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THE WEIL GROUP AS AUTOMORPHISMS

OF THIS LUBIHN-TATE GROUP

Jack Morava

Introduction:

Let L be a finite extension of Qp, with maximal abelian exten-
sion Lab; then the canonical monomorphism & of [8,41.1823] maps the
multiplicative groupn of L onto an open deuse subgroup W(Lab/L) of
the Galois group of Lab over L. These modified Galois [or W-] sroups
can be defined more generally, and behave very much like Galois

groups [8, appendix II], but for some purposes they are more conven-

ient.

For example, there is a representation of W(Lab/L) on the Qp—

vector space L, defined by the obvious multiplication map LX x L - L.

The trace of this representation defines a p-adic character of
W(Lab/L) and therefore [via the natural homomorpaism from
W(Q;/L)tx)w(Lab/L)] a p-adic character of W(QE/L). In this note we
construct an extension of this character to W(Qb/Qp) when L is nor-

mal over Qp.
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Our construction uses a theorem of nafareviX: if d is the deyree
of L over QP’ and D 1s a division algebra with center Qp and
invariant d-l € Q n = Hr(Qp), then L can be embedded as a commutative
subfield of D; let N(L) be the normaliser of the multiplicative

)

X S X . . .
croup I of L in D7. The canonical morphism a then extends [,

appendix [LL] to a canonical isomorvhism w : N(LY == w(L

b Q,p), and

c e -1 . .
the composition of w with the reduced trace from D Lo QP defines

a character of N(Ih

) : - e Ww(o @
b Qp) and therefore of N\Qp,upﬁ.

n

81 we identify N(L) with a ~roup of "extended automorphisms
of the Lubin-Tate vrroup of I3 this action defines a cocycle |and
thus a representation) w of (L), whose trace is the character

described above.

The present work was motivated by the construction of a (topo-

losical) spectrun which admits (L) as o croup of automorphisms,

N ) . . . ~.th o ) .
such that the rerresentation defined on its n homotopy oroup 1is

th . : , .
the n tensor power of @ [O1. liowever, the result of §1l swrtests
the hope of a constructive proof of the Weil-Safarevic ftheorem
[which micht shed some light on the intervretation of N(Lah/Qp) as a

sroup of automorphisms [9]1 and could therefore be of wider interest.

I wish to thank the US Academy of sciences and the Steklov
Institute of Mathematics for theilr suvport of thils research, and Yu.
I. lManin [resp. Ramesh Gangolli and Han Sah! for interesting convers-
ations durinz its early [resv. late! stages. [t 1s a pleasnre also
to thank the orsanisers of the journees de geometrie algebrique for

some exclting days in Rennes.
§1, proof of the main result

1.1. A continuous homomorphism ¢ :A[[TI] = A[[T]] of commutative
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WEIL GROUP

formal power series rings will be called an extended endomorphism, if

i) ¢(T) lies in the ideal generated by 7T, and

@
ii) the image of the composition A > A[[T1] - A[[T!] lies in A.
Consequently ¢( = aiTl) = 3 ¢(a)e(T)*
iz0 iz0

Note that the composition of two extended endomorphisms 1is

another, and that the tensor product ¢ ®A¢ maps A[[T®1,1®T]] to

itself by (¢ 8,8)( = ai.wl®mJ) = 3 ¢(ai.)¢(T)I®A¢(IﬁJ.
i,j20 1 i,520 M
[f F(X,Y) € A[[X,Y]] is a [one-varameter, commutativel formal

ogroup law over A, then the extended endomorphism ¢ of A[[T1] will be

called an extended endomorphism of F provided that the diagram

-
AfTTI L A([1®1,1®T]]
¢ by ¢ ®,0

Al[T]] A[[T®1,18T1]

[defined by AF(T) = F(T1,1®7)] is commutative.

If Aut¥*(F) denotes the group of extended automorphisms of F
[under compositionl then it follows from i) and ii) that there is an

exact sequence

()

l———————rAutA(F)———————»AutX(F)———————vAut(rings)

with the terminal group consisting of the continuous ring-automoroh-
isms of A; the usual automorphisms of F over A [4,1§2] define the

groun AutA(F).

l.2. We write or for the valuation ring of L, and @L for the valu-

ation ring of the completion ﬁ of a maximal unramified extension
Lnr of Ly 1if Y denotes the residue field of o1 and Y is the union

. . . A =1
of the finite fields, then o = o ®W(I)W(I>‘
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[f 7 e oy, is a uniformising element, and g is tre cardinality

of ¥, then the series

i
louw(T) = 3 oy tpd
iz0
defines a formal group law I' (X,7) = log_l(lOf () + Low (7)) for
I i I I
. X : - )
which the map of 5 a > [a /(W) = log l(u-lom (7)Y € Autn (T ) iz &
- i i i [ i
4 ! =7,
bijection [1]. by "the Lubin-Tate group of L, we mean the class
Ao . e P
of formal croup laws over o, isomorphic to I for and ance
- i

any) choice of . [ »

ns Wqoare Lwo cholces of unifermicing le-

1

ment, then [4%, lemma 21 there exicte an invertible serics

1
0

i)
ii)

X =

(1) € @II[T]] such that

¢l is an isomorphism of I’ with I'  , and
0] ([ 1

0 1
iff ov is the automorphism of ﬁ def'ined by the Frobsnius coperation
a

x* on the residue field, then
YLy - gtrr. 1 .
oo (1)) = ¢ LTy L))

0

We denote the formal oroup law over 7]: defined by reducing F,”

. . A A = . . .
modulo the maximal ideal it of o, wy I' 3 1lts height eguals the

L

degree of L over Q_  [1, lemma 9I.

1.3.

Now the ring of endomorphisms of & group law of heilsht d over

an algebraically closed field of characteristic p 1g the valuation

ring on of a division algebra D with center QD and 1lnvariant
d_l € Q/7 = Br(Qp) [4, /I §7.421, and the normalised ordinal valu-

ation of an element of °h is its height as a power serles. [t

follows that the sequence of 1.1 can be continued to the right as

% _ —_ A
1 Yo, » At (F )———»3(I/F ) = s 1

a / )
,I e/ v A/ p

to construct a lifting of the Frobenius endomorphism o (x) = x of 1,

O
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WFEllL GROUP

let 8 € o, be an endomorphicm of heisht 1 [so 6(T) =8 (1P) wity g,
o . g

an invertible series]; then § = 06“60 has the deslred property.

This shows moreover that Auhifﬁ;) is isomorphic to the profinite
"
. R . X ,
completion of the multiplicative sroup D7 of [ under the correspond-
ence which sends the endomorpniism ¢ [which ~an be virlttern as

v
e(T) = ¢O(Tp ) with ¢, invertible and r 2 O] 4o bhe extended cuto-

. r s . .
morphism dUO ] [t sufficee to see fhat the conjuration of o

0"
by 6 in Auti/? ) avrees with ite coajuration by 6 inT,

-1
0

. X
geries o € 0of)

or that Pw“dva 6] as1’, where (7)) = 7" this 1le an elementary

exercise 1n the composition of power serilec.

1.4, [t follows similarly that 1f L 1s a ncrusl exrnension of ¢

then Autg (I" ) is a central topologsical extinsicon of the Galcis
5) "
L .
Z.

sroup G(LHF/QP) by the multiplicative sroup of

T
pu]

. TC see tnat tne

final homomorphism of the sequence in 1.1 is onto, note that 1f

my = m is a uniformising element and z € G(LPP/Q') then v, = o ()
. < l <« ( \( l o \i N . . [ - K 1
is another and 2 a.T = 3 ol(a,)(¢-(T))" defines a [(roncanonicall)

] C
120 iz 0
Lift of ¢ to an extended automorphism. Since any automorphism of a
formal group law over an integral domain of characteristic O is

determined by its leading coefficient, the zroup G(L

X . . . Nl
the subgroup o] via the canonical homomorphism to G(L/Q ).

L

1.5. Now an extended automorphism of @L[{Tli maps the ideal @L[[T]W
to itself, so an extended aubtomorphism ¢ of F_ defines an extended
automorphism of F%,which we will denote by
P Autk (F ) - Aut
m
21
Since the reduction of a usual automorphism of Fv is a usual auto-

morphism of ﬁ%, we have a commutative diagram
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[ * } .
1 > op > Autﬁ (Ew) S u(Lnr/Qp) v 1
o)
—L
l o lp
X AN ST ) = b
1 > of + (0" ——s o(T7) = O 1.
Now the final vertical arrow fits in an exact sequence
1 v ‘>———b 1

T<L/QP> - G<Lnr’/Qp> — G(inp) =

which defines the inertia group of L over Qp, and the homomorphism

cn s injective since FW is of finite heicht. [t follows that °
x

1s injective, for L(L/Qp) acts effectively on o7

[t will simplify matters to pull ocur commutative diagram back

» ﬁ : the effect 1s to replace

along the dense embedding 7

(DX)A with D°, G(Lnr/Qv> with the open dense subgroup W(Lm

,/Qp), and

Autx (FW) with an open dense subgroup which we will denote AutO;
oy
the original diagram can be recovered by profinite completion.

1.6. It remains to identify the imace of p. We observe first that

because F_ has coefficients in }, the extended automorphism
) = c% = o commutes with elements of DO<9£) in D*. It follows

O(QE) and o senerate a (normal) subgroup of aut? isomorphic to
X

L%, and that the image of p 1is therefore contained in the normaliser

that p

N(L) of TX in D*. =ut now the Wevl zrour of L¥ in D* is G(L,Qp) if L

is normal [8, appendix T11%§7]so we have a commutative diagram

1
Aut” » W(L. Q) > 1
] nr’ °p
{
v
1 - 15 - L) . G(L/Qp> > 1
|
\4
1
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with exact rows and columns. If x € N(L) then Lhere is some y in
AUCO such that z = y—lx lies in LX, so x = yz lies in Auto.

'his completes the proof of

1.7. proposition: The moromorphism p maps an open dense subgroup of

Autx (F”) onto the normaliser N(L) gﬁ_LX ;Q_DX.
)
=L

§2. some corollaries

2.1, If & € N(L), then we write Bi(é)(T) = w(8)T + higher order

terms for the action of the extended automorphism 51(6) on the

) . . AX - N
formal parameter T; here w(d) is a unit of Op - ‘The composition

4

N(L)—— W<Lab/Qp>__——_"W(Lnr/Qp) defines an action of N(L) on &
which we will denote by juxtaposition. With this notation, we have
w(ogd ) =8y (wleg)) wlsy) ;

A
O

in other words, w is a crossed antihomomorphism from N(L) to _i.

Note that if & € gf, then w(s) = 571 (7, L[IL§ALT.

An extended automorphism of FW defines an extended automorphism

of FW ®_Q, and it follows that

—l m - o —l . ¢ m -
P (8)(T) = loggy y(w(s)-log (T)) ;
consequently the crossed antihomomorphism w specifies the action of

N(L) on @L[[T}].

2.2. The l-cocycle & » w(gl) of N(L) with values in the right N(L)

module (gi)Op [defined by x°Ps = (3lx)0p] defines a class in a con-
tinuous cochain cohomology group isomorphic to Hé(w(Lab/Qp>;§£)’
The Hochschild-Serre spectral sequence of the topological extension
JOR W

L (L /Ty ) W (L /@ ) —— W (L, Q) —— 1

ylelds an exact sequence
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ook Axy o 0 ol WMy L
(WL, /Qn)50p) = Ho(W(L Q)51 (opsor) = GlL/a )~
d,
. . X X co2 VNN P s
invariants of Homc(gL,gL)——ﬂxHG(W(LHF/QP),QL) = | (u(L/Qp),%)

of terms of low degree. The existence of the cocyle w implies

d, = 0; since d?(x) = -x U [I'] [3, theorem 4| it follows that iLhe
Ax . - ' .
inclusion oi - o? induces the zero map frow I (w(hry/QD>:0?) Lo
= -1 (¢} 1 —l
2 A . X . . .
”c<w(Lnr/Qp)52£>‘ A direct proof of this misht sugprest a construc-

tion for w.

2.3, T isomorphism G ith Aut* (1 fPined in 81
3 lhe isomorphism &(Lab/Qp> with Aut¥ (,H) defined in §1.7

2y

respects an implicit vrecalgebralce oroup structure, which may be rade

explicit by observing that G(L /Qp> is dlecmorphle to the semidirect

ab’
product I(Lah/Qp)'G(Ipr), in which T(Lab/Qp) ig the inertia sroup
of Ly over Qp. [n particular, F(Lab/Qp) admits a continuous action
of G(EVFP), and may therefore be regarded as a proctale groupscherne
over Fp [2,11§5]. On the other hand 9% is reprecented by a croup of
power series with coefficicnts in ¥, and has an obvious structure
as proetale groupscheme defined [a priori] over XY, in which the g n-
erator of G(XZ/Y) acts on 93 by w-conjusation in D*. The maximal

o

compact subgroup N (L) of N(L) inherits this structure.

However, 1f the uniformising element 7 of o1 is chosen to satis-
-l
fy an Eisenstein equation with coefficilents in Qp, then FT has

coefficients in Fp, and 6(x) = x° defines an endomorphism of F%

which maps to an £ root of 7 in Aut*(?}), where q = pf. It

follows that NO(L) is in fact a proetale groupscheme defined over

Fp, and is isomorphic as such to I(Lab/Qp). Consequently the group
of Fp—valued points of I(Lab/Qp) can be identified with the auto-

morphisms of FTr defined over %b, which leads to the
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corollary: I(Lab/Qp)(Fp) = %g
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