cp : X - {0,1} , 

defined by <p(x) = (G>.). c„ iff T*x 6 A , to the set 
1 

X Q of ail points whose orbit never meets the boundary of 
the A^'s, actually is a homeomorphism on the dense 

G--set X , which also is a set of measure 1. 
ô o 

Our next example is concerned with the continued fraction 

IR 

expansion. Let X = / 2, Tx = x + & mod 1 with (S irra

tional. For 0 < a û 1 define N(a) := [l/a] + i where 

[x] dénotes the largest integer £ x, and S(a) G ]0,l] 

25 



M. DENKER 

by the équation 

a = [N(a) - S(a)] l. 

Hence the continued fraction expansion of a can be 

written as 

1 
a = ï 

nj r 
n 2 ~ T 

where n ± = NfS
1"* 1^)) (iàl), and for eu = S 1 " 1 (a) 

we have 

1 
a . » 1  

n i i 
n i + f 7 

Now consider the irrational 3 (i.e. there exist infinitely 

many n. * 2) . Let Q II {0, I,...,n.- 1} and 
1 i*l 1 

Q p : = Q " • « l

I n i " , ' B i + i - 2 - - - B i + k - r 2 - n i + k -
, 1 i + k 

i ,k£ 1 

Define a transformation S f l : Q 0 •* Q Q by 
P p P 

S f(o) = (o 1 + l ïo 2,o 3,..) if o E Q ^ U [rij-2, , < : , n k - 1 - 2 , n k - l ] ^ 

and S ( 3 ( Q ) = (0, . . > ° > ° k + I

+ 1 > u

k + 2 > • • )
i f wGtrij-2, . . >n k.f2,n k- 1 ] 1, 

(k+1)st place 

(Q^,S^) is called an irrational adding machine and it is 

shown by M.Keane [4] that there exists a map 

tp : •* X 
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which is a homeomorphism on a dense • 

Again let X = [0,l[. Suppose are given such 

that 3.. > 0 and l 3 i = 1 , and let T be a permutation of 

{1,•..,n}. Define a map T : X - X by cutting X into 

intervais 1 ^ , . . . , I r of lengths 3 j,.. ., 3 n and re-arranging 

the pièces according to T. This is called an interval ex

change transformation (Keane [ 6 ] ) . T is called irrational 

if there is no nontrivial x-invariant subset of {!,...,n} 

and 3 j , . . . , 3 are irrational in the usual sensé (i.e. 

k± e 2, k Q = k Q = k ± for every i) . It follows 

from [6] that the partition a = ) is a gener-

ator if T is irrational and that the natural map 

<p : X - { 0 , 1 } i s a homeomorphism on a residual set of 

Lebesgue measure one. 

So far every isomorphism was defined on a residual set. 

The argument of our fifth example gives only an a.e. defined 

isomorphism. M.Keane pointed out to me that this isomorphism 

can be extended to a residual set. In fact, this is a particular 

case of a gênerai theorem contained in our forthcoming 

paper. Consider Meshalkin's example of an isomorphism of 

the Bernoulli shifts p = ( 1 / 4 , 1 / 4 , 1 / 4 , 1 / 4 ) and 

q = ( 1 / 2 , 1 / 8 , 1 / 8 , 1 / 8 , 1 / 8 ) over the alphabets 0 , . . . , 3 

and v 0 , . . . , 4 . The isomorphism cp is defined as follows: 

2 
On = { 0 , . . . , 3 } consider the homeomorphism defined 

by the correspondance 0 "*~^Q# 1 <—^ 2<—> ̂ . and 

1 £ 

3«—> ^ and on Q 2 = { 0 , . . . , 4 } consider 0<c-*0, 1<—* 100; 

2<—>101; 3<—*110 and 4<—M 11. Now every o e Q} has 

a représentation of the form 
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1 1 1 

, 0 0 0 x 

G) = ( . . . ,G)_ pO^Uj,...) 

and (P(Q) = ^ ni^ie2 ( 0 1 2 , 0 , , 

n i n i n i ( ^ i = l ) , 
0 / o > 

ni (n-o) is defined as follows: 

If CJ? = 0 then n ± = = 0. If o?=l then 

0 1 2 , 0 , 1 I 2 1 v . ^ , . 
n- = n • n. H- where n- = l, n. = o. and n. = G), such that 
1 1 1 1 1 1 1 l i e 

0 ^- l 0 

k > i, G) = 0 and £ (G.-1/2) = 0 and k is minimal. 
j=i+l 0 

cp is well defined a.e. since by the récurrence properties 

of a symmetric random walk on 2 there are infinitely many 

k's such that in , . . . , c o ? + k more ones than zéros appear 

and conversely (note that the random variables o - G? are 

independent and symmetric). It is not hard to see that 

cp-restricted to suitable chosen sets of measure 1 - is a 

homeomorphism. For détails see Meshalkin [8] or Keane 

[3], [5]. 

Our next example cornes from differentiable dynamics and 

has a quite gênerai nature. Let T : X •* X be a homeomor

phism on a compact metric space admitting a Markov partition 

a = (A.j, . . ., A g) , for example axicm-A-dif feomorphisms and 

homeomorphisms like hyperbolic torus automorphisms and topolc -

gical Markov chains([1],[2],[9]). If X Q dénotes the set of 

ail points whose orbit does not intersect the boundary 

of any A^, the map cp : X Q * { 1 ,. . . , s} is a homeomorphism 

where cp is defined by cp(x). = k iff T^x 6 A,. 
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If T is transitive, Bowen [l] has shown that there exists 

a unique measure with maximal entropy, which is positive 

on open sets and for which the partition a consists of 

continuity sets, and therefore cp carries this measure 

to some measure on a subshift. The physical interprétation 

as well as the torus automorphisms allow to consider the 

Bowen measure as the natural given one and since the bounda-

ries of a Markov partition lie in the contracting and ex-

panding directions the map (p can be derived in a natural 

way knowing thèse directions and the expansive constant. 

Ail the preceding examples of m.t. isomorphisms carry 

some additional structure which will be given in the follow-

ing définitions. We always consider compact metric spaces f 

their Borel fields and the various probabilities on the 

complétions. A transformation T on Q in Q* is called almost-

continuous (with respect to some probability m) if it is 

defined and continuous a.e. Then (Q,F,m,T) is an almost-

continuous m.t.dynamical System (a.c. m.t. System). 

Note that this définition is somewhat artificial. Since it 

is possible to neglect a set of measure zéro, the définition 

could have been formulated just be requiring that il and Q1 

are metric spaces. However, as can be seen in the examples 

there is always a natural underlying compact space. 

Two a. c m . t. Systems are called almost-topologically isomor-

phic if there exists an m. t. isomorphism cp such that cp and. 

(p 1 are almos t-continuous. This is the weakest property 

which ail the considered isomorphisms have in common. It 
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should be remarked here that other authors have considered 

this kind of isomorphy; in [7] K.Krickeberg gives exactly 

the same définition, though he uses it for other purposes 

than it is done here. Ail examples even lead 

to a stronger notion: Let cp be an almost-topological iso

morphism. cp is said to be strongly almost-topological if 

cp and cp 1 are defined and continuous on residual sets of 

measure one. Both définitions sharpen the notion of 

m.t.isomorphism and are derived from it. On the other hand, 

from a purely topological viewpoint, two Systems (H,T) 

and ( Œ , , T I ) , where T and T' are defined and continuous 

on residual sets, are called almost-topological conjugate 

if there exist invariant residual sets Q a Q and 
o 

Q'Q c a 1

 9 such that (Q Q | T| Q q ) and (SV|T|£T) are conjugate 

in the usual sensé. They are called strongly almost-topo

logical conjugate if in addition the conjugacy transports 

at least one measure. 

As explained in the beginning, there are two problems 

to be handled, that is finding the topological invariants 

and proving a generator theoreia for the "correct" définition 

of a generator. 

Some topological properties are known in ergodic theory 

and topological dynamics which obviously are not invariants 

for almost-topological isomorphy (conjugacy), like topological 

entropy, weak ergodicity and weak rainiraality, since thèse 

properties do not dépend on residual sets only. But the 

following is immédiate. Let cp be an alraost topological 
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isomorphism for (Q,F,m,T) and (Q f,F',ro 1 ,T 1) where 

m 1 is positive on open sets or let cp be an almost topo-

logical conjugacy for (Q,T) and (fi* ,T' ). Then if 

x e def (p has a dense orbit (is almost periodic) then 

<px has a dense orbit (is almost periodic) also. Let E 

(resp. C) dénote the class of ail m.t.dynamical Systems 

(topological dynamical Systems) where the transformation is 

continuous and where in the first case the measures are 

ergodic and positive on open sets. The afaove observation 

implies the following fact: 

Proposition 1 : 

In both classes E and C topological transitivity, 

topological mixing and minimality are almost-topological 

invariants. 

While this proposition holds for the weak form of a.t. con

jugacy, the next theorem holds for the strong from.(I be-

lieve that it is true only in this case.) 

Theorem 1 ; 

Strict ergodicity is a strongly almost topological conju

gacy invariant for the class C. 

Proof: 

It is not hard to show that for a séquence f n of continuous 

functions on a compact metric space converging pointwise to 

a limit function f on a residual set there must be a point 

of continuity for f. Now let (Q,T) and (Œ^T 1) be 

strongly almost topologically conjugate dynamical Systems in 

C and suppose (Œ,T) is strictly ergodic with invariant 
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probability m. Dénote by cp the isomorphism. By définition 

m is transported by cp into \i = cpm. Choose a ii-continuity 

open set V. Then lim — £ ^ V T , t = exists on a resi-
t=o 

dual set, Hence any invariant ergodic measure v * \x on ft' 

satisfies v(V) = n(V) which shows strict ergodicity of 

(Q*,T*) . 

Other invariance properties will be discussed elsewhere 

(for example other récurrence properties, topological en

tropy for noncompact sets and the natural map between 

the sets of invariant measures) and I shall now présent the 

results concerning the second problem for invertible T. 

The problem of finding an isomorphism to a subshift for 

a system (Œ,F,m,T) (or (°-,T)) is in most cases that of 

constructing a point separating partition. In order to 

turn this isomorphism into an almost-topological one, the 

définition of a topological generator for (Q,F,m,T) (and 

for a residual set Q Q c Q in case of a top.dyn. system 

(fi,T)) is given first. In the first case a topological 

generator is just a measurable partition a = (A^,A 2,. .) 

such that m(3A i) = 0 (i € IN) and such that for almost 

ail x 6 a 

x e n T k A. •* { x} = n T k A . 

k€2 x k kez X k 

In the second case one requires that the partition 

a = (A l fA 2,...) satisfies Q = U int A k , int A k * 0 and 

that for x e Q Q 

n -j- n - r -
x G n n T int A. {x} = n n T int A ± 

n6Z k=-n k nE2 k=-n k 
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Let dénote the set of ail points whose orbit never 

meets the boundary of any élément of the generator a. It is 

easy to see that a topological generator a = (A^A^...) 
into ^ 

always defines a natural homeomorphism cp : QQ n Q q - IN 

where Q is a suitable chosen set of measure one or the 
o 

set of points which are separated by a. In case a is a 

fini te generator for Q9 cp 1 has a continuous extension onto 

<p(fio n Q^) so that (Œ,T) becomes a factor of a suitable 

subshift. 

One has to distinguish between the différent cases when 

studying the existence of topological gênerators. First let 

(Q,T) be a topological dynamical System. 

Theorem 2; 

If the set of aperiodic points of T is dense in Q, then 

there exists a topological generator a = (A^,A2,...) for Q. 

The proof of this fact uses a topological version of Rohlin's 

lemma and some standard techniques. It is also possible to 

choose the generator a in such a way that measure theoretic 

entropies can be compared, and that it becomes an m-continuity 

partition for a given measure. In this last case the generator 

gives rise to a strongly almost-topological isomorphism, and 

the natural question in this context is that of finding finite 

topological gênerators. Here our two main results are stated. 

(They have some obvious corollariesI) Their proofs use the 

well-known techniques for generator theorems and some more 

easy facts. 
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Theorent 3. : 

Let (Q,F,m,T) be ergodic with a.c. transformation T 

and let h (T) < «. Then there exists a finite topological 

generator a where [exp h (T)] + 1 can be prescribed for 

the number of atoms of a. Thus (a,F rm,T) is almost-

topological isomorphic to some finite subshift. 

Théorem 4: 

Let (P-,F,m,T) have a transformation T which is con

tinuous on a residual set of measure one. If m is ergodic 

with finite entropy then there exists a finite topological 

generator a for (Q,F,m,T) and for a residual set in 

Q. The number of atoms in a can be bounded by 

[exp h m(T) ] + 1. Thus a defines a strongly almost 

topological isomorphism onto some finite subshift. 

Addendum: 

After this paper had been written, the results of M.Keane 
and myself presented here were put into a final form. Because 
of the discussion of a valuable isomorphism notion in this 
article we used the notion of strongly almost-topological 
isomorphy but called it almost-topological isomorphy (or 
finitary isomorphy in accordance with the literature). 
I should like to add to the results announced here that we 
also started to study a new kind of theorems in our paper. 
For an almost-topological isomorphism between symbolic 
Systems we defined the expected coding time and, if it is 
finite, we show that convergences in distribution for the 
coordinate processes correspond, provided some mixing 
condition is satisfied. 
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