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CANONICITY O A CYCLTC SURGPOUP

Or Al ELLTIPTIC CUPVE

Jonathan LUIKTN

(Providence)

The story begins with an observation rade bty Mazur in [1]. Let
p Dbe a prirme, and suppose an elliptic curve I defined over a
number field ¥ has FD (the srounschere ¥ernel of rmultiplication
bv »p ) isomorphic to ’%ﬁZ/pZ . Then for all finite ertension
fields L of ¥ |, the F(p)-dirension c¢f the Celrer group
,b(p)(E,L) is at least [L:Ql)/2 - ¢ , foer a fixed ¢ , This is
Proposition 10.1 of [1], and it follows fror the fact that )b(b) is
essentiallv an Hl with coefficients in [D , excert for primres
where the reduction is unseerly (ma]séante); and from the fact that
Hl(‘«lp) is U /U, where U

My airm has been to find cases where the ranx of the Selrer group

is the group of sglobal units of L

mifsht increase at least linearly with [L:Q] , cother thar the verv

special case mentionred bty Mazur, whose hypothesis on EP reans not
rerely that I 1is ordinary at every prire . of K dividing D,
but that the cyclic subgroup of ©_(¥) that is annihilated bv re-

duction modulo y is the sare for all such *

The results siven below are stated for elliptic curves with
integral Jj-invariant, but the rocdifications necessaryv for the gene-
ral case are all easily made. PFaving rmade this assumption on
we may pass to a finite extension of ¥ over which I evervwhere
has reduction that is seenly (bienséante), and so may ignore

unseerly reduction of additive tvne.

This research was supported Ty & grant from the !lational Science
Feundation.

165



J. LUBIN

The Selmer group fits into the exact sequence
0 — ECO/PE) — AP (10~ WEKN ~— 0,

and it is computed from purely local data. If F is ordinary at a
prime 2? dividing p , the only important datum to know is which
one of the p+l proper subgroups of FP(K) is canonical in the
sense that its elements are annihilated by reduction wodu1c>2ﬁ . In
the supersingular case, all points of FE are annihilated by reduc-
tion mrodulo 2? , but it may be that p of them form a canonical
subgroup in the sense that they are :;—adically closer to the
identity than the other p2-p points of Fp(f) . This hapnpens
exactly when the Easse invariant h of E , computed in the well-
known way not modulo but modulo p , satisfies the condition

ve (h) ¢ p/(p+1l) , where v is the g;adic valuation, normalized so
that vg(p)=l . In either the ordinary or supersingular case, then,
if S 1is a subgroup of FE(K) of order p , we will say that the
local canonicity of S ii zero, c$(8)=0 , if S is not canonical
at 3; and 03(8)=1—%v}(h) if S is canonical at 3 The

global canonicity of S 1is the weighted sum of the local

n
z 8-
c(8) = ——c, (S) s
no%
P

where ng, is the local degree [ngQp] and n 1is the global

canonicities:

degree [X:Q] . Canonicity is clearly invariant under extension of
the base field, and c¢(S)=1 1is just the case that Mazur mentioned.

The computation necessary to connect the canonicity with the
local contributions to the Selmer sroup was first done bv L. Roberts
(in [3], and quoted as Proposition 9.3 of [2]). With this, we can
prove:

Theorem 1. Let E Dbe an elliptic curve defined over the number
field KO

E(KE) of order p . Then there is a finite extension K of KO s

, with j-invariant integral, and let S be a subgroup of

such that for every field L finite over K ,

. (p) 1 .
dlm}.(p))b (E,1) 2 (c(s) - 3)[L:Q]
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(The field K need only be large enough for E over K to
have seemly reduction everywhere, for ED(K) to equal EP(K) s
and for K to be totally complex.)

The way that the Fasse invariant behaves under isogeny of
degsree p enables us to prove also:

Theorem 2. Let FO be an ellipntic curve defined over a number
field ¥,
number p be given. Then there exist: a finite extension-field K

, with d-invariant integral, and let €>0 and the prime

of KO ; an elliptic curve I defined over K and K-isogenous

to EO ; and a subgroup £ of E(K) of order p , such that
c(S) >»1 -¢&

For such a curve,

. (p) 1 .
de(p))é (F,L) ¥ (5 -©)[L:Q]
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