@incollection{AST_1978__51__323_0, author = {Newhouse, S. E.}, title = {Topological entropy and {Hausdorff} dimension for area preserving diffeomorphisms of surfaces}, booktitle = {Syst\`emes dynamiques III - Varsovie}, series = {Ast\'erisque}, pages = {323--334}, publisher = {Soci\'et\'e math\'ematique de France}, number = {51}, year = {1978}, mrnumber = {482851}, zbl = {0376.58010}, language = {en}, url = {http://archive.numdam.org/item/AST_1978__51__323_0/} }
TY - CHAP AU - Newhouse, S. E. TI - Topological entropy and Hausdorff dimension for area preserving diffeomorphisms of surfaces BT - Systèmes dynamiques III - Varsovie AU - Collectif T3 - Astérisque PY - 1978 SP - 323 EP - 334 IS - 51 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1978__51__323_0/ LA - en ID - AST_1978__51__323_0 ER -
%0 Book Section %A Newhouse, S. E. %T Topological entropy and Hausdorff dimension for area preserving diffeomorphisms of surfaces %B Systèmes dynamiques III - Varsovie %A Collectif %S Astérisque %D 1978 %P 323-334 %N 51 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1978__51__323_0/ %G en %F AST_1978__51__323_0
Newhouse, S. E. Topological entropy and Hausdorff dimension for area preserving diffeomorphisms of surfaces, dans Systèmes dynamiques III - Varsovie, Astérisque, no. 51 (1978), pp. 323-334. http://archive.numdam.org/item/AST_1978__51__323_0/
1. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math. No. 470, Springer-Verlag, N.Y., 1975. | MR | Zbl
,2. Ergodic theory on compact spaces, Lecture Notes in Math. No. 527, Springer-Verlag, N.Y., 1976. | MR | Zbl
, , and ,3. Stable manifolds and hyperbolic sets, Global Analysis, Proc. Symp. in Pure Math Vol. XIV, AMS, Providence, RI, 1970, 133-165. | DOI | MR | Zbl
and ,4. Hyperbolic Limit Sets, Trans. AMS 167 (1972), 125-150. | DOI | MR | Zbl
,5. Quasi-elliptic periodic points in conservative dynamical systems, Amer. Jour. of Math., to appear. | MR | Zbl
,6. The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, to appear. | DOI
,7. Cycles and bifurcation theory, Astérisque 31 (1976), 43-141. | Numdam | MR | Zbl
and ,8. On Morse-Smale dynamical systems, Topology 8 (1969), 385-405. | DOI | MR | Zbl
,9. Differentiable dynamical systems, Bull. AMS 73 (1967), 748-817. | DOI | MR | Zbl
,10. Homoclinic points in conservative systems, Inventiones Math. 18 (1972), 267-292. | DOI | EuDML | MR | Zbl
,