Astérisque

BENEDICT H. GROSS Ramification in *p*-adic Lie extensions

Astérisque, tome 65 (1979), p. 81-102

<http://www.numdam.org/item?id=AST_1979__65__81_0>

© Société mathématique de France, 1979, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

RAMIFICATION IN P-ADIC LIE EXTENSIONS

by Benedict H. Gross (Princeton) -:-:-:-

Let $\widetilde{\mathcal{O}}$ be a complete discrete valuation ring, with residue field k algebraically closed of characteristic p > 0. Let K be the field of fractions, \overline{K}_s the separable closure of K, \overline{K} the algebraic closure of K, and $\mathcal{Q} = \operatorname{Aut}_{K}(\overline{K}) = \operatorname{Gal}(\overline{K}_s/K).$

If G is a p-divisible group over \mathcal{O} , its general fibre determines a continuous Galois representation:

$$\rho : \mathcal{G} \longrightarrow \prod_{\lambda} \operatorname{GL}(d_{\lambda}, D_{\lambda})$$

where the D_{λ} are division algebras with center \P_p . When K has characteristic zero this representation is well-known; it is given by the Galois action on the Tate module T(G) [10]. When K has characteristic p, I will show how to define ρ as a Galois action on a generalized Tate module and will calculate its determinant.

In both cases the image of ρ is a closed subgroup of $\prod_{\lambda} \operatorname{GL}(d_{\lambda}, D_{\lambda})$ and inherits the structure of a p-adic Lie group. It carries two filtrations: an arithmetic filtration by the upper ramification subgroups of Q, and an analytic

81

B. GROSS

filtration by the p-saturated subgroups of Lie theory. When $\operatorname{char}(K) = 0$, Sen has shown that these two filtrations are related in a striking manner [7]; unfortunately, his results hold for <u>any</u> p-adic Galois representation and have nothing to do with the group G. When $\operatorname{char}(K) = p$ the ramification behavior of an <u>arbitrary</u> p-adic Galois representation can be quite random [11], but it seems that there <u>is</u> an interesting relation between the two filtrations when the representation comes from a p-divisible group over \mathcal{O} . Such a relation would reflect a favorable arithmetic property of ρ in the equicharacteristic case, much as T(G) enjoys a Hodge-Tate decomposition in the case of mixed characteristic [10].

In this paper I will present evidence for such a filtration relation when G has dimension one. In this case the ramification calculations can be made quite explicitly, and one can appeal to the theory of formal A-modules when G has additional endomorphisms. It is a pleasure to express my appreciation to Jon Lubin and John Tate, who taught me this subject and offered many helpful suggestions.

\$1. Review of ramification theory [8]

Let K be a local field, with algebraically closed residue field k of characteristic p > 0. Let $v_{\rm K}$ be the valuation on $\overline{\rm K}$ with value group Z on K*.

If E is a finite separable extension of K , we may filter the set

$$\Gamma = \Gamma_{E/K} = Hom_{K}(E,\overline{K})$$

as follows. Since E is totally ramified over K , it is generated by any uniformizing parameter β . Let e = [E:K] and define for $x \geq 0$ the subset

$$\Gamma_{\mathbf{x}} = \{ \sigma \in \Gamma : ev_{\mathbf{K}}(\beta^{\sigma} - \beta) \ge \mathbf{x} + 1 \}$$

For large enough x , $\Gamma_{\rm X}$ consists only of the identity homomorphism; furthermore this filtration is independent of the choice of β .

82

We call x a <u>break</u> in the filtration if $\Gamma_{x} \neq \Gamma_{x+\epsilon}$ for all $\epsilon > 0$. When E is a Galois extension of K, the set Γ may be identified with the Galois group and the filtration we have defined coincides with the lower ramification filtration of Gal(E/K). In this case the breaks all occur at integers; in the general case the breaks may be rational, as $(\beta^{\sigma}-\beta)$ may ramify over E.

If x = 0 is the only break in the filtration of Γ then E/K is tamely ramified (hence cyclic). We shall henceforth assume there are further breaks. Define the Herbrand transition function:

(1.1)
$$\phi_{E/K}(x) = \frac{1}{e} \int_{0}^{x} Card(\Gamma_{t}) dt$$

This is monotone increasing and piecewise linear. Let $\psi(\mathbf{x})$ be the inverse function on the interval $[0,\infty)$ and define the upper filtration of Γ by setting $\Gamma^{\mathbf{y}} = \Gamma_{\psi(\mathbf{y})}$ for $\mathbf{y} \ge 0$. The upper breaks are the values of \mathbf{y} such that $\Gamma^{\mathbf{y}+\varepsilon} \neq \Gamma^{\mathbf{y}}$ for all $\varepsilon > 0$.

The lower numbering passes well to a subgroup, and the upper numbering to a quotient. To be precise: let L be a finite Galois extension of K containing E. Let G = Gal(L/K) and H = Gal(L/E), so $\Gamma \simeq G/H$. Then

(1.2) $H_x = H \cap G_x$ for all $x \ge 0$.

(1.3) $\Gamma^{y} = G^{y}H/H$ for all $y \ge 0$.

$$(1.4) \qquad \qquad \phi_{L/K} = \phi_{E/K} \circ \phi_{L/E}$$

Using (1.3) we may define an upper filtration on the Galois group of an <u>infinite</u> Galois extension L/K by setting:

Gal(L/K)^y = {
$$\sigma \in Gal(L/K)$$
 : for all subfields E of finite degree
over K, $\sigma \in \Gamma_{E/K}^{y}$ Gal(L/E)}.

We say y is a break in this filtration if it occurs as a break in some finite quotient. Then every non-negative rational number occurs as a break in

83

 $Gal(\overline{K}_{S}/K)$; on the other hand, when Gal(L/K) is a p-adic Lie group, the breaks form a discrete subset of the reals [7], [11]. If L is the maximal abelian extension of K, the breaks occur exactly at the non-negative integers.

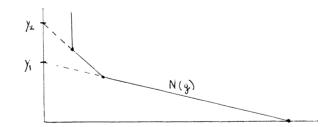
We now show how to calculate the upper breaks in $\Gamma_{\rm E/K}$ when E is given as the root field of a separable Eisenstein polynomial. By (1.3) these breaks will also occur in the filtration of the Galois group of the normal closure of E.

Lemma 1.5 (Tate)

$$g(x) = \left(\frac{1}{\beta}\right)^{e} f(\beta x + \beta) = x^{e} + b_{e-1}x^{e-1} + \dots + b_{1}x^{e-1}$$

and let N(g) be its Newton polygon: the convex hull of the points $(i,v_K(b_i))$ in the plane.

Then the upper breaks in the filtration of $\Gamma_{E/K}$ occur at the y-intercepts of the non-trivial sides of N(g).



<u>Proof</u>. The roots of g(x) are the values $a_{\sigma} = (\beta^{\sigma}/\beta) - 1$, where σ runs through $\operatorname{Hom}_{K}(E,\overline{K})$. Thus the distinct rational numbers in the set $S = \{\operatorname{ev}_{K}(a_{\sigma}) : \sigma \neq 1\}$ give the lower breaks of Γ .

On the other hand, the numbers $-v_K(a_\sigma)$ are precisely the slopes of N(g). Since the non-trivial sides of the polygon satisfy linear equations of the form

$$y + \lambda x = \phi_{E/K}(e \cdot \lambda)$$

we see that the y-intercepts give the upper breaks.

Corollary 1.6

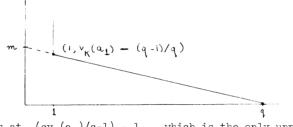
Suppose char(K) = p and E = K(β) is a separable extension of degree $q = p^{f}$, where β satisfies f(x) as in 1.5.

1) If $v_{K}(a_{i}) \geq v_{K}(a_{l})$ for all $i \geq l$ then $a_{l} \neq 0$ and the upper and lower filtrations of $\Gamma_{E/K}$ have a unique break at the point

$$m = (qv_K(a_1)/q-1) - 1$$
.

2) If E/K is Galois then q - 1 divides $v_{K}(a_{1})$ and $Gal(E/K) \approx \mathbb{F}_{q}^{+}$.

<u>**Proof.**</u> 1) The coefficient a_1 is non-zero as f(x) is assumed separable. If we graph the Newton polygon of g(x) as in (1.5) we find it has but one slope:



The y-intercept is at $(qv_K(a_1)/q-1) - 1$, which is the only upper break. By (1.1) it is also the only lower break.

2) If E/K is Galois the lower break must be integral. As there is only one break point and this point is positive, Gal(E/K) is an elementary abelian p-group [8].

\$2. P-divisible groups and Galois representations

Let K be a field, and G a p-divisible group over K of height h . If $p \neq char(K)$ then G is étale and is completely determined by its Tate module:

(2.1)
$$T(G) = \operatorname{Hom}_{\overline{K}}(\overline{u}_{p}/\mathbb{Z}_{p},G)$$

This module is free of rank h over $\mathbb{Z}_p = \operatorname{End}_K(\mathbb{Q}_p/\mathbb{Z}_p)$ and admits a left action of $Q_r = \operatorname{Aut}_K(\overline{K})$ which is continuous and \mathbb{Z}_p -linear:

(2.2)
$$\rho : \mathcal{Q} \longrightarrow \operatorname{Aut}_{\mathbb{Z}_p}(\mathbb{T}(G)) \simeq \operatorname{GL}(h,\mathbb{Z}_p) \cdot$$

B. GROSS

The functor $G \longrightarrow T(G)$ from étale groups to Galois modules is fully faithful [9], [10].

When p = char(K) the situation is more complicated as G need not be étale. The Tate module, as defined in (2.1), can only give information on the maximal étale quotient of G. To construct a more sensitive functor into the category of p-adic Galois modules, we need a larger supply of initial objects (like $\mathbf{Q}_p/\mathbf{Z}_p$).

These objects are furnished by Dieudonné theory. For any reduced rational number $\lambda = r/s$ in the interval [0,1] there is a canonical p-divisible group G_{λ} defined over \mathbb{F}_p of dimension r and height s. The group G_{λ} is specified by its Dieudonné module:

$$\mathbb{D}(\mathbb{G}_{\lambda}) = \mathbb{Z}_{p}[F,V]/(F^{s-r}=V^{r},FV=VF=p)$$
.

All endomorphisms of $\mbox{ G}_{\lambda}$ are defined over $\mbox{ }_{\mbox{ }_{S}}\mbox{ }_{s}$, and

$$\operatorname{End}_{\mathbb{F}_{p^{S}}}(G_{\lambda}) \otimes_{\mathbb{Z}_{p}} \Phi_{p} \simeq D_{\lambda},$$

where D_{λ} is the central division algebra over \mathbb{Q}_{p} with invariant $\lambda \pmod{\mathbb{Z}}$. The central assertion of the classical theory is that the category of p-divisible groups up to isogeny over \overline{K} is semi-simple and that the groups G_{λ} represent the distinct simple objects [1]. If G is any group over K we therefore have

$$G \sim \prod_{\lambda} G_{\lambda}^{d_{\lambda}}$$
 over \overline{K} ,

where the $\,{\rm d}_\lambda\,$ are integers, almost all zero, determined by G . We can generalize the construction (2.1) by defining

(2.3)
$$V^{\lambda}(G) = \operatorname{Hom}_{\overline{K}}(G_{\lambda}, G) \otimes_{\mathbb{Z}} \mathfrak{Q}_{p}$$

Then $V^{\lambda}(G)$ is a right module over D_{λ} of dimension d_{λ} , or a left module for the dual algebra D_{λ}° . It admits a continuous left action of G_{λ} ; when K contains the field \mathbb{F}_{pS} this action is D_{λ}° -linear:

$$\mathfrak{o}^{\lambda} : \mathcal{Q} \longrightarrow \operatorname{Aut}_{\mathfrak{D}_{\lambda}}^{\circ}(\mathbb{V}^{\lambda}(\mathbb{G})) \simeq \operatorname{GL}(\mathfrak{d}_{\lambda}, \mathbb{D}_{\lambda})$$
.

If K contains the algebraic closure of the prime field we can thus define the representation $\rho = \bigoplus_{\lambda} \rho^{\lambda}$ on the generalized Tate module $V(G) = \bigoplus_{\lambda} V^{\lambda}(G)$.

Now suppose \mathcal{O} is a complete discrete valuation ring, as in the introduction, with quotient field K and residue field k (algebraically closed of characteristic p > 0). Let G be a p-divisible group <u>defined over \mathcal{O} </u>. The special fibre G_k and the general fibre G_K are groups over a field; therefore

$$\mathbf{G}_{\mathbf{k}} \thicksim \mathbf{\Pi} \ \mathbf{G}_{\boldsymbol{\lambda}}^{\mathbf{C}_{\boldsymbol{\lambda}}}$$

(2.5)

$$G_{K} \sim \Pi G_{\lambda}^{d_{\lambda}}$$
 over \overline{K} ,

where we accept the convention that $G_{0/1} = \mathbb{Q}_p/\mathbb{Z}_p$ and $d_{0/1} = h$ if char(K) = 0. Consider the Galois representation arising from the general fibre:

$$(2.6) \qquad \rho : \mathcal{Q} \longrightarrow \prod_{\lambda} \operatorname{GL}(d_{\lambda}, D_{\lambda}) .$$

How can we distinguish this from an arbitrary p-adic Galois representation?

First, we can compose ρ with the homomorphism

$$det = \prod_{\lambda} \operatorname{Nm}_{\lambda} : \prod_{\lambda} \operatorname{GL}(a_{\lambda}, D_{\lambda}) \xrightarrow{} \mathfrak{g}_{p}^{*}$$

where Nm_{λ} is the reduced norm in the algebra $Mat(d_{\lambda}, D_{\lambda})$ over \mathfrak{A}_{p} . We obtain a p-adic character $\varepsilon = det(\rho)$ of Q.

Theorem 2.7

 $\underline{\text{If}} \text{ char}(K) = p \underline{\text{then}} \epsilon = 1 \underline{\text{in}} \operatorname{Hom}(\mathcal{G}, \mathfrak{q}_p^*)$.

<u>Proof.</u> The group G gives rise to an F-crystal E(G) over the perfect closure of \mathcal{O} [3]. The special fibre of this crystal is isogenous to the direct sum $\mathfrak{GE}_{\lambda}^{c_{\lambda}}$, where $\mathbb{E}_{r/s} = \mathbb{Z}_{p}[F]/(F^{s}=p^{r})$. Over \overline{K} the general fibre is isogenous

B. GROSS

to ${\pmb \theta} E^d_\lambda$; over $K^{\rm perf}\cdot$ it is isogenous to this crystal, twisted by the representation ρ .

The category of F-crystals has an exterior power operation which commutes with fibre products. If G has height h we find

$$(\bigwedge^{h} E(G))_{k} \sim E_{dim(G)/l}$$

 $(\bigwedge^{h} E(G))_{K} \sim E_{dim(G)/l}$ over \overline{K}

Over $\kappa^{\text{perf.}}$ the general fibre of $\bigwedge^{h} E(G)$ is isogenous to $E_{\dim(G)/1}$ twisted by the character $\varepsilon = \det(\rho)$. But the F-crystal $E_{\dim(G)/1}$ has only the <u>trivial</u> lifting from k to \widetilde{C} [3]. As $\bigwedge^{h} E(G)$ is such a lifting, its general fibre is isomorphic to its special fibre and $\varepsilon = 1$.

<u>Notes</u>: 1) Suppose G has height h over $\tilde{\mathcal{O}}$ and its general fibre decomposes as in (2.5); then $\sum d_{\lambda}s_{\lambda} = h$ where $s_{\lambda} = \operatorname{denom}(\lambda)$. If C is the completion of the maximal unramified extension of \mathfrak{Q}_{p} (which splits all the algebras D_{λ}), we have an embedding

$$\begin{array}{ccc} \Pi & \mathrm{GL}(\mathrm{d}_{\lambda}, \mathrm{D}_{\lambda}) & \longleftrightarrow & \mathrm{GL}(\mathrm{h}, \mathrm{C}) \end{array} . \\ \end{array}$$

Now let U be the open set Spec \mathfrak{O} - Spec k , so $\mathcal{G} = \pi_1^{(U)}$. Then (2.6) gives us a "monodromy representation"

$$(2.8) \qquad \rho : \pi_1(U) \longrightarrow GL(h,C) .$$

In the geometric case when K has characteristic p , Theorem 2.7 asserts that the monodromy representation factors through SL(h,C).

2) Theorem 2.7 may be formulated for K of arbitrary characteristic. Let χ be the cyclotomic character giving the action of Q on p-power roots of unity in \overline{K} . Then

(2.9)
$$\varepsilon = \chi^{\dim(G)}$$
 in $\operatorname{Hom}(\mathcal{G}, \mathbb{Q}_p^*)$.

For K of characteristic zero this is due to Raynaud [6]; for K of characteristic p it is a restatement of (2.7).

\$3. Formal A-modules of dimension 1 .

Let G be a connected p-divisible group of dimension 1 over \mathcal{O} . Then G can be identified with a formal group on one parameter, and we can make the representation ρ of (2.6) more explicit by using Lazard's one-dimensional theory. When G has additional endomorphisms it is convenient to analyse this situation using the language of formal A-modules [2] [4].

Let A be the ring of integers in a finite extension F of \mathbb{Q}_p , let π be a prime of A and $q = \operatorname{Card}(A/\pi A)$. Suppose R is a ring over A and $\gamma : A \longrightarrow R$ is the natural morphism. Then a formal A-module of dimension n over R is a pair $G = (\hat{G}, i)$, where \hat{G} is a formal group of dimension n over R and $i : A \longrightarrow \operatorname{End}_R(\hat{G})$ is an injective ring homomorphism such that i(a) induces multiplication by $\gamma(a)$ on Lie (\hat{G}) . We write $[a]_G$ for the element i(a)in $\operatorname{End}_D(\hat{G})$. If G and H are two formal A-modules over R, we define

$$\operatorname{Hom}_{R}(G,H) = \{\phi \in \operatorname{Hom}_{R}(\widehat{G},\widehat{H}) : \phi \circ [a]_{G} = [a]_{H} \circ \phi \quad \text{all } a \in A\}$$

We shall henceforth only consider formal A-modules and formal groups of dimension one.

It is quite easy to describe the category of formal A-modules over a field K of characteristic p; if $A = \mathbb{Z}_p$ this is equivalent to the category of formal groups. Choosing a model for \hat{G} over K we have

$$[\pi]_{G}(\mathbf{x}) = f(\mathbf{x}^{q^{h}})$$

where f(x) is a power series over K with $f'(0) \neq 0$, and h is a strictly positive integer, the <u>height</u> of G. (The height of \hat{G} , as a formal group, is then h·[A:Z_p], and we shall assume the height is finite.) If K is separably closed there is one isomorphism class of formal A-modules for each finite height. As a representative, we can take the formal A-module $~G_{1/\rm h}$, which is defined over A/\piA and characterized by

(3.1)
$$[\pi]_{G_{1/h}}(x) = x^{q^{h}}$$

This formal A-module achieves all of its endomorphisms over the field $\mathbb{F}_{\substack{h\\ q}}$; there we have

$$\operatorname{End}_{\mathbf{F}_{a^{h}}}(G_{1/h}) = B_{1/h}$$

where $B_{1/h}$ is the maximal order in the central division algebra over $F = A \otimes \mathbb{Q}_p$ with invariant $1/h \pmod{\mathbb{Z}}$. When K is not separably closed G is classified over K by its height and a representation

$$\rho : \operatorname{Gal}(\overline{K}_{s}/K) \longrightarrow \operatorname{B}_{1/h}^{*}$$

as in §2.

We can now apply this to formal A-modules G over \widetilde{C} whose special fibre is isomorphic to $G_{1/h}$ over k. Let $G_{0/1}$ denote the constant étale A-module F/A. When char(K) = 0 we have $G_K \stackrel{\simeq}{K} (G_{0/1})^h$. When char(K) = p the general fibre of G must also have dimension 1, therefore

$$G_{K} \sim G_{1/g} \times (G_{0/1})^{d}$$

where $l \leq g \leq h$ and g + d = h. Define the Tate modules

(3.2)
$$\mathbb{T}^{1/g}(G) = \operatorname{Hom}_{\overline{K}}(G_{1/g}, G_{\overline{K}}) \quad \text{of rank l over } B_{1/g}$$
$$\mathbb{T}^{0/1}(G) = \operatorname{Hom}_{\overline{K}}(G_{0/1}, G_{\overline{K}}) \quad \text{of rank d over } A.$$

These afford Galois representations:

(3.3)

$$\rho^{1/g} : \mathcal{Q} \longrightarrow B^{*}_{1/g} = B^{*}$$

$$\rho^{0/1} : \mathcal{Q} \longrightarrow GL(d, A)$$

as in (2.4). We shall restrict our study to the equicharacteristic case (g \geq 1), as the ramification of $\rho^{O/1}$ when char(K) = 0 is well-known [7].

Choosing a model for $\hat{\mathbf{G}}$ over \mathcal{O} we have

(3.4)
$$[\pi]_{g}(x) = f(x^{q^{g}})$$

where $f(x) = a_1 x + a_2 x^2 + ...$ has coefficients in \mathcal{O} and $a_1 \neq 0$. If we insist on a model lifting the standard model of $G_{1/h}$, then all the a_i lie in the maximal ideal except for a_d . The integer $e = v_K(a_1)$ is independent of the model chosen; it is zero if and only if d = 0. In that case the representation $\rho = \rho^{1/g} \oplus \rho^{0/1}$ is <u>trivial</u> [5]. The simplest nontrivial case is when d = e = 1; here we have complete results.

Theorem 3.5

Let G be a formal A-module of dimension 1 and height h = g + d over \mathcal{O} . Assume d = e = 1 and for $n \ge 0$ define the rational numbers

$$a(n) = \frac{q^{h}-1}{(q^{g}-1)(q^{d}-1)} (q^{n}-1)$$

- 1) a) The representation $\rho^{1/g} : \mathcal{Y} \longrightarrow B^*$ is surjective, so B^* inherits an upper ramification filtration.
 - b) The upper breaks in this filtration are precisely at the points a(n), n ≥ 0 (or n ≥ 1 if q^g = 2).
 c) For n ≥ 1 (B*)^{a(n)} = 1 + πⁿ_BB, where π_B is a prime of B.
- 2) a) The representation $\rho^{0/1} : \mathcal{Q} \longrightarrow A^*$ is surjective, so A^* inherits an upper ramification filtration.
 - b) The upper breaks in this filtration are precisely at the points a(gn), n ≥ 0 (or n ≥ 1 if q = 2).
 c) For n ≥ 1 (A*)^{a(gn)} = 1 + πⁿ_AA.

We will prove this result in the following section. First we shall make a few remarks on its contents and provide a concrete example.

Example: Let E be the elliptic curve over $\hat{U} = \bar{\mathbb{F}}_{\mathcal{D}}[[t]]$ with plane equation

$$y^{2} + txy + y = x^{3}$$

and origin at the inflection point (x,y) = (0,0). Then E_K is ordinary, but \hat{E}_k is supersingular. The formal group \hat{E} associated to this model, using x as a local parameter at the origin, gives a formal A-module G with $A = \mathbb{Z}_p$ and

$$[-2]_{g}(x) = tx^{2} + (1+t^{3})x^{l_{1}} + \dots + (t^{2n-l_{1}}+t^{2n-1})x^{2n} + \dots$$

Thus h = 2 and g = d = e = 1. Applying (3.5) we see the upper breaks in $\rho^{0/1}(Q) = A^*$ occur at the points $a(gn) = 3(2^n-1)$, and $(A^*)^{3(2^n-1)} = 1 + 2^n A$ for $n \ge 1$. These are the breaks in the separable quotient of the 2-division field of E_K .

<u>Notes</u>: 1) The breaks in the upper filtration of $\rho^{1/g}(\mathcal{Y})$ are integral if and only if g = 1, i.e. if and only if $B_{1/g}^{*}$ is abelian.

2) Since
$$(\pi_B)^g = (\pi_A)$$
 in $B_{1/g}$, we find
 $(B^*)^{a(gn)} = 1 + \pi_A^n B$ for $n \ge 1$

and the function a(gn) relates the ramification filtration to the π_A -filtration in both $\rho^{0/1}$ and $\rho^{1/g}$. Let H* denote the elements in B* × A* whose reduced norm down to A* is 1, and H_n the elements of H* congruent to 1 (mod π_A^n). I suspect that $\rho = \rho^{1/g} \oplus \rho^{0/1}$ maps \mathcal{G} surjectively onto H* and that for $n \ge 1$,

$$(H^*)^{a(gn)} = H_n$$

Theorem 2.7, combined with (3.5), shows that this holds at least when A = \mathbb{Z}_{n} .

3) When d = 1 but e > 1 we can prove a slightly weaker result. Let e_s be the separable degree of K over $L = k((a_1))$. Then there are positive constants c and N such that, for all n > N,

(3.6)

$$\rho^{1/g}(\mathcal{G})^{e_{s}a(n)+c} \subseteq 1 + \pi^{n}_{B}B \subseteq \rho^{1/g}(\mathcal{G})^{e_{s}a(n)-c}$$

$$\rho^{0/1}(\mathcal{G})^{e_{s}a(gn)+c} \subseteq 1 + \pi^{n}_{A}A \subseteq \rho^{0/1}(\mathcal{G})^{e_{s}a(gn)-c}$$

Indeed, by Drinfeld's moduli theory [2], we can find a model for G over $k[[a_1]]$ where we can apply (3.5). Then (3.6) follows from a comparison of the upper numbering on $Gal(\overline{L}_S/L)$ with that on its subgroup $\oint = Gal(\overline{K}_S/K)$ of index e_s .

Thus the breaks in the π_A -filtration of $\rho(\mathcal{G})$ occur near the upper breaks $e_s \cdot a(gn)$. The breaks in the p-saturated filtration therefore occur near the upper breaks $e_s \cdot a(g \cdot e_F \cdot n)$, where $F = A80_p$ and $e_F = v_F(p)$. This result bears an eerie formal relation to a theorem of Sen in characteristic zero. By definition

$$e_{s}a(ge_{F}n) = e_{s} \frac{(q^{h}-1)}{(q^{g}-1)(q^{d}-1)} (q^{ge_{F}n}-1)$$
$$= e_{s} \frac{q^{h}-1}{q^{d}-1} (1 + q^{g} + q^{2g} + \dots + q^{(e_{F}n-1)g})$$

When \mathcal{O} has mixed characteristic, g = 0, d = h, and $e_s = v_K(\pi_A)$. Thus, arguing <u>purely formally</u>, we might expect that in this case the breaks in the p-saturated filtration of $\rho(\mathcal{Q})$ would be near the upper breaks $e_s e_F n = e_K n$. But this is precisely Sen's result [7] : is there a general theory which can obtain both results simultaneously?

4) When d > 1 the situation becomes more complicated. It seems that the upper breaks in $\rho(q_i)$ are determined by the valuations of the d moduli that classify the lifting of G over $G_{1/h}$ [2], [5]. When d = 1, a_1 is the unique modulus of the lifting; it might be interesting to study maximal 1-dimensional families in general.

\$4. The proof of Theorem 3.5

To prove part 1) we start with the representation

$$\rho^{l/g} : \mathcal{G} \longrightarrow B^*$$
.

Recall that the prime $\pi_{_{\mathrm{R}}}$ gives a filtration on the image:

$$B^* \geq 1 + \pi_B^B > 1 + \pi_B^2 > \dots$$

with successive quotients:

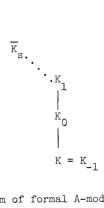
$$B^* / l + \pi_B^B \simeq \mathbb{F}_q^g$$

$$1 + \pi_B^{\mathbf{n}_B} / 1 + \pi_B^{\mathbf{n}+1} B \approx \mathrm{IF}_{q^g}^+ \quad \text{for } n \ge 1.$$

For $n \ge 0$ let H_n be the kernel of the composed homomorphism:

$$\rho_{n} : \mathcal{Q} \longrightarrow B^{*} \longrightarrow (B^{*}/l + \pi_{B}^{n+1}B) \simeq (B/\pi_{B}^{n+1}B)^{*} ,$$

and let K_n be the fixed field of H_n in \overline{K}_s . Then $(\mathcal{G}/H_n) \simeq \text{Gal}(K_n/K)$ and we have a tower of fields:



If we choose an isomorphism of formal A-modules over $\ \overline{\mathrm{K}}_{_{\mathrm{S}}}$:

$$\phi : G \longrightarrow G_{1/g}$$

we have, for $\sigma \in Q'$, $\rho^{1/g}(\sigma) = \phi \circ \phi^{-\sigma} \in Aut(G_{1/g}) \simeq B^*$. Choosing models for G and ${\tt G}_{1/g}$ over ${oldsymbol{\mathcal{O}}}$, we may write ϕ as a power series:

$$\phi(x) = k_1 x + k_2 x^2 + \dots$$

with coefficients in $\ensuremath{\overline{K}}_{_{\rm S}}$. Similarly, we have the power series over $\ensuremath{\mathcal{C}}$:

$$[\pi]_{G}(x) = a_{1}x^{q^{g}} + a_{2}x^{2q^{g}} + \dots$$
$$[\pi]_{G_{1/g}}(x) = x^{q^{g}}.$$

Since ϕ is an isomorphism of formal A-modules, these series satisfy:

(4.1)
$$\phi \circ [\pi]_{G}(\mathbf{x}) = [\pi]_{d} \circ \phi(\mathbf{x}) = \phi^{q^{g}}(\mathbf{x}^{q^{g}})$$

Lemma 4.2

1) The coefficients
$$k_j \quad in \quad \phi(x) \quad are integral in \quad \overline{K}_s$$
.
2) One has $k_j \in K_{n-1} \quad for all \quad j < q^n$, and $K_n = K_{n-1}(k_n)$.

<u>Proof</u>. The integrality of the k_j follows from the identity (4.1), which may be used to define them successively. Since $\sigma \in H_0$ if and only if $k_1^{\sigma} = k_1$, we have $K_0 = K(k_1)$. But for $\sigma \in H_0$:

$$\phi \circ \phi^{-\sigma}(x) = x + kx^{q^{m}} + \dots;$$

furthermore, $\sigma \in H_n$ if and only if m > n . This gives part 2) .

Lemma 4.3

Assume that
$$d = e = 1$$
. Then for $n \ge 0$,
1) $\rho_n \quad \underline{induces \ an \ isomorphism} \quad \operatorname{Gal}(K_n/K) \simeq (B/\pi_B^{n+1}B)^*$.
2) $k_n \quad \underline{is \ a \ uniformizing \ parameter \ of \ K_n}$.
3) $\operatorname{Gal}(K_n/K_{n-1}) \quad \underline{has \ a \ unique \ upper \ and \ lower \ break \ at \ the \ point}$
 $m = q^{hn} - 1$.
4) The lower filtration of G = Gal(K_n/K) is given by:

5) The upper filtration of $G = Gal(K_n/K)$ is given by:

$$G^{O} = G$$

$$G^{X} = Gal(K_{n}/K_{0}) \quad \text{for } 0 < x \leq a(1)$$

$$G^{X} = Gal(K_{n}/K_{1}) \quad \text{for } a(1) < x \leq a(2)$$

$$\vdots$$

$$G^{X} = Gal(K_{n}/K_{n-1}) \quad \text{for } a(n-1) < x \leq a(n)$$

$$G^{X} = (1) \quad \text{for } a(n) < x ,$$

where $a(1), a(2), \ldots, a(n)$ are defined in Theorem 3.5.

<u>Proof</u>. We use an induction on n. For n = 0 look at the coefficient of x^{q^g} in the identity (4.1). This gives the equation:

$$k_{1}a_{1} = k_{1}^{q^{g}}$$
.

Since $e = v_K(a_1) = 1$, this shows that $K_0 = K(k_1)$ has degree $q^g - 1$ over K and that k_1 is a uniformizing parameter. By counting we see that the injection

$$\rho_0 : \operatorname{Gal}(K_0/K_1) \longrightarrow (B/\pi_B^B)^*$$

is an isomorphism. The only upper and lower break is at 0 , as $\,K_{_{\hbox{\scriptsize O}}}^{}\,$ is a tamely ramified extension of $\,K$.

Now assume that the lemma holds for K_{n-1}/K . Look at the coefficient of $x^{q^{g+n}}$ in the identity (4.1). This gives the equation:

$$k_{\substack{l \\ q}} + \dots + k_{\substack{q}} + k_{\substack{q}} + \dots + k_{\substack{q}} + k_{\substack{q} + k_{\substack{q}} + k_{\substack{q}} + k_{\substack{q}} + k_{\substack{q} + k_{\substack{q}} + k_{\substack{q}} + k_{\substack{q} + k_{\substack{q}} + k_{\substack{q} + k_{\substack{q}} + k_{\substack{q} + k_$$

But I claim this is an Eisenstein equation:

(4.4)
$$b + a_{1}^{q} y = y^{q^{g}}$$

for $y = k_{n-1}$ over K_{n-1} . It is clear that b is integral, by (4.2). Since G lifts $G_{1/h}$ and d = 1, we know $v_{K}(a_{i}) \ge 1$ for $i \ne q$. Consequently, $v_{K_{n-1}}(a_{i}) > 1$ for $i \ne q$ and

$$v_{K_{n-1}}(b) = v_{K_{n-1}}(k_{n-1} a_{q}^{q^{n-1}}) = 1$$

by our inductive hypothesis that k_{q}^{n-1} is a uniformizing parameter in K_{n-1} . Therefore $K_n = K_{n-1}(k_n)$ has degree q^g over K_{n-1} and uniformizing parameter k_{q}^{n} . By induction, we know that $[K_{n-1}:K] = (q^g-1)q^g$; hence the injection q^n .

$$\rho_{n} : \operatorname{Gal}(K_{n}/K) \longrightarrow (B/\pi_{B}^{n+1}B)^{*}$$

is surjective by counting. By applying corollary (1.6) to the equation (4.4) we see that $Gal(K_n/K_{n-1})$ has a unique upper and lower break at the point:

$$m = v_{K_{n-1}}(a_1^{q^n}) q^g/q^{g-1} - 1 = q^{hn} - 1$$
.

The calculation of the filtrations on $Gal(K_n/K)$ is now accomplished using the identity $\phi_{K_n/K} = \phi_{K_{n-1}/K} \circ \phi_{K_n/K_{n-1}}$, the inductive hypothesis, and the fact that

$$\phi_{K_n/K_{n-1}}(x) = x \quad \text{for } x \leq q^{nh} - 1$$

This lemma yields part 1) of Theorem 3.5 as an immediate corollary. Given an adequate theory of π -divisible A-modules, we can see how part 2) of this Theorem would follow formally from part 1). We can define the character:

$$\boldsymbol{\varepsilon}_{A} \; = \; \det_{A} \; \left(\boldsymbol{\rho} \right) \; : \; \begin{array}{c} \boldsymbol{\mathcal{G}} \\ \end{array} \longrightarrow \; A^{\boldsymbol{\ast}}$$

where $\det_A : B_{1/g}^* \times GL(d,A) \longrightarrow A^*$ is the reduced norm in the category of F-algebras. In analogy with (2.7) one would expect:

(4.5)
$$\varepsilon_{A}^{?} = 1 \quad \text{in Hom}(\mathcal{G}, A^{*})$$

When d = 1 this would imply:

(4.6)
$$\rho_{0/1} \stackrel{?}{=} (Nm_{1/g} \circ \rho_{1/g})^{-1}$$

from which we could easily derive its ramification filtration. Since the full theory of "A-crystals" is not available to prove (4.5), we shall prove part 2) independently, and check that the results are consistent with (4.6).

First we must identify the representation

$$\rho_{0/1} : \mathcal{G} \longrightarrow GL(d, A) = M^*$$

where M = Mat(d,A). We appropriate our previous notation: for $n \ge 0$ let H_n be the kernel of the composed homomorphism:

$$\rho_{n} : \mathcal{G} \longrightarrow M^{*} \longrightarrow M^{*} / l + \pi^{n+l}M \simeq (M/\pi^{n+l}M)^{*}$$

and let ${\tt K}_{n}$ be the fixed field of ${\tt H}_{n}$ in $\overline{{\tt K}}_{s}$.

If $\overline{m} = \{x \in \overline{K} : v_{\overline{K}}(x) > 0\}$, then the set of points of G in \overline{m} give a genuine A-module $G(\overline{m})$. Let $G(\overline{m})_{\pi^{n+1}}$ be the finite submodule of π^{n+1} -torsion. This module is free of rank d over $A/\pi^{n+1}A$ and is stable under the action of Q. The resulting representation:

$$\mathcal{G} \longrightarrow \operatorname{Aut}_{A/\pi^{n+1}A} (G(\overline{m})_{\pi^{n+1}}) \simeq (M/\pi^{n+1}M)^*$$

may be identified with ρ_n . Consequently, K_n is just the separable subfield of the field of π^{n+1} -division points.

Lemma 4.14 Assume that d = e = 1. Then for $n \ge 0$,

1)
$$\rho_n \quad \underline{\text{induces an isomorphism}} \quad \operatorname{Gal}(K_n/K) \simeq (A/\pi^{n+1}A)^*$$
.
2) $\underline{\text{If}} \quad \alpha_n \in G(\overline{m})_{\pi^{n+1}} \quad \underline{\text{and}} \quad [\pi^n]_G(\alpha) \neq 0$, $\underline{\text{then}} \quad \beta_n = \alpha_n^{q^g(n+1)}$ is a uniformizing parameter in K_n .
3) $\operatorname{Gal}(K_n/K_{n-1}) \quad \underline{\text{has a unique upper and lower break at the point}}$
 $m = q^{hn} - 1$.
4) The lower filtration of $G = \operatorname{Gal}(K_n/K) \quad \underline{\text{is given by}}$:
 $G_0 = G$
 $G_x = \operatorname{Gal}(K_n/K_0) \quad \text{for } 0 < x \leq q^h - 1$
 $G_x = \operatorname{Gal}(K_n/K_1) \quad \text{for } q^h - 1 < x \leq q^{2h} - 1$
 \vdots
 $G_x = \operatorname{Gal}(K_n/K_{n-1}) \quad \text{for } q^{(n-1)h} - 1 < x \leq q^{nh} - 1$
 $G_x = \operatorname{Gal}(K_n/K_{n-1}) \quad \text{for } q^{nh} - 1 < x \leq q^{nh} - 1$

5: The upper filtration of $G = Gal(K_n/K)$ is given by:

$$G^{0} = G$$

$$G^{X} = Gal(K_{n}/K_{0}) \quad \text{for } 0 < x \leq a(g)$$

$$G^{X} = Gal(K_{n}/K_{1}) \quad \text{for } a(g) < x \leq a(2g)$$

$$\vdots$$

$$G^{X} = Gal(K_{n}/K_{n-1}) \quad \text{for } a(g(n-1)) < x \leq a(gn)$$

$$G^{X} = (1) \quad \text{for } a(gn) < x ,$$

where a(g), a(2g),..., a(ng) are defined in Theorem 3.5.

<u>Proof.</u> We use an induction on n . For n = 0 the extension K_0 is generated by the non-zero roots of the polynomial f(x), where

$$[\pi]_{g}(x) = f(x^{q^{g}})$$
.

Since d = e = 1 each non-zero root β_0 has K-valuation 1/(q-1). Consequently the injection:

$$\rho_0 : \text{Gal}(K_0/K) \longrightarrow (A/\pi A)^*$$

is an isomorphism, and β_0 is a uniformizing element. The break sequence is obvious as K_0 is tamely ramified over K .

Now assume the result holds for the layer $K_{n-1}^{}/K$. Let $\alpha_n^{}$ be an element in $G(\overline{m})_{\pi^{n+1}}^{}$ not killed by π^n , and put

$$\alpha_{n-1} = [\pi]_G(\alpha_n) = f(\alpha_n^{q^g})$$
.

Raising this identity to the q^{ng} power, we obtain:

$$\beta_{n-1} = \alpha_{n-1}^{q} = f^{q}(\alpha_{n}^{q}) = f^{q}(\beta_{n}) = f^{q}(\beta_{n})$$

By our induction hypothesis, β_{n-1} is a uniformizing parameter in K_{n-1} . Applying the Weierstrass preparation theorem to the power series

$$f^{q}_{1}(x) = a_{1}^{q}x + a_{2}^{q}x^{2} + \dots + a_{q}^{q}x^{q} + \dots$$

we see that $~\beta_{\rm n}~$ satisfies an Eisenstein polynomial over $~K_{\rm n-l}$:

$$g(x) = x^{q} + b_{q-1}x^{q-1} + \dots + b_{1}x + b_{0}$$

with

$$\mathbf{v}_{\mathbf{K}_{n-1}}(\mathbf{b}_{0}) = \mathbf{l} \quad \mathbf{v}_{\mathbf{K}_{n-1}}(\mathbf{b}_{1}) \geq \mathbf{v}_{\mathbf{K}_{n-1}}(\mathbf{b}_{1}) \ .$$

We may therefore apply corollary (1.6) to conclude that $K_{n-1}(\beta_n)$ has degree q over K_{n-1} and a unique upper break at the point

$$m = qv_{K_{n-1}}(b_1)/q-1 - 1 = q^{nn} - 1$$
,

as

$$v_{K_{n-1}}(b_1) = v_{K_{n-1}}(a_1^{qng}) = q^{ng}(q-1)q^{n-1}$$
.

Clearly β_n is a uniformizing parameter in $K_{n-1}(\beta_n)$; counting degrees shows that $K_n = K_{n-1}(\beta_n)$ and that the injection

$$\rho_n : \text{Gal}(K_n/K) \longrightarrow (A/\pi A)^*$$

is an isomorphism. One can now calculate the entire break sequence using the induction hypothesis and the identity

$$\phi_{K_n/K} = \phi_{K_{n-1}/K} \circ \phi_{K_n/K_{n-1}}$$
.

This lemma immediately yields part 2) of Theorem 3.5 as a corollary. It is easy to check that parts 1) and 2) are consistent with (4.6) using the identities:

$$Nm_{A}(1+\pi_{B}^{gn}B) = 1 + \pi_{A}^{n}A$$
$$Nm_{A}(1+\pi_{B}^{gn+1}B) = 1 + \pi_{A}^{n+1}A$$

.

-:-:-

Bibliography.

- Demazure, M. Lectures on p-divisible groups. Lecture notes in mathematics No. 302, Springer-Verlag, Berlin-New York, 1972.
- Drinfel'd, V. G. Elliptic modules. (Russian) Math. Sbornik, 94, 1974; English translation: Math. USSR-Sb., 23, 1976.
- Grothendieck, A. Groupes de Barsotti-Tate et cristaux de Dieudonné. Séminaire de mathématiques supérieures No. 45, Beaverton, Oregon, 1974.
- 4. Lubin, J. Formal A-modules defined over A . Symposia math. inst. naz. di alta matematica, 1970.
- 5. Lubin, J. and Tate, J. Formal moduli for one-parameter formal Lie groups. Bull. soc. math. France (1), 94, 1966.
- Raynaud, M. Schémas en groups de type (p,...,p). Bull. soc. math. France, 102, 1974.
- 7. Sen, S. Ramification in p-adic Lie extensions. Invent. math. (1), 17, 1972.
- Serre, J.-P. Corps locaux. Publications de l'Institut de Mathématique de l'Université de Nancago, Actualités Sci. Indust. No. 1296, Hermann, Paris, 1962.
- Serre, J.-P. Groupes p-divisibles(d'après J. Tate). Séminaire Bourbaki No. 318, 1966/67.

- Tate, J. p-divisible groups. Proc. conf. on local fields, Springer, Berlin, 1967.
- ll. Wintenberger, J.-P. Automorphismes et extensions galoisiennes de corps locaux. Thesis, Grenoble, 1978.

-:-:-:-

Benedict H. GROSS Department of Mathematics Princeton University Princeton, NJ 08540 U.S.A.