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ORBITS OF PATHS UNDER HYPERBOLIC TORAL AUTOMORPHISMS 

S. G. Hancock 

In , M. Hirsch considers the existence of compact sets inva

riant under hyperbolic toral automorphisms (h.t.a.'s), and mentions 

the question : 

Can a h. t. a. £:T n T n have a compact invariant set of dimen

sion 1 ? 

J. Franks [2] went some way towards providing a négative answer 

2 

when he proved that a compact f-invariant set which contains a C 

arc must contain a coset of an invariant toral subgroup of dimension 

at least 2. If we impose the condition that the characteristic poly-

nomial of f be irreducible over Z , then there are no proper inva-
2 

riant toral subgroups, so every C arc must have a dense orbit. The 

following simple resuit shows that this is usually the case for C° 

arcs, even without the irreducibility assumption : 

Proposition : 

Let f:T n -> T n be a h.t.a. . Then {{a:I + T n : 0(a) is 

dense} = D is a Baire set in C(I,T n) . 

Proof. 

Let { u m } be a countable open base for T n , and 

D = {a:a(I) P 0 (U ) f <|>}.Then D is open since 0 (U ) is open, and 
m nr m r m 
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0(U m) is dense since £ is ergodic, so is also dense, and 

D = H D . 
m 

Against this we have : 

Theorem 

Let £:T n -> T n be a h. t. a. with u > 1 , s > 1, where u and 

s dénote the respective dimensions of the unstable and stable mani

folds of f . Then {a:I •> T n : 0(a) is not dense} is dense in 

C(I,T n). 

Sketch of proof. 

Given a c C(I,T n) and e > 0, we take x c T n and a closed 

neighbourhood N of x of diameter less than e, and first construct 

a séquence of paths a ^ = a, a^, , a^,»-» such that 

1) f ra r(I) H N = <J> (r > 0) 

2) f ra r(t) £ W^(f
ra r_ 1(t)) (t € I, r > 0) 

Thus given a

r_-| >
 w e obtain f r a

r by moving each point 

f r a r - 1 ( t ) by a small amount in its own unstable manifold to a point 

f ra r(t) é N. The hypothesis u > 1 is necessary at this stage, for 

n r 
suppose W (x) were 1-dimensional and f <*r_i passed through N 

along W u(x) : 

I 
If 1 f V i d) c W"(x) 

X 

It is clearly impossible to move f ° T_^ by at most e along 

Wu(x) and obtain a continuous path £ r ° Y avoiding N . With the con-
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dition u > 1 , it is always possible to make this construction. 

r r r r 
From 2 ) , cL(^ r >

 a

r --| ) <
 a d(f s r>f

 a

r_-|) < a e , where a gives 

the contraction of the unstable manifolds under f \ and if a is 

small enough (as can be ensured by taking a power of f) it follows 

that the séquence (a ) converges uniformly to a path x , with 

d(a,x) < 2e , whose forward orbit misses a neighbourhood N 1 C N of 

x . Now using the same method with f replaced by f ^ we move the 

path T by an even smaller amount, say at most 6 , 26 < diam N f , in 

the direction of the stable manifolds of f , to get a path p with 

0"(p) /I N" = cf> for some neighbourhood N" of x , N" C N 1 . 

Since p(t) e W^(x(t)), the forward orbit of p will be within 

6 of that of T and so 0 + ( p ) f) N" = <J> . Thus p is a path within 

3e of o and 0(p) is not dense . 

Remarks : 

1) If u > 1 and s = 1, the first half of the proof goes 

through to give a path x with a non-dense forward orbit. If the ori

ginal path a lies in W^(p) for a fixed point p, then x(I) will 

lie in W^ + 2 e(p)
 a n d the backward itérâtes of x(I) will remain in 

in this set. We can thus obtain paths with non - dense orbits in 

this case. In particular, suppose u = 2 , s = 1 and x is such a 

path. Then K = 0(x) is a compact invariant set of dimension at least 

one. By a resuit of Hirsch and R. Williams, dim K < 1, so the original 

question is answered. 

For n > 3, it would be interesting to know whether the resulting 

invariant sets can be 1-dimensional. 

2) It seems to be possible, using a similar method, to prove the 

theorem for maps a : I m -> T n if m < min {u,s}. 

3) The results probably go through largely unchanged if f is 

any Anosov diffeomorphism with Œ(f) = M . 
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4) Using Markov partitions, we can answer Hirsch's question 
more directly. For, in the notation of [3], if 7? is a Markov parti
tion for an Anosov diffeomorphism f:M •> M with ft(f) = M and 
dim M = n , then 0(3^£ O 9^6) is an invariant set of dimension n-Z. 
This follows from Hirsch and Williams *sresult and the product structu
re of rectangles in £ . 
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