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ERGODIC PROBLEMS IN BIOLOGY 

by 

A. Lasota 
Jagellonian University 

1. Introduction. It is obvious that biological systems 
are extremely complicated and our methods of measuring bio­
logical parameters are far from to be precise. This is the 
usual explanation of the fact that experimental graphs des­
cribing the behavior of biological processes are irregular 
and chaotic. The purpose of the present lecture is to give 
another (or rather one more) explanation of this phenomenon. 
The main idea is to show that in typical biological systems 
there exists a continuous (non atomic) invariant measure 
such that the corresponding measure theoretical systems are 
ergodic, mixing and even exact in the sense of Sohlin. 

Ye start from recalling some recent results concerning 
the existence of invariant measures. Then we shall apply 
them to the following biological problems: 

1) the population growth of a single species, 
2) the production of blood cells. 

Ve shall study these problems mainly with the discrete 
time using the technique of difference equations. Only in 
Section 5 we shall mention some open problems related with 
a delay differential equation. 
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2. Existence of invariant measures. Denote by X a topo­
logical Hausdorff space. By a measure on X we mean any pro­
babilistic measure defined on the (^algebra of Borel subsets 
of X. A measure j^, is called continuous if it vanishes on 
points, that is ytt([x}) = 0 for each singleton [x$ c X. In 
[iij and [i2j it is proved the following 

Theorem 1. Let T: X ->X be a continuous mapping. Assume 
that there exist two nonempty compact sets A,B c X and an 
integer n>s± such that 

T n ( A ) A T n(B) r> A „ B, A ^ B = 0 . 

Then there exists on X a continuous measure JA, which is in­
variant and ergodic with respect to T. 

In the special case when n = 1 and X is an interval of 
the real line ( X = A C. **)» the measure u may be chosen in 
such a way that the dynamical system (A,^, T) is isomorphic 
to the dyadic transformation x 2x (mod 1). In this case it 
is also possible to derive from Theorem 1 the following (t 1 0!^ 

r « 3 ) 
Theorem 2. Let T be a continuous mapping from an inter­

val A (boundet or not) into itself. Assume that there 
exists an integer n >y 1 and a point x D 6 A such that 

l 3 n K > = * 0 . T"K> * *o • 

Then there exists on A a continuous measure jut which is 
invariant and ergodic with respect to T. 
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From the Birkhoff ergodic individual theorem it follows, 

immediately, that under conditions of Theorem 2 there exists 

an uncountable set S (^t(S) = 1 ) such that each trajectory 

starting from a point x£S is simultaneously "turbulent" and 

"stationary"• We call a trajectory [^(x)]^ turbulent if its 

limit set 

L(x) = r\ c l | > ( X ) , X , L + 1 ( X ) F . . . L 

n = i <- J 

iß infinit (in particular it is not a periodic orbit; cf jfeo] )„ 

A trajectory (Tn(x)J is called stationary if for each bounded 

continuous function f: A ->R there exists the limit 

limn 

i 

n 

n - i 

lc=0 

f(Tk(x)) . 

Both properties are essntial from the biological point of 

view. The first one is responsible for the irregular charac­

ter of the process under cosideration. The second one enables 

us to define the time average of each biological parameter 

related with the process. 

Interesting properties of transformations with periodic 

points of period three were discovered by A.N. Sharkovsky[2iJ 

and discussed in several recent papers: [ 3 ] , [10] , [ i 3 ] and [ 1 6 ] , 

There remain, however, manyfbpen questions* For example, does 

there exists under assumptions of Theorem 2 a continuous 

invariant measure µ such that the dynamical system (fl,̂ , T) 

is exact in the sense of Eohlin £ i 9 j ? The problem is of 

some practical value, An affirmative answer would imply a 
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highly irregular behavior of trajectories starting from an 

uncountable set S C A * 

3. Population growth of a single species. Consider a po­

pulation with discrete generations. In ideal conditions,when 

every individual can mature, the growth of the population 

is described by the geometrical progretion * n + 1 = A. x

n 

where xn is the number of individuals in the n-th generation 

and ^ is a constant coefficient larger than 1. In real 

conditions most of individuals die before they are able to 

create a new generation. This is due to the limitation of 

food, existence of compiting species, communicable diseases 

and many other factors which became relevant when x Q is large 

enough. Thus in the real conditions ^ is a decreasing 

function of x n. For the sake of simplicity it is often assu­

med that ^ is a linear function, that is: X = r - qx n 

This leads to the recurrence equation * n + 1 « (r - q* n)x n • 

After changing the variables u n « ^
x j / r we obtain simpli­

fied form 

(i) u n + 1 = run(i - u n) . 

For 0 ¿1 r $ 4 the right hand side T p(u) = ru(l - u) maps 

the unit interval into itself. An easy computation shows 

that for r ̂  3.83 the mapping Tr admits a periodic point of 

period three. According to Theorem 2 this implies that, for 

3,83 ^ r ̂  4, there exists on £0,1J a continuous measure 

which is invariant and ergodic with respect to T y • 

Another, more realistic assumption concerning \ is the 
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••logistic" formula ^ = re""^xt . This leads to the equation 
x n + 1 = rxne-^xrt vhich after substitution u n = qx Q may be 
written as 

(2) u n + 1 = rune"urv . 

The right hand side S r(u) = rue~u maps the half line [0,o*>) 
into itself and has a periodic point of period three for 
r ^ 42.8 • Thus for such r 9s there exists on[0»oo) a conti­
nuous measure which is ergodic and invariant under S r . 

Summarizing our results we conclude that, for r suffi­
ciently large, both systems (l) and (2) describing the po­
pulation growth of a single species admit an uncountable 
family of stationary turbulent trajectories* In both cases 
the biological meaning of the parameter r is the same; it is 
equal to the maximal (net) reproductive rate. An experimen­
tal proof of the chaotic behavior of the size of a popula­
tion with the high net reproductive rate (insects: lucilla 
cuprima) was given by A. Nicholson [17] . 

Periodic and "chaotic"trajectories of difference equa­
tions (i) and (2) have been studied by many authors ; see 
for example [4],[5],[7],[8], [14],[15] and [22]. In compa­
rison with the previous results which require rather compli­
cated and deep technique, Theorem 2 enables us to predict 
"stationary turbulence" by solving a simple numerical 
problem : equation T (u) = u 

4. Production of blood cells. The major blood forming 
organ is the bone marrow. From the bone marrow the blood 
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cells pas8 to the blood vascular system. Here they carry 
oxygen from the lungs to the body tissues (red cells) protect 
the body against infections (white cells) and participate 
in the process of blood clotting (platelets). The blood 
cells are not everlasting. After a time they are destroyed 
either by the natural aging process or by some accidental 
factors (blood diseases, infections,... ). An important 
property of the bone marrow is the ability to change the 
production when the number of blood cells changes• 

Denote by x n the number of blood cells of fixed type 
(for example red cells) at time n. We have 

(з) ^+1 - «и = - d n + Pu 

where d n is the number of cells which are destroyed in the 
time interval £n,n+i] P n * 8 the number of cells which 
are produced during the same period. We shall assume that 
both d n and p n are functions of x n, namely 

(4) dn = £Гхп- Pn = (kxn se-qx 

where k,q,s are positive constants and 0 < (7^<i. The first 
assumption is quite natural (constant destruction rate) and 
the second coincides with recent experimental results due to 
Dr. M. Wa£ewska-Czy2ewska. Setting u n = qx n and substituting 
(4) into (3) we obtain 

(5) nn+1 = (1 - < 7 > n + (cun) se-u (c = kg. 
1-8 
8 ) . 
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This simple difference equation enables us to model the 
behavior of the blood cell population in many clinical cases* 
We shall show some typical examples without going into bio­
logical details, JFix c = 0.47 , s • 8 and consider (5) for 
a few values of (7~. 

(a) Normal conditions: a = 0,1 . Each trajectory £u n} 

starting with u Q >> 2.5 converges to the stationary solution 
u = 15.4 ... . If u Q ̂  2.4 . then lim^ u Q = 0. These facts 
have a simple biological meaning* In normal conditions the 
number of blood cells is stable. However, when it is to small 
(for example after a havy haemorrhage) the organism must die. 

(b) Disease: (7"= 0.4 # Now there exists the unique 
periodic solution of period two: 

• • • • = • 5.. # , n n + 1 « 10.7... , u n + 2 = 15.5... , 

and any trajectory staring with u Q ^ 3,4 is asymptotically 
periodic. Exceptions are trjectories which finish in the 
unstable fixed point a = 12,6,,. . If u ^ 3.3, then 
limn u n = 0 • This behavior of trajectories explains several 
biological facts first of all the existence of stable oscila-
tions in blood cell population. It is also worthwhile to 
observe the adoptation of the "ill" system to the new des­
truction coefficient which now is four times as large. In the 
case (a) the time average of the number of blood cells was 
equal to 15.4... and now we have 

lim 
n 

1 
n 

n-1 

k=0 
n k 

1 
- 5 (15.5 + 10.7) = 13.1... 

245 



A. LASOTA 

which is not much worse. 

(c) Severe disease: (T = 0.8 . With this value of C~ 

the right hand side of equation (5) 

S(u) = (i - <T)u + (cu)se"u 

maps the interval {4.2 , 15.ij into itself and admits a 
periodic point of period three. Thus there exists on this 
interval a continuous measure which is ergodic and invariant 
with respect to S. This implies the existence of an uncoun­
table family of stationary turbulent trajectories which 
remain in the interval [4.2 , 15.ij # When u Q ̂  4.1 . we 
have limn u n = 0. There is an experimental evidence of 
chaotic oscillations in blood cell populations; see for 
example 11$3* Equation (5) gives a simple mathematical ex­
planation of this phenomenon. 

It is necessary to remark that the model of blood cell 
population given by equation (5) is far from to be correct. 
The weakness lies in the discretization of time. There is 
no biological reason for assuming that the blood is produc-
ted in portions. We can obtain much more realistic model 
replacing the difference equation (5) by a similar delay 
differential equation. Such equation will be dicussed in the 
next Section. 

5. Invariant measures for delay differential equations. 
Let Ch be the space of continuous functions v: [-h,0j B 
with the supremum norm topology. Consider a functional 
differential equation (see: [ 6 ] ) 
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(6) u»(t) = f(u t) 0 £ t < 

where f: Ch - » B is a given function and u^ denotes the res­
triction of the unknown function u: L-h, **) - > B to the 
interval Tt-h,t] • We shall suppose that f is sufficiently 
regular, for example Lipschitzean 

Jf(v) - f(w)l ^ L | I v - w|[ c^ v,w 6 C h . 

Then, for each v 6 Ch • equation (6) admits exactly one solu­
tion u: t - h f o o ) B which is continuous on L-h,*«) differen­
tiator on £o yoo) and satisfies the initial value condition 

(7) u(t) = v(t), -h £ t < 0 . 

Given f, consider the mapping T f: Ch -»0^ defined by the 
formula 

(Tfv)(t) = u(t + h), -h ^ t ^ 0 

where u is the solution of (6)y(7). If f is Lipschitzean, 
the mapping T f is not only uniquely determined on Ch but 
also continuous and we can describe the properties of equa­
tion (6) in terms of T f. Namely, we say that a measure J4. on 
Ch is invariant (ergodic) with respect to equation (6) if it 
is invariant (ergodic) under T^. 

Now we shall show an example of a delay differential 
equation for which, as we conjecture, there exists a conti­
nuous ergodic invariant measure. Let us turn back to the 
problem of the production of blood cells. Denote by x(t) 
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the number of cells (of fixed type) at time t . We have 

(8) x'(t) = - d(t) + p(t) 

where p(t) and d(t) denote the instantaneous production and 

instantaneous destruction at time t respectively. Since the 
bone marrow needs several days to product a blood cell it is 
natural to admit that p(t) is a function of x(t-h) . Thus 
instead of (4) we assume that 

(9) d(t) = - <Tx(t), p(t) = (kx(t-h))8e-4*<*-h). 

Setting u = qx and substituting (9) into (8) we obtain 

(10) u»(t) = - <Tu(t) + (cu(t-h))8e""u(t-n) . 

Equation (10) with s = 0 was proposed in [23j as a red cell 
model. In this case (s - 0), according to the recent results 
of S. N. Chow, J. Mallet-Paret Ci] , [2j J. Kaplan and J.Yorke 
[9j it admits periodic solutions for certain values of the 
parameters h and 0" » In the case s > 0 we have the 
following 

Conjecture. For some positive values of the parameters 
c, h, s and <T there exists on Cfi a continuous measure 
which is ergodic and invariant with respect to equation (10). 

Numerical simulations indicate that this is true for 
c = 0.47 , h = 10 , s = 8 and (T = 0.8 . 
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For other interesting models of blood cell kinetics and 
references to the literature consult [18], [23], [24], [25] 
and [26]. 
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