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CANONICITY OF A CYCLIC SURGR0UP 
OF AN ELLIPTIC CUPVE 

Jonathan LUBIN 
(Providence) 

The story begins with an observation rade by Mazur in [1]. Let 
p be a prime, and suppose an elliptic curve P defined over a 
number field K has P (the prounschem-e kernel of multiplication 
by p ) isomorphic to |1 6Z/pZ . Then for ail finite extension 
fields L of K , the F(p)-dimension of the Pelmer group 
^(p)(E,L) is at least [L:Q]/2 - c , for a fixed c . This is 
Proposition 10.1 of [1], and it follov.Ts from the fact that S(p) is 
essentially an H with coefficients in E , except for primes 
where the reduction is unseemly (malseante), and from the fact that 
H"̂(|* ) is ^L/^T^ ' where Uj. is the group of global units of L . 
My aim has been to find cases where the rank of the Selmer group 
might increase at least linearly with [L:Q] , other than the very 
special case mentioned by Mazur, whose hypothesis on E^ means not 
merely that E is ordinary at every prime Y of K dividing p , 
but that the cyclic subgroup of T^(K') that is annihilated bv re­
duction modulo £ is the same for all such Y. 

The results given below are stated for elliptic curves with 
integral j-invariant, but the modifications necessary for the gene­
ral case are all easily made. Paving made this assumption on i , 
we may pass to a finite extension of K over which E everywhere 
has reduction that is seemly (bienseante) , and so m:ay ignore 
unseemly reduction of additive type. 
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The Selmer group fits into the exact sequence 

О — * E(K)/pE(K) Л>р)(Е,К) Ш (К,К) >0 , 
and it is computed from purely local data. If E is ordinary at a 
prime R dividing p , the only important datum to know is which 
one of the p+1 proper subgroups of E^(K) is canonical in the 
sense that its elements are annihilated by reduction modulo J£ . In 
the supersingular case, all points of E^ are annihilated by reduc­
tion modulo AJ| , but it may be that p of them form a canonical 
subgroup in the sense that they are ^-adically closer to the 
identity than the other p2-p points of Cp^K^ • This happens 
exactly when the Kasse invariant h of E , computed in the well-
known way not modulo A£ but modulo p , satisfies the condition 

Vy(h)< p/(p+1) , where v^ is the ^.-adic valuation, normalized so 
that v^(p)=l . In either the ordinary or supersingular case, then, 
if S is a subgroup of E(K) of order p , we will say that the 
local canonicity of S is zero, c^(S)=0 , if S is not canonical 
at ^ ; and c^(S) = l - ^^vj.(h^ if s is canonical at A £ . The 
global canonicity of S is the weighted sum of the local 
canonicities: 

c(S) = п c£ 

where is the local degree [K^:Q ] and n is the global 
o a P 

degree [K:Q] . Canonicity is clearly invariant under extension of 
the base field, and c(S)=l is just the case that Mazur mentioned. 

The computation necessary to connect the canonicity with the 
local contributions to the Selmer group was first done by L. Roberts 
(in [3], and quoted as Proposition 9.3 of [2]). VJith this, we can 
prove : 

Theorem 1. Let E be an elliptic curve defined over the number  
field KQ , with j-invariant integral, and let S be £ subgroup of 
E(K^) of order p . Then there is a finite extension K of KQ , 
such that for every field L finite over K , 

dimr( }Л(р)(Е,и > (c(S) - |)[L:Q] . 
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CANONICITY 

(The field K need only be large enough for E over K to 
have seemly reduction everywhere, for ^ (K) to equal E (K) , 
and for K to be totally complex.) 

The way that the Easse invariant behaves under isogeny of 
degree p enables us to prove also: 

Theorem 2. Let E^ be an elliptic curve defined over a number 
field KQ , with j-invariant integral, and let £.> 0 and the prime  
number p be given. Then there exist: a finite extension-fie1d K 
of KQ ; an elliptic curve E defined over K and K-isogenous 
to Eg ; and a subgroup S of E (K) of order p , such that 

c(S) > 1 - & . 

Eor such a curve, 

dimp(p) A(P)(F,L) > <i-&)[L:Q] . 
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