Astérisque

S. G. HANCOCK Orbits of paths under hyperbolic toral automorphisms

Astérisque, tome 49 (1977), p. 93-96

<http://www.numdam.org/item?id=AST_1977__49__93_0>

© Société mathématique de France, 1977, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Société Mathématique de France Astérisque 49 (1977) p.93-96

ORBITS OF PATHS UNDER HYPERBOLIC TORAL AUTOMORPHISMS

S. G. Hancock

In [1], M. Hirsch considers the existence of compact sets invariant under hyperbolic toral automorphisms (h.t.a.'s), and mentions the question :

Can a h.t.a. $f: T^n \rightarrow T^n$ have a compact invariant set of dimension 1 ?

J. Franks [2] went some way towards providing a negative answer when he proved that a compact f-invariant set which contains a C^2 arc must contain a coset of an invariant toral subgroup of dimension at least 2. If we impose the condition that the characteristic polynomial of f be irreducible over Z, then there are no proper invariant toral subgroups, so every C^2 arc must have a dense orbit. The following simple result shows that this is usually the case for C^0 arcs, even without the irreducibility assumption :

Proposition :

Let $f:T^n \to T^n$ be a h.t.a. Then $\{\{\sigma: I \to T^n : 0(\sigma) \text{ is dense}\} = D$ is a Baire set in $C(I,T^n)$.

Proof.

Let $\{U_m\}$ be a countable open base for T^n , and $D_m = \{\sigma: \sigma(I) \cap O(U_m) \neq \phi\}$. Then D_m is open since $O(U_m)$ is open, and $O\left(U_{m}\right)$ is dense since f is ergodic, so D_{m} is also dense, and D = $\bigcap D_{m}$.

Against this we have :

Theorem

Let $f:T^n \to T^n$ be a h.t.a. with u > 1, s > 1, where u and s denote the respective dimensions of the unstable and stable manifolds of f. Then $\{\sigma: I \to T^n : O(\sigma) \text{ is not dense}\}$ is dense in $C(I,T^n)$.

Sketch of proof.

Given $\sigma \in C(I,T^n)$ and $\varepsilon > 0$, we take $x \in T^n$ and a closed neighbourhood N of x of diameter less than ε , and first construct a sequence of paths $\sigma_{-1} = \sigma, \sigma_0, \sigma_1, \sigma_2, \ldots$ such that

1) $f^{r}_{\sigma_{r}}(I) \land N = \phi$ $(r \ge 0)$ 2) $f^{r}_{\sigma_{r}}(t) \in W^{u}_{\varepsilon}(f^{r}_{\sigma_{r-1}}(t))$ $(t \in I, r \ge 0)$

Thus given σ_{r-1} , we obtain $f^r \sigma_r$ by moving each point $f^r \sigma_{r-1}(t)$ by a small amount in its own unstable manifold to a point $f^r \sigma_r(t) \notin N$. The hypothesis u > 1 is necessary at this stage, for suppose $W^u(x)$ were 1-dimensional and $f^r \sigma_{r-1}$ passed through N along $W^u(x)$:

It is clearly impossible to move $f^r \sigma_{r-1}$ by at most ϵ along $W^u(x)$ and obtain a continuous path $f^r \sigma_r$ avoiding N. With the con-

94

ORBITS UNDER HYPERBOLIC AUTOMORPHISMS

dition u > 1, it is always possible to make this construction.

From 2), $d(\sigma_r, \sigma_{r-1}) \leq \alpha^r d(f^r \sigma_r, f^r \sigma_{r-1}) \leq \alpha^r \varepsilon$, where α gives the contraction of the unstable manifolds under f^{-1} , and if α is small enough (as can be ensured by taking a power of f) it follows that the sequence (σ_r) converges uniformly to a path τ , with $d(\sigma, \tau) \leq 2\varepsilon$, whose forward orbit misses a neighbourhood N' \subset N of x. Now using the same method with f replaced by f^{-1} we move the path τ by an even smaller amount, say at most δ , $2\delta < \text{diam N'}$, in the direction of the stable manifolds of f, to get a path ρ with $0^-(\rho) \cap N'' = \phi$ for some neighbourhood N'' of x, N'' \subset N'.

Since $\rho(t) \in W^{S}_{\delta}(\tau(t))$, the forward orbit of ρ will be within δ of that of τ and so $0^{+}(\rho) \cap N'' = \phi$. Thus ρ is a path within 3ε of σ and $0(\rho)$ is not dense.

Remarks:

1) If u > 1 and s = 1, the first half of the proof goes through to give a path τ with a non-dense forward orbit. If the original path σ lies in $W^{u}_{\gamma}(p)$ for a fixed point p, then $\tau(I)$ will lie in $W^{u}_{\gamma+2\varepsilon}(p)$ and the backward iterates of $\tau(I)$ will remain in in this set. We can thus obtain paths with non - dense orbits in this case. In particular, suppose u = 2, s = 1 and τ is such a path. Then $K = \overline{O(\tau)}$ is a compact invariant set of dimension at least one. By a result of Hirsch and R. Williams, dim $K \leq 1$, so the original question is answered.

For n > 3, it would be interesting to know whether the resulting invariant sets can be 1-dimensional.

2) It seems to be possible, using a similar method, to prove the theorem for maps $\sigma: I^m \to T^n$ if $m < \min \{u,s\}$.

3) The results probably go through largely unchanged if f is any Anosov diffeomorphism with $\Omega(f) = M$.

95

S.G. HANCOCK

4) Using Markov partitions, we can answer Hirsch's question more directly. For, in the notation of [3], if \mathcal{C} is a Markov partition for an Anosov diffeomorphism $f:M \to M$ with $\Omega(f) = M$ and dim M = n, then $\overline{O(\partial^S \mathcal{C} \cap \partial^U \mathcal{C})}$ is an invariant set of dimension n-2. This follows from Hirsch and Williams'sresult and the product structure of rectangles in \mathcal{C} .

References

- [1] M. Hirsch "On Invariant Subsets of Hyperbolic Sets" in Essays on Topology and Related Topics, Springer (1970)
- [2] J. Franks "Invariant Sets of Hyperbolic Toral Automorphisms" preprint, Northwestern University (1976)
- [3] R. Bowen "Markov Partitions for Axiom A Diffeomorphisms" American Journal of Maths, 92, (1970)

Prof. S.G. Hancock Mathematics Institute University of Warwick Coventry CV4 7AL England