Astérisque

JONATHAN LUBIN Canonicity of a cyclic subgroup of an elliptic curve

Astérisque, tome 63 (1979), p. 165-167

<http://www.numdam.org/item?id=AST_1979_63_165_0>

© Société mathématique de France, 1979, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Société Mathématique de France Astérisque 63 (1979) p. 165-168

CANONICITY OF A CYCLIC SUBGPOUP OF AN ELLIPTIC CUPVE

Jonathan LUBIN (Providence)

The story begins with an observation made by Mazur in [1]. Let p be a prime, and suppose an elliptic curve E defined over a number field K has E. (the groupscheme kernel of multiplication by p) isomorphic to $\overset{\nu}{\mu}_{n} {}^{\oplus} {f Z}/p {f Z}$. Then for all finite extension fields L of K, the $\mathbf{F}(\mathbf{p})$ -dimension of the Selmer group $\mathbf{k}^{(p)}(\mathbf{E},\mathbf{L})$ is at least $[\mathbf{L}:\mathbf{Q}]/2$ - c , for a fixed c . This is Proposition 10.1 of [1], and it follows from the fact that $\mathfrak{Z}^{(p)}$ is essentially an H^1 with coefficients in E_p , except for primes where the reduction is unseemly (malseante), and from the fact that $H^{1}(\mathbf{\mu}_{p})$ is U_{L}/U_{L}^{p} , where U_{L} is the group of global units of L. My aim has been to find cases where the rank of the Selmer group might increase at least linearly with $[L:\mathbf{Q}]$, other than the very special case mentioned by Mazur, whose hypothesis on $E_{\rm p}$ means not merely that E is ordinary at every prime 🗛 of K dividing p , but that the cyclic subgroup of $F_{p}(\overline{K})$ that is annihilated by reduction modulo γ is the same for all such γ .

The results given below are stated for elliptic curves with integral j-invariant, but the rodifications necessary for the general case are all easily made. Having made this assumption on j, we may pass to a finite extension of K over which E everywhere has reduction that is seemly (bienseante), and so may ignore unseemly reduction of additive type.

This research was supported by a grant from the National Science Foundation.

The Selmer group fits into the exact sequence

 $0 \longrightarrow E(K)/pE(K) \longrightarrow \mathscr{S}^{(p)}(E,K) \longrightarrow \coprod (E,K)_{p} \longrightarrow 0 ,$

and it is computed from purely local data. If E is ordinary at a prime 🛠 dividing p , the only important datum to know is which one of the p+l proper subgroups of $E_{p}(\overline{K})$ is canonical in the the supersingular case, all points of E_{p} are annihilated by reduction modulo \mathbf{y} , but it may be that p of them form a canonical subgroup in the sense that they are &-adically closer to the identity than the other p^2-p points of $E_p(\overline{K})$. This happens exactly when the Hasse invariant h of E $\stackrel{r}{,}$ computed in the wellknown way not modulo 🎖 but modulo p , satisfies the condition $v_{g}(h) < p/(p+1)$, where v_{g} is the γ -adic valuation, normalized so that $v_{y_2}(p)=1$. In either the ordinary or supersingular case, then, if S is a subgroup of $E(\overline{K})$ of order p , we will say that the local canonicity of S is zero, $c_{\mathbf{x}}(S)=0$, if S is not canonical at y; and $c_y(S)=1 - \frac{p+1}{p}v_y(h)$ if S is canonical at y. The global canonicity of S is the weighted sum of the local canonicities:

$$c(S) = \sum_{y \neq p} \frac{n_y}{n} c_y(S)$$

where $n_{\mathscr{F}}$ is the local degree $[K_{\mathscr{F}}; \mathbf{Q}_p]$ and n is the global degree $[K: \mathbf{Q}]$. Canonicity is clearly invariant under extension of the base field, and c(S)=1 is just the case that Mazur mentioned.

,

The computation necessary to connect the canonicity with the local contributions to the Selmer group was first done by L. Roberts (in [3], and quoted as Proposition 9.3 of [2]). With this, we can prove:

Theorem 1. Let E be an elliptic curve defined over the number field K_0 , with j-invariant integral, and let S be a subgroup of $E(\overline{K_0})$ of order p. Then there is a finite extension K of K_0 , such that for every field L finite over K,

$$\dim_{\mathbf{F}(p)} \mathbf{\lambda}^{(p)}(E,L) \geq (c(S) - \frac{1}{2})[L:\mathbf{Q}]$$
.

(The field K need only be large enough for E over K to have seemly reduction everywhere, for $E_p(K)$ to equal $E_p(\overline{K})$, and for K to be totally complex.)

The way that the Hasse invariant behaves under isogeny of degree p enables us to prove also:

Theorem 2. Let F_0 be an elliptic curve defined over a number field K_0 , with j-invariant integral, and let $\varepsilon > 0$ and the prime number p be given. Then there exist: a finite extension-field K of K_0 ; an elliptic curve E defined over K and K-isogenous to E_0 ; and a subgroup S of E(K) of order p, such that $c(S) > 1 - \varepsilon$.

For such a curve,

 $\dim_{\mathbf{F}(p)} \mathbf{A}^{(p)}(\mathbf{F},\mathbf{L}) \mathbf{F} (\frac{1}{2} - \mathbf{\varepsilon})[\mathbf{L}:\mathbf{Q}] .$

References:

[1] B. Mazur, Rational points of Abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), p. 183-266.

[2] — and L. Roberts, Local Euler characteristics, Invent. Math. 9 (1970), p. 201-234.

[3] L. Roberts, On the flat cohomology of finite groups, Harvard thesis, 1968.

> Jonathan LUBIN Mathematics Department Brown University Providence, Rhode Island 02912 U.S.A.