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ON FORMAL GROUPS. THE FUNCTIONAL EQUATION 

LEMMA AND SOME OF ITS APPLICATIONS. 

par 

Michiel Hazewinkel 

(Rotterdam) 

1. INTRODUCTION,, Let R be a ring and let F(X,Y) be an n-diraensional commutative 
formal group law over R. Assume that R is torsion free and let f(X) over R 8 X) 
be the logarithm of F(X,Y). Roughly, the functional equation lemma to be 
discussed below says what kind of regu larity f(X) £ R 8I)[[X]] must exhibit 
in order that i t be the logarithm of a formal group law with coefficients in R0 
The precise statement of the lemma is in section 2 below0 The lemma turns out 
to have many more applications (then just the construction of universal formal 
group laws)Q It is the purpose of the present paper to outline a few of these 
and to try to convince the reader of the power of the lemma in proving a large 
variety of integrality statements0 (Because commutative formal group laws over 
I^-algebras are t r ivial , the theory of commutative formal group laws over torsion 
free rings is largely a matter of integrality statements)0 To cite of few 
instances: the integrality of the addition and multiplication polynomials of the 
Witt vectors, the Atkin-Swinnerton Dyer congruences, the construction of 
generalized Lubin-Tate formal group laws ("tapis de Cartier") can all be seen as 
applications of the functional equation lemma. Many more applications of the 
functional equation lemma can be found in [7] and [8]. This paper contains no 
new results or proofs which are not also in [7], with the exception of the 
proof of Mv(M,ri)(X) reduces to V(X)" in section 6 below, which in [7] is done 
in a needlessly cumbersome fashion. 
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M. HAZEWINKEL 

20 THE FUNCTIONAL EQUATION LEMMA. The ingredients we need are the following 

(2C1) B c L, (Jl c B, O : L ^ L,p, q, s , s^, ... 

Here B is a subring of a ring L, en. is an ideal in B, a a ring endomo.rphism of L, 

p is a prime number, q is a power of p and the s^, i = 1,2, . . . are m x m 

matrices with their coefficients in L, These ingredients are supposed to 

satisfy the following conditions 

(20 2) p G 01 , a(b) = bq mod 01 for all b e B, ar (s . ( j ,k)) 01 cz B for all i , j ,k,r 

Here s^(j,k) is the ( j ,k)- entry of the matrix s_̂ . For example if 01 = B then 
the last condition means that s.(j ,k) £ B; and if e.g. B = 2Z , L = ]Q, 
a = id, q = p then the conditions are satisfied iff s^(j,k) € p TL for all i,j,k0 

If g(X) is an m-tuple of power series in , o.0, with coefficients in 
L then we denote with c^g(X) the m-tuple of power series obtained by applying a 
to the coefficients of g(X), 

203o Functional Equation Lemma. Let f(X) G L[[X]]m be an m-tuple of power  
series in m indeterminates X ,̂ . . . , X̂  and f(X) an m-tuple of power series in 
n indeterminates X ,̂ 0. . , X .̂ Suppose that f(X) = b̂ X mod(degree 2) where bj is 
a matrix with coefficients in B which is invertible (over B). Suppose moreover 
that 

(2.4) f(X) -
oo 
z 

i=l 
s.aif(xql) G B[[x]]m, f(x) -

oo 
E 

i=l 
s.aif(xql) G B[[x]]m i * 

i _ i 
where Xq and Xq are short for 

i i i i 
(X? , . . . ,Xq ) and (Xq ,. . . ,Xq ). 

1 m J n 

Then we have 

(2.5) F(X,Y) = f \f(X) + f(Y)) G B[[X;Y]]m 

(2,6) f 1(f(X)) G B[[X]]m0 

Let h(X) G B[[x]]m be an m-tuple of power séries with coefficients in B in yet  

another set of indeterminates and let f(X) = f(h(X)). Then 

(2.7) 
^ ^ oo . ^ ^ i ^ 
f(x) - l s.aif(xq ) G B[[X]] 
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Finally let a(X) G B[[X]]m, 3 (X) G L[[X]Jm, r G IN = { 1 , 2 , . . . } . Then 

(2.8) a(X) = 3 (X) mod at.r <=> f(a(X)) = f(3(X)) mod cir 

For a proof cf. [7], sections 2 and 10. 

3. SOME ALMOST TRIVIAL APPLICATIONS. Let H(X) = X + p XP + p XP + . . . 

and £(X) = log(l+X) = I (-l)n+1n_1Xn. One notes that H(X) - p_1H(XP) = X 
n=l 

and £(X) - p-1<UXP) G 7L (p)txJ. So taking B = 7L ^ , <R = pB, L = 1 ) , q = p, 
Sj = p \ s2 = s3 = °*' = ® anc* 0 = we °^ta^-n from (2.6) Hasse's old result 
that exp(H(X)) has i ts coefficients in 7L ^ . 

More generally let d(X) = d̂ X + d̂ XP + . . „ , d. 6 1] . Using the same 
ingredients and combining (2,6) and (2,7) above one finds that 
exp(d(X)) G 7L ^ [ [ X ] ] if and only if d ^ p ^ d ^ j G 7L for all i (where 
one takes d_̂  = 0). This a lemma of Dieudonne [3], 

An easy application with a non t r ivial is the following. Let B be the ring 
of integers of the completed maximal unramified extension T of 1} J let L = T, 
p = q, Sj = p , s^ = ŝ  = . . . = 0, and G the Frobenius automorphism of T. 

2 
Let h(X) = 1 + ajX + a2X + . . . G T[[X]]. In this setting the combination of 
(2.6) and (2.7) yields that h (X) G B[[x]] if and only if a*h(XP)/h(X)P G 
1 + pXB[[X]], which is lemma 1 of Dwork [6]„ 

For an easy more dimensional application consider the slightly modified 
Witt vector polynomials w (X) = Xq, (X) = X + p ]XP, ,.0 , 

-1 n 
w (X) = X + p XP , + . . . +p nXP . Take B = Z , Gl = p2Z , L =1 ) , o = id, 

n n n - 1 O > r > v ' 
q = p, s9,s^, = 0 and let Sj be the (n+1) x (n+1) matrix with p ^ on the 
f i rs t subdiagonal and zero's elsewhere; i .e . Sj(j,k) = 0 unless j = k + 1 and 
Sj(k+l,k) = p 1 , k = l , 2 , .oo, n. Let w(X) be the column vector (w (X),0..,w^(X))« 
Then, obviously, w(X) = X + SjW(XP). I t now follows from (2.5) that 
Z(X) = w 1(w(X) + w(Y)) has integral coefficients; or, multiplying both sides 
of w(E(X)) = w(X) + w(Y) with pn, we see that we have shown that the addition 
polynomials of the Witt vectors have integral coefficients0 

4. ATKIN-SWINNERTON DYER CONGRUENCES. Let E be an el l ipt ic curve over 1} 

and let L(s) = IT ( 1 - a p + b p ) be i t s global L-function, where the 
pr p 

local factors (1 - a^p S + b^ p1 2s) 1 are defined as follows in terms of the 
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reductions mod p of a global minimal model D over 7L for E : 
-s J —2 s 

(i) if p is good, i . e . if D Q 7L / (p) is nonsingular then (1-a p +b p ) is 
the numerator of the zetafunction of the e l l ipt ic curve D ® 7L / (p) over 
Z/ (P) ; 

(ii) if D Q 7L I (p) has an ordinary doublepoint then 1 - a p S + b p' 2s = 1 -e p " 
where = +• 1 depending on whether the tangents in the double point are 

rational over 7L / (p) or not; 
( i i i ) if D fi 2 / (p) has a cusp 1 - a p + b p = 10 

Now let f ̂  (X) = E n a Xn where L(s) = E a n S0 Then an immediate and E , n i n 

obvious consequence of the Euler product structure of L(s) is that for all p 

(4 .0 fE(X) - P"'apfE(xP) + P"'bpfE(Xp2) e 71 (p)[x]. 

I t now follows from (205) that F (X,Y) = f~](fE(X) + f^(Y)) is a formal group 
law over 7L . Let G (X,Y) be the formal completion along the identity of the 
minimal model D over 2Z . The formal group law G (X,Y) can be explicitly described 

2 3 2 as follows. Let D be given by y + c XY + c Y = X~ + c X + c X + c • let 
-1 . . -1 

0) = (2Y+CjX+ĉ ) dX be the invariant differential and z = (2Y) X a local 
parameter at zero. Let, locally, a) = ZB(n)zn d̂z and define g (X) = I n ^3(n)Xn, 

then G (X,Y) = g^Cg^CX) + g_(Y)). This comes from the fact that if f (X) is E E L E 
the logarithm of a formal group law F(X,Y) over a torsion free ring R then 
df(X) is an invariant differential for F(X,Y). 

4.2. Theorem (Honda, Hill;[11] , [10] and [12]). The formal group laws 
F^(X,Y) and G (̂X,Y) are s tr ict ly isomorphic over 7L ( i . e . there exists a_ power  
series <J)(X) = X + b^2 + . . 0 , b. e Z such that <j)(FE(X,Y)) = G£ ((J) (X) , (+) (Y)) . 

I t follows that g(X) = f ((f)""1 (X)) . So that by (2.7) we have that g (X) E E 
also satisfies the integrality conditions (4.1). VTriting this out in terms of 
coefficients one finds the Atkin Swinnerton-Dyer congruences. 

(4.3) 3(np) - ap3(n) + bp3(n/4}) = 0 mod psif n ~ 0 mod pS_1 

where 3(n//p) = 3(n/p) if p|n and B(n// p) =0 otherwise. 

5. LUBIN-TATE FORMAL GROUP LAWS. The socalled Lubin-Tate formal group laws 
are constructed as follows in [13]. Let K be a local field with finite residue 
field (i.e0 K is a finite extension of I) or IF (x)) ; let A be the ring of 
integers of K, let n be a uniformizing element and let q be the number of 
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elements of k, the residue field of K. Let e(X) G A [ [ X ] ] be any power series 
in one variable such that 

( 5 . 1 ) e ( X ) E TTX mod (degree 2), e(X) E Xq mod TT 

Then there is a unique power series FE(X,Y) such that F^(e(X),e(Y)) = e(F^(X,Y)) 
and F^(X,Y) E X + Y mod(degree 2). This is a formal group law over A. Moreover 
for al l a G A there is a unique power series [a] (X) such that 
e([a] (X)) = [a] (e(X)) and [a] (X) = aX mod degree 2; the map a ^ [al (X) 
defines a ring homomorphism A -> End^(F (X,Y)) and L T T J ^ X ) = e ( X ) , Finally if 
both e(X) and ef(X) satisfy ( 5 , 1 ) (with respect to the same TT) then F (X,Y) 
and F ,(X,Y) are s t r ic t ly isomorphic over A, 

In the ingredients ( 2 , 1 ) for the functional equation lemma now take 
B = A, L = K, (Jl = TTA, p = char(k), q = ^ k , a = id, s = TT 1 , 0 = = ŝ  = 00o0 
Then the conditions (2,2) are satisfied. Let g(X) G A[[X]] be any power series 
such that g(X) E X mod(degree 2), and consider f ( X ) G K[[X]] defined (recursively) 
by the functional equation 

( 5 . 2 ) f ( X ) = g(X) + n~]f(Xq) 

Then parts (205) and (2.6) of the functional equation lemma say that the power 
series 

(5.3) F(X,Y) = f_1(f(X) + f(Y)), [a](X) = f_1(af(X)), a G A 

have their coefficients in A and hence define a formal A-module over A. (A 
formal A-module, where A is a$above, over an A-algebra R is a formal group law 
F(X,Y) over R together with a ring endomorphism p : A End (F(X,Y)) such that 
pp(a) = aX mod(degree 2) for all a G A) . Now consider [TT] (X) . We have 

(5.4) f ( [ i r ] ( X ) ) = TTf(X) = TTg(X) + f(Xq) = f(Xq) mod TT 

It follows by part (2,8) of the functional equation lemma that [TT] (X) E Xq mod u 
Also of course (cf0 (5.3)) F ( [TÍ] (X) , [TT] (Y)) = [IT] (F(X,Y)) so that F(X,Y) is a 
Lubin-Tate formal group law with e ( X ) = [ T T ] ( X ) ) . AS al l Lubin-Tate formal group 
laws constructed via the same uniformizing element TT are s tr ict ly isomorphic, 
i t follows from part ( 2 . 7 ) of the functional equation lemma that all Lubin-Tate 
formal group laws are obtained by the construction (5.2), (5.3) by varying 
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g(X). 
Finally we use the functional equation lemma to show that Lubin-Tate formal 

group laws constructed via different uniformizing elements TT and IT become 
isomorphic over A^, the completion of the ring of integers of the completion 
K of the maximal unramified extension K of K. Let therefore f(X), f(X)EA[[X]] 
satisfy 

(5.5) f(X) - TT_1f(Xq) £ A[[X]], f(X) - ^_1f(Xq) £ A[[X]] 

Now take as functional equation ingredients B = A . CTL = TTB, L = K , O the' 
Frobenius substitution in Gal(K^/K) extended by continuity to p, q, 
s , ,s0, co. as before. Let u E A* , the units of A , be such that u ^G(u) = TT \ . 1*2' nr' nr' 
(Such a u exis ts) . Then we have 

(5.6) uf (X) - " ^ ( u f (Xq)) = uf (X) - S_1a(u)f(Xq) = 

= u(f(X) - 7T_1f(Xq)) € Anr[[X]] 

and also of course f(X) - TT~ 1 o f̂ (Xq) = f(X) - TT_1f(Xq) £ A[[X]] c A [[X]], so 
that by part (2.6) of the functional equation lemma we have that 

(5.7) cf>(X) = f~J(uf(X)) £ Anr[[x]] 

which defines as an isomorphism (J)(X) between the formal A-modules defined by 
f(X) and f(X) as in (5.3). 

6o TAPIS DE CARTIER. Let A be the ring of integers of an unramified extension 
K of I) , Let a £ Gal(K/p ) be the Frobenius automorphism. Now suppose we have 
given a free A-module M of finite rank h < °° together with a semilinear 
endomorphism n : M -> M ( i . e . nCm+m1) = r)(m) + r\(m')9 n(am) = o(a)r](m)) . To these 
data we associate a formal group law over A as follows. Let D(n) be the matrix 
of n with respect to some basis for M. Define g(M,r))(X) £ K[[X , . . . ,X ]] by 
the equation 

(6.1) g(M,n)(X) = X + p 1D(n)a+g(M,n)(xp) 

By part (2.5) of the functional equation lemma (with B = A, L = K, to = pA5 O 
as above, q = p, Sj = p ^D(ri), s^ = ŝ  = . . . = 0) i t follows that 
G(M,n)(X,Y) = g(M,n)_1 (g(M,n) (X) + g(M,n)(Y)) is a formal group law over A. This 

78 



FUNCTIONNAL EQUATION LEMMA 

construction is functorial in the following sense. Let a : (M,n) (M',nT) be 
a morphisirio This means that a : M -> M' is A-linear and that n'a = arU Let E(a) 
be the matrix of a with respect to the chosen bases of M and MT. Then we have 
E(a)g(M,n) (X) - p-1D(nT)a*(E(a)g(M,n)(XP) = E(a)X £ A[[X]]h\ because 
ri'a = ari , together with the semilinearity of n and nf, precisely means that 
D(nf )a5|e(E(a)) = E(a)D(n). I t follows in particular that G(M,n) (X,Y) does not 
depend (up to isomorphism) on the choice of a basis for M. 

For each (M,rj) as above let (Ma,ri) be the pair obtained by leaving the 
additive group M and the map n unchanged but by changing the A-action to 
a.m = a ^ (a)m0 One easily checks that G(MQ,n) = a*G(M,r|). There is an obvious 
morphism (MQ,ri) -> (M,n), viz. n i tself. Let v(M,n) : a*G(M,n) + G(M,n) be the 
corresponding morphism of formal groups. We claim that v(M,r|) reduces mod p 
to the Verschiebung morphism V(X): a*G(X,Y) •> G(X,Y) over k where the bar 
denotes reduction mod p and where we omitted to write (M,n)c (If F(X,Y) is a 
formal group law over k, then V(X) : o^F(X,Y) -> F(X,Y) is the power series over 
k defined by V(XP) = [p](X) (because char(k) = p, [p](X) is necessarily a 
power series in XP)). This is seen as follows. We have 

g(M,n)v(Xq) = D(n)g(Ma,n)(Xq) = D(n)a+g(M,n) (Xq) = pg(M,n)(X) mod pA 

It follows by part (2.8) of the functional equation lemma that 
v(Xq) = g(M,n) 1(pg(M,n)(X)) = [p](X) mod pB, proving our claim. 

Thus we have a functor (M,n)»—• (G(M,n), v(M,n)). There is an obvious 
functor in the inverse direction, viz. taking Lie-algebras0 And we clearly have 
Lie(G(M,n)) = M, Lie(v(M,r])) = n. The Tapis de Cartier ([1], [2], [7]) now 
says that these functors are inverse equivalence of categories. To prove this 
we have to show that every formal group law F(X,Y) together with a morphism 
v: a+F(X,Y) F(X,Y) over A which reduces to V(X) mod pA comes from a pair 
(M,n). 

To prove this we f i rs t remark that, because A is unramified, every F(X,Y) 
over A is of functional equation type (Honda [12], cfc [7], section 20.3) i . e . 
if f(X) is the logarithm of F(X,Y) then there are s ^ s ^ . . . such that 
f(X) - I s.c£f(xPL) £ A[[x]]h, where h = dim(F(X,Y)). Now a homomorphism 

1 -1 
v(X): a+F(X,Y) •> F(X,Y) is necessarily of the form v(X) = f (Ea*f(X)) for 
some matrix E. 
Hence f_1(pf(X)) = [p](X) = v(XP) = f"1(Ea+f(XP))0 I t follows by part ( 2 . 8 ) 
of the functional equation lemma that pf (X) = Ea5|cf(XP) mod pA, i . e . that 
f(X) - p 1Ea3)cf(XP) e A[[X]], so that by part (2.6) of the functional equation 
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lemma F(X,Y) is s t r ict ly isomorphic to the formal group law with logarithm 
defined by g(X) = X + p_1Eg(XP) which is of the form g(M,n)(X). 

For some details about the role which the tapis de Cartier plays in the 
theory of l ift ing formal group laws cf. [7], section 30, as well as for an 
analogous theory for formal A-modules, where A is a finite extension of I) or 
V x ) o 

7. RAMIFIED WITT VECTORS. Let A be the ring of integers of a finite (not 
necessarily unramified) extension K of 1)̂  or 3F (̂x) . Let k be the residue field 
of K, q = ^ k = pr, TÍ a uniformizing elemento Consider the power series 

-? 2 
(7.1) gTr(X) = X + TT Xq + TT Xq + G7i(X,Y) = ĝ  (g/X) + g^(Y)) 

Then ĝ CX) = X + TT ]g^(Xq) so that by section 5 above, G (̂X,Y) is a Lubin-Tate 
formal group law over A0 For every A-torsion free A-algebra B let ^(B) be 
the following set of power series in one variable t 

A oo i 
(7.2) VT ^(B) = {y(t) € B[[t]]|y(0) = 0, g Y(t) = Z x.tq for certain 

q> i=o 1 
x. e B A K} 

i A 

For arbitrary A-algebras B one can define ^ (B) = {(()+Y(t)|Y(t) € WA (B1)} 
where B' is any A-torsion free A-algebra with a surjective A-algebra 
homomorphism <f) : Bf -> B. The sets ^(B) have a natural group structure defined 
by y(t) + ó(t) = G (y(t) ,6(t)) and a topology defined by the subgroups 

(y(t) € \T (B)|y(t) E 0 mod tq }. There is an obvious morphism 

(B ) -> Ŵ  (B0) attached to an A-algebra homomorphism <b : B. B0, viz. q,°° l q» 2 a 1 2' 
y(t)i-> (J)^y(t). So that we have a complete topological group valued functor 

WA (B) . 

We are now going to define a functorial ring structure on W ^C^). The 
definition for A-torsion free A-algebras B is : 

(7.3) if g7ry(t) = I x.tq , ^ 6 ( 0 = I yitq , then y(t)6(t) = g ^ d i r V y . ^ ) 

To show that this is welldefined we must show that the coefficients of y(t)6(t) 
are in B (and not just in B ^ K), This is seen as follows. 

Assume that B is A-torsion free and admits an A-algebra endomorphism a 
such that a(b) = bq mod TTB for al l b € B. By part (2.7) of lemma 2.3 we then 
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have x. - TT ^x. , = a. 6 B, y. - it ^ X . . = b. £ B for all i (with x , = y , = 0). i i-l i t í-l i -1 7 -1 

Hence Tr1x.,iT1y. € B for al l i . I t follows that TT1x.y. - TT ' (TT1 ^ X . ,y. .) = i ' ; i l i i-l i-l 

= TT1a.b. + TT^ ^a.y. . + TT1 ^b.x. . 6 B, so that by part (2C6) of lemma 2.3 we i i í i - l i i-l ' 
— ] I q i 

have indeed that g (ZTT x.y.t ) has i ts coefficients in B0 To extend this 
definition to the case of arbitrary A-algebras B use an argument similar as 

just below (7.2) using that every A-algebra B is a quotient of an A-algebra Bf 

which satisfies our assumptions, e.g. B' = A[Z^|b £ B]. There is also a natural 

A-module structure on WA (B) defined by y(t)*-» [a](y(t)) where 

[a](X) = ĝ  (ag (X)), a £ A, cf. also section 5. All in all this defines a functor 

^ : 4IgA ~* 4iSA» which, we claimtpossibly deserves the name "ramified Witt 

vector functor". To bolster this claim we remark the following 

- There is an additive Verschiebung morphism defined by V^y(t) = y(tq) 

and a Frobenius A-algebra functor endomorphism f . The latter is defined for 
_7T -1 00 qi-

A-torsion free A-algebras B by the formula f y(t) = g ( E TTX . , t ) where the 

x^ are as in (7.3). Of course the integrality of f y(t) is proved by means of 

the functional equation lemma. We have f V = [TT] , f y(t) = Y(t)q mod [TT ̂  (B). 

- Let A' be the ring of integers of an unramified extension K1 of K. Let kT 

be the residue field of K? and let o £ Gal(Kf/tQ be the Frobenius automorphism. 

For each a' £ A' let A(af) = g"1 ( Z Tí~1a1(a')tq ) £ VIa ^(B) . (Integrality of 

A(af) is of course proved by means of the functional equation lemma). Then 

a'*—»• A(af) is a homomorphism of A-algebras and the composite 
Af + VIA (At) •+ Ŵ" (kf) is an isomorphism. In particular WA (kT) = A' with a 

q,°° q,°° q?00 
corresponding to f̂ , generalizing a wellknown property of the Witt vectors. 

- There is an A-algebra homomorphism A : \f (-) —> W (W (-)) , the ramified 
q,°o q,oo qjCO 
A i A A Artin-Hasse exponential, characterized by w . o A = f , where w . : W (B) —> B q,i =tt' q,i q,°° 

A i is the functorial A-algebra homomorphism w . (y(t)) = tt times the coefficient of . q,i 

tq in gTr(y(t)) . 

For more details concerning this construction cf. [7], section 25 ; for a 

twisted version of these constructions which also works for local fields with not 

necessarily finite residue field cf. also [9]. Another construction of the functors 
A 

Ŵ  ^ has independently been given by Ditters [4] and Drinfel'd [5]. 
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