Astérisque

JACK MORAVA The Weil group as automorphisms of the Lubin-Tate group

Astérisque, tome 63 (1979), p. 169-177

<http://www.numdam.org/item?id=AST_1979_63_169_0>

© Société mathématique de France, 1979, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Société Mathématique de France Astérisque 63 (1979) p. 169-178

> THE WEIL GROUP AS AUTOMORPHISMS OF THE LUBIN-TATE GROUP

> > Jack Morava

Introduction:

Let L be a finite extension of Q_p , with maximal abelian extension L_{ab} ; then the canonical monomorphism <u>a</u> of [8,X11§3] maps the multiplicative group of L onto an open dense subgroup $W(L_{ab}/L)$ of the Galois group of L_{ab} over L. These modified Galois [or W-] groups can be defined more generally, and behave very much like Galois groups [8, appendix II], but for some purposes they are more convenient.

For example, there is a representation of W(L_{ab}/L) on the Q_p-vector space L, defined by the obvious multiplication map $L^X \times L \rightarrow L$.

The trace of this representation defines a p-adic character of W(L_{ab}/L) and therefore [via the natural homomorphism from W(\overline{Q}_p/L) to W(L_{ab}/L)] a p-adic character of W(\overline{Q}_p/L). In this note we construct an extension of this character to W(\overline{Q}_p/Q_p) when L is normal over Q_p .

169

J. MORAVA

Our construction uses a theorem of Safarevič: if d is the degree of L over Q_p , and D is a division algebra with center Q_p and invariant $d^{-1} \in Q$ $\mathbb{Z} = Br(Q_p)$, then L can be embedded as a commutative subfield of D; let N(L) be the normaliser of the multiplicative group L^X of L in D^X . The canonical morphism <u>a</u> then extends [8, appendix III] to a canonical isomorphism <u>w</u> : N(L) $\xrightarrow{\sim}$ W(L_{ab} Q_p), and the composition of \underline{w}^{-1} with the reduced trace from D to Q_p defines a character of W(L_{ab} Q_p) and therefore of W(\overline{Q}_p/Q_p).

In §1 we identify N(L) with a group of "extended automorphisms" of the Lubin-Tate group of L; this action defines a cocycle [and thus a representation] ω of N(L), whose trace is the character described above.

The present work was motivated by the construction of a (topological) spectrum which admits N(L) as a group of automorphisms, such that the representation defined on its 2nth homotopy group is the nth tensor power of \boldsymbol{w} [6]. However, the result of §l suggests the hope of a constructive proof of the Weil-Šafarevič theorem [which might shed some light on the interpretation of W(L_{ab}/Q_p) as a group of automorphisms [9]] and could therefore be of wider interest.

I wish to thank the US Academy of Sciences and the Steklov Institute of Mathematics for their support of this research, and Yu. I. Manin [resp. Ramesh Gangolli and Han Sah¹ for interesting conversations during its early [resp. late] stages. It is a pleasure also to thank the organisers of the journees de geometrie algebrique for some exciting days in Rennes.

§1, proof of the main result

1.1. A continuous homomorphism $\phi : A[[T]] \rightarrow A[[T]]$ of commutative

170

WEIL GROUP

formal power series rings will be called an <u>extended</u> endomorphism, if i) $\phi(T)$ lies in the ideal generated by T, and ϕ ii) the image of the composition $A \hookrightarrow A[[T]] \rightarrow A[[T]]$ lies in A. Consequently $\phi(\sum_{i\geq 0} a_i T^i) = \sum_{i\geq 0} \phi(a_i)\phi(T)^i$.

Note that the composition of two extended endomorphisms is another, and that the tensor product $\phi \otimes_A \phi$ maps A[[T \otimes 1,1 \otimes T]] to itself by $(\phi \otimes_A \phi)(\sum_{i,j\geq 0} a_{ij}T^i \otimes T^j) = \sum_{i,j\geq 0} \phi(a_{ij})\phi(T)^i \otimes_A \phi(T)^j$.

If $F(X,Y) \in A[[X,Y]]$ is a [one-parameter, commutative] formal group law over A, then the extended endomorphism ϕ of A[[T]] will be called an extended endomorphism of F provided that the diagram

$$\begin{array}{c|c} A[[T]] & \Delta_{F} \\ & & A[[T\otimes 1, 1\otimes T]] \\ & & & & & & \\ \phi & & & & & \\ A[[T]] & & \Delta_{F} \\ & & & & & & & \\ A[[T\otimes 1, 1\otimes T]] \end{array}$$

[defined by $\Delta_{F}(T) = F(T \otimes l, l \otimes T)$] is commutative.

If $Aut^*(F)$ denotes the group of extended automorphisms of F [under composition] then it follows from i) and ii) that there is an exact sequence

$$1 \longrightarrow \operatorname{Aut}_{A}(F) \longrightarrow \operatorname{Aut}_{A}^{*}(F) \longrightarrow \operatorname{Aut}_{A}^{*}(F)$$

with the terminal group consisting of the continuous ring-automorphisms of A; the usual automorphisms of F over A [4,1§2] define the group $Aut_{\Delta}(F)$.

1.2. We write \underline{o}_{L} for the valuation ring of L, and $\underline{\diamond}_{L}$ for the valuation ring of the completion $\underline{\wedge}$ of a maximal unramified extension L_{nr} of L; if $\underline{\lambda}$ denotes the residue field of \underline{o}_{L} , and $\underline{\lambda}$ is the union of the finite fields, then $\underline{\diamond}_{L} \cong \underline{o}_{L} \otimes_{W(\underline{\lambda})} W(\underline{\lambda})$.

J. MORAVA

If $\pi \in \underline{o}_{L}$ is a uniformising element, and q is the cardinality of χ , then the series

$$\log_{\pi}(\mathbf{T}) = \sum_{\substack{\Sigma \mid \pi \\ i \ge 0}} -i_{\mathbf{T}} q^{\frac{1}{2}}$$

defines a formal group law $F_{\eta}(X,Y) = \log_{\eta}^{-1}(\log_{\eta}(x) + \log_{\eta}(Y))$ for which the map $\underline{\phi}_{L}^{X} \ni a \mapsto [a]_{\eta}(T) = \log_{\eta}^{-1}(a \cdot \log_{\eta}(T)) \in \operatorname{Aut}_{\underline{\Delta}_{L}}(F_{\eta})$ is a bijection [1]. By "the" Lubin-Tate group of L, we mean the class of formal group laws over $\underline{\hat{\Delta}}_{L}$ isomorphic to F_{η} for some (and hence any) choice of π . [If π_{0} , π_{1} are two choices of uniformising element, then [5, lemma 2] there exists an invertible series $\boldsymbol{\phi}_{0}^{1}(T) \in \underline{\hat{\Delta}}_{L}[[T]]$ such that

i) ϕ_0^1 is an isomorphism of F_{π_0} with F_{π_1} , and ii) if σ is the automorphism of $\stackrel{\bullet}{}_{L}$ defined by the Frobenius operation $x \Rightarrow x^q$ on the residue field, then

$$\boldsymbol{o}(\boldsymbol{\phi}_{O}^{1}(\mathbf{T})) = \boldsymbol{\phi}_{O}^{1}([\boldsymbol{\pi}_{O}^{-1}\boldsymbol{\pi}_{1}]_{\boldsymbol{\pi}_{O}}(\mathbf{T})). \mathbf{1}$$

We denote the formal group law over $\widetilde{\chi}$ defined by reducing F_{μ} modulo the maximal ideal $\underline{\widehat{M}}_{L}$ of $\underline{\widehat{O}}_{L}$ by \overline{F}_{μ} ; its height equals the degree of L over Q_{D} [1, lemma 9].

1.3. Now the ring of endomorphisms of a group law of height d over an algebraically closed field of characteristic p is the valuation ring \underline{o}_{D} of a division algebra D with center Q_{p} and invariant $d^{-1} \in Q/Z = Br(Q_{p})$ [4, /I §7.42], and the normalised ordinal valuation of an element of \underline{o}_{D} is its height as a power series. It follows that the sequence of 1.1 can be continued to the right as

$$1 \longrightarrow \underline{o}_{D}^{X} \longrightarrow \operatorname{Aut}_{\mathcal{I}}^{*}(\overline{F}_{\eta}) \longrightarrow \mathfrak{g}(\overline{\mathcal{I}}/F_{p}) \cong \widehat{\mathbb{Z}} \longrightarrow 1 :$$

to construct a lifting of the Frobenius endomorphism $\sigma_0(x) = x^0$ of $\overline{\mathcal{I}}$,

let $\theta \in \underline{o}_{D}$ be an endomorphism of height 1 [so $\theta(T) = \theta_{0}(T^{p})$ with θ_{0} an invertible series]; then $\theta = \mathbf{o}_{0}^{*} \theta_{0}$ has the desired property. This shows moreover that $\operatorname{Aut}_{\mathcal{X}}^{*}(\overline{F}_{\pi})$ is isomorphic to the profinite completion of the multiplicative group D^{X} of D under the correspondence which sends the endomorphism $\boldsymbol{\phi}$ [which can be written as $\boldsymbol{\phi}(T) = \boldsymbol{\phi}_{0}(T^{p^{T}})$ with $\boldsymbol{\phi}_{0}$ invertible and $r \geq 0$] to the extended subtraction of a series $\mathbf{a} \in \underline{o}_{D}^{X}$ by θ in $\operatorname{Aut}_{\mathcal{X}}^{*}(\overline{F}_{\pi})$ agrees with its conjugation by θ in L, or that $\operatorname{Poc}_{O}^{*} \mathbf{a} \mathbf{o}_{0}^{*-1} = \mathbf{a} \cdot \mathbf{P}$, where $\mathbf{P}(T) = T^{p}$; this is an elementary exercise in the composition of power series.

1.4. It follows similarly that if L is a normal extension of \mathbb{Q}_p , then Aut<u>x</u> (\mathbf{F}_{π}) is a central topological extension of the Galois \mathbb{Q}_L \mathbb{Q}_L . To see that the final homomorphism of the sequence in 1.1 is onto, note that if $\pi_0 = \pi$ is a uniformising element and $\mathbf{g} \in \mathbf{G}(\mathbf{L}_{nr}/\mathbb{Q}_p)$ then $\pi_1 = \mathbf{g}(\pi)$ is another and $\sum_{\mathbf{i} \geq 0} \mathbf{a}_{\mathbf{i}} \mathbf{T}^{\mathbf{i}} \Rightarrow \sum_{\mathbf{i} \geq 0} \mathbf{g}(\mathbf{a}_{\mathbf{i}})(\boldsymbol{\phi}_0^1(\mathbf{T}))^{\mathbf{i}}$ defines a (noncanonical!) lift of \mathbf{g} to an extended automorphism. Since any automorphism of a formal group law over an integral domain of characteristic 0 is determined by its leading coefficient, the group $\mathbf{G}(\mathbf{L}_{nr}/\mathbb{Q}_p)$ acts on the subgroup $\underline{o}_{\mathbf{L}}^{\mathbf{X}}$ via the canonical homomorphism to $\mathbf{G}(\mathbf{L}/\mathbb{Q}_p)$.

1.5. Now an extended automorphism of $\underline{\diamond}_{L}[[T]]$ maps the ideal $\underline{\bigstar}_{L}[[T]]$ to itself, so an extended automorphism ϕ of F_{π} defines an extended automorphism of \overline{F}_{π} , which we will denote by

$$\rho : \operatorname{Aut}_{\underline{O}_{\mathrm{L}}}^{\star}(\mathbb{F}_{\pi}) \to \operatorname{Aut}_{\underline{j}}^{\star}(\overline{\mathbb{F}}_{\pi}).$$

Since the reduction of a usual automorphism of ${\rm F}_\pi$ is a usual automorphism of $\overline{{\rm F}}_\pi$, we have a commutative diagram

Now the final vertical arrow fits in an exact sequence

$$1 \longrightarrow I(L/Q_p) \longrightarrow G(L_nr/Q_p) \longrightarrow G(\overline{Z}/F_p) \cong 2 \longrightarrow 1$$

which defines the inertia group of L over \mathtt{Q}_p , and the homomorphism ρ_D is injective since \overline{F}_π is of finite height. It follows that ρ_D is injective, for $I(L/\mathtt{Q}_D)$ acts effectively on \underline{o}_L^X .

It will simplify matters to pull our commutative diagram back along the dense embedding Z $\longrightarrow 2$: the effect is to replace $(D^X)^{\wedge}$ with D^X , $G(L_{nr}/Q_p)$ with the open dense subgroup $W(L_{nr}/Q_p)$, and Aut* (F_{π}) with an open dense subgroup which we will denote Aut⁰; the original diagram can be recovered by profinite completion.

1.6. It remains to identify the image of ρ . We observe first that because \overline{F}_{π} has coefficients in \mathcal{I} , the extended automorphism $\rho([\pi]_{\pi}) = \sigma_0^d = \sigma$ commutes with elements of $\rho_0(\underline{o}_L^X)$ in D^X . It follows that $\rho_0(\underline{o}_L^X)$ and σ generate a (normal) subgroup of Aut^O isomorphic to L^X , and that the image of ρ is therefore contained in the normaliser N(L) of L^X in D^X . But now the Weyl group of L^X in D^X is $G(L/Q_p)$ if L is normal [8, appendix III§7]so we have a commutative diagram

$$1 \longrightarrow L^{X} \longrightarrow N(L) \longrightarrow G(L/Q_{p}) \longrightarrow 1$$

with exact rows and columns. If $x \in N(L)$ then there is some y in Aut⁰ such that $z = y^{-1}x$ lies in L^x , so x = yz lies in Aut⁰. This completes the proof of

1.7. proposition: The momentum ρ maps an open dense subgroup of Aut* (F_{π}) onto the normaliser N(L) of L^X in D^X.

§2. some corollaries

2.1. If $\delta \in N(L)$, then we write $\overline{\rho}^{1}(\delta)(T) = w(\delta)T + \text{higher order}$ terms for the action of the extended automorphism $\overline{\rho}^{1}(\delta)$ on the formal parameter T; here $w(\delta)$ is a unit of Δ_{L}^{∞} . The composition $N(L) \longrightarrow W(L_{ab}/Q_{p}) \longrightarrow W(L_{nr}/Q_{p})$ defines an action of N(L) on Lwhich we will denote by juxtaposition. With this notation, we have

 $\boldsymbol{\omega}\left(\boldsymbol{\delta}_{\boldsymbol{O}}\boldsymbol{\delta}_{\underline{1}}\right) \;=\; \boldsymbol{\delta}_{\underline{1}}\left(\boldsymbol{\omega}\left(\boldsymbol{\delta}_{\boldsymbol{O}}\right)\right)\boldsymbol{\cdot}\boldsymbol{\omega}\left(\boldsymbol{\delta}_{\underline{1}}\right) \;\;;$

in other words, $\boldsymbol{\omega}$ is a crossed antihomomorphism from N(L) to $\underline{\diamond}_{L}^{X}$. Note that if $\delta \in \underline{\diamond}_{L}^{X}$, then $\boldsymbol{\omega}(\delta) = \delta^{-1}$ [7, III§A4].

$$\overline{\rho}^{1}(\delta)(\mathbb{T}) = \log_{\delta(\pi)}^{-1}(\omega(\delta) \cdot \log_{\pi}(\mathbb{T})) ;$$

consequently the crossed antihomomorphism ω specifies the action of N(L) on $\overset{\wedge}{\underline{o}}_{T}[[T]]$.

2.2. The l-cocycle $\delta \mapsto \omega(\overline{\delta}^{1})$ of N(L) with values in the right N(L) module $(\underline{o}_{L}^{X})^{op}$ [defined by $x^{op}\delta = (\overline{\delta}^{1}x)^{op}$] defines a class in a continuous cochain cohomology group isomorphic to $H_{c}^{1}(W(L_{ab}/Q_{p}); \underline{o}_{L}^{X})$. The Hochschild-Serre spectral sequence of the topological extension

$$E: 1 \longrightarrow W(L_{ab}/L_{nr}) \longrightarrow W(L_{ab}/Q_{p}) \longrightarrow W(L_{nr}/Q_{p}) \longrightarrow I$$

yields an exact sequence

J. MORAVA

$$\cdots \rightarrow \operatorname{H}^{1}_{c}(\operatorname{W}(\operatorname{L}_{ab}/\operatorname{Q}_{p}); \underbrace{\overset{\bullet}{O}_{L}}{}) \xrightarrow{} \operatorname{H}^{0}_{c}(\operatorname{W}(\operatorname{L}_{nr}/\operatorname{Q}_{p}); \operatorname{H}^{1}_{c}(\underbrace{o_{L}^{x}}; \underbrace{o_{L}^{x}}{}) \cong \operatorname{G}(\operatorname{L}/\operatorname{Q}_{p}) - \operatorname{invariants} \operatorname{of} \operatorname{Hom}_{c}(\underbrace{o_{L}^{x}}, \underbrace{o_{L}^{x}}{}) \xrightarrow{} \operatorname{H}^{2}_{c}(\operatorname{W}(\operatorname{L}_{nr}/\operatorname{Q}_{p}); \underbrace{\overset{\bullet}{O}_{L}}{}) \cong \operatorname{H}^{2}(\operatorname{G}(\operatorname{L}/\operatorname{Q}_{p}); \operatorname{d}_{L}^{x})$$

of terms of low degree. The existence of the cocyle w implies $d_2 = 0$; since $d_2(x) = -x \cup [E]$ [3, theorem 4] it follows that the inclusion $\underline{o}_L^X \rightarrow \underline{o}_L^X$ induces the zero map from $H_c^2(W(L_{nr}/Q_p); \underline{o}_L^Z)$ to $H_c^2(W(L_{nr}/Q_p); \underline{o}_L^X)$. A direct proof of this might suggest a construction for w.

2.3. The isomorphism $G(L_{ab}/Q_p)$ with $\operatorname{Aut}_{\underline{O}_L}^*(F_w)$ defined in §1.7 respects an implicit proalgebraic group structure, which may be made explicit by observing that $G(L_{ab}/Q_p)$ is isomorphic to the semidirect product $I(L_{ab}/Q_p) \cdot G(\overline{Z}/F_p)$, in which $I(L_{ab}/Q_p)$ is the inertia group of L_{ab} over Q_p . In particular, $I(L_{ab}/Q_p)$ admits a continuous action of $G(\overline{Z}/F_p)$, and may therefore be regarded as a proetale groupscheme over F_p [2,II§5]. On the other hand \underline{O}_D^X is represented by a group of power series with coefficients in \overline{Z} , and has an obvious structure as proetale groupscheme defined [a priori] over \underline{Y} , in which the generator of $G(\overline{Z}/\overline{Z})$ acts on \underline{O}_D^X by π -conjugation in D^X . The maximal compact subgroup $N^O(L)$ of N(L) inherits this structure.

However, if the uniformising element π of \underline{o}_L is chosen to satisfy an Eisenstein equation with coefficients in \hat{Z}_p , then \overline{F}_{π} has coefficients in F_p , and $\theta(X) = X^p$ defines an endomorphism of \overline{F}_{π} which maps to an $f^{\underline{th}}$ root of π in $\operatorname{Aut}^*(\overline{F}_{\pi})$, where $q = p^f$. It follows that $N^O(L)$ is in fact a proetale groupscheme defined over F_p , and is isomorphic as such to $I(L_{ab}/Q_p)$. Consequently the group of F_p -valued points of $I(L_{ab}/Q_p)$ can be identified with the automorphisms of F_{π} defined over \widehat{Z}_p , which leads to the

<u>corollary</u>: $I(L_{ab}/Q_p)(F_p) \cong Z_p^{Xx}$

references:

- P. Cartier, Groupes de Lubin-Tate généralisés, Inventiones Math. 35 (1976) 273-284.
- 2. M. Demazure, P. Gabriel, Groupes Algébriques I, North Holland
- 3. G. Hochschild, J-P. Serre, Group extensions and spectral sequences, Trans. AMS 74 (1953) 110-134.
- M. Lazard, <u>Commutative Formal Groups</u>, Lecture Notes in Math. #443, Springer.
- 5. J. Lubin, J. Tate, Formal complex multiplication in local fields, Ann. of Math. 81 (1965) 380-387.
- Ju. B. Rudjak, Formal groups and bordisms with singularities, Math. Sbornik, AMS translation 25 (1975) 487-504.
- 7. J.-P. Serre, <u>Abelian Z-adic Representations and Elliptic Curves</u>, Benjamin.
- 8. A. Weil, <u>Basic Number Theory</u>, Springer, Grundlehren # 144, but not the first edition.
- 9. ____, Sur la theorie du corps de classes, J. Math. Soc. Japan 3(1951) 1-35.

J. Morava Department of Mathematics SUNY at Stony Brook Stony Brook, New York 11794