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EXPOSÉ 14 

FIBRATIONS OVER S1 WITH PSEUDO- ANOSOV MONODROMY 

by David FRIED 

We will develop Thurston' s description of the collection of fibrations of a 
closed three manifold over S . We will then show that the suspended flows of pseudo-
Anosov diffeomorphisms are canonical representatives of their nonsingular homotopy 
class, thus extending Thurston's theorem for surface homeomorphisms to a class of 
three dimensional flows. Our proof uses Thurston's work on fibrations and surface 
homeomorphisms and our criterion for cross-sections to flows with Markov partitions. 
We thank Dennis Sullivan for introducing Thurston's results to us. We are also grate­
ful to Albert Fathi, Francois Laudenbach and Michael Shub for their helpful suggestions. 

A smooth fibration f : X -+ S ^ of a manifold over the circle determines a 
nonsingular ( i .e . never zero) closed 1-form f*(d6) with integral periods. Converse-
iy if co is a nonsingular closed 1-form and X is closed, then the map f(x) = \ cc 

from X to ]R/periods (to) will be a fibration over S provided the periods of 
to have rational ratios. For since IT X is finitely generated, the periods of to will 
be a cyclic subgroup of ]R (not trivial since X is compact and f open) and we have 
]R/periods (to) = S1 . By constructing a smooth flow ip on X with w(jj^) = 1 , we 
see that f is a fibration. The relation of nonsingular closed 1-form to fibrations over 
S is very strong indeed, as the following theorem (which gives strong topological 
constraints on the existence of nonsingular closed 1-forms)indicates. 

Theorem 1 ! 15 J . For a compact manifold X , the collection C of nonsingular 
classes, that is the cohomology classes of nonsingular closed 1-forms on X , is an 
open cone in H (X ; ]R) - {0} . The cone C is nonempty if and only if X fibers 

1 
over S 
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EXPOSf: 14 

Proof. The openness of C follows easily from de Rham's Theorem. 1[ 77 , . . . ,77̂  
are closed 1-forms that span H (̂X ; JR) and if co^ is a closed 1-form, then the forms 
^ -: w,. + J: a. 77. , la. | < e , represent a neighborhood of co in H (̂X ; JR) . a 0 . . 1 '1 1 F ^ - 0 " 1 1 
If 00̂  is nonsingular and e sufficiently small, then the 10̂  are nonsingular. The 
forms X cc , with X > 0 represent all positive multiples of 00 , so C is an 

a a 
open cone. 

Choosing a so that the periods of UJ are rationally related, we see that 1 U X fibers over S . We already noted that 0 $ C . Q.E.D. 

In dimension 3 , Sta.lli.ngs characterized the elements of C ' H (X ; zZ) c 
c H (X ; JR) . We note that if X is closed, connected and oriented and does fiber over 

1 3 
S with fibers of positive genus, then X will be covered by Euclidean space JR 
Thus X will be irreducible, that is every sphere S^ embedded in X must bound a 
ball (this follows from Alexander' s theorem showing IR̂  is irreducible). We assume  
henceforward that M is a closed, connected oriented and irreducible 3-dimensional 
manifold. 

Theorem 2 [12] . If u € H1(M ; Z) - (0} , then there is a fibration f : \i + S1 
with [f"*(d0) j u , if and only if ker (u : v -» "JL) is finitely generated. 

We observe that the forward implication holds even for finite complexes since 
the homotopy exact sequence identifies the kernel as the fundamental group of the fiber. 

Theorem 2 reduces the geometric problem of fibermg \i to an algebraic 
problem, with only two practical complications. First, whenever dim H (\1 ; JR) > 1 , 
there are infinitely many u to check. Secondly, it is difficult to decide if ker u is 
finitely generated. An infinite presentation may be readily constructed by the 
Reidemeister-Schreier process ; this yields an effective procedure for deciding if the 
abelianization of ker u is finitely generated (we work out an example of this at the end 
of the chapter). 

Thurston's theorem (theorem 5 below) helps to minimize the first problem 
and make Stallings criterion more practical. It will be seen that one need only examine 
finitely many u , provided one can compute a certain natural semmorm on H (Ai ; JR) . 

As \\\u\'K) H\ \1 ; [R) is a lattice of maximal rank, the seininorrn will be 
determined by its values on H V \ ] ; Z ) . Each u c \i\\\;7Z) is geometrically represen­
ted by framed surfaces under the Pontrjagm construction [] . A framed (that is , nor-
mally oriented) surface S represents u whenever there is a smooth map f : M -> S 
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PSEUDO-ANOSOV MONODROM Y 

with regular value x so that S = f" (x) and u - [f (d6)] . By irreducibility of M , 

any framed sphere in M represents the 0 class so S may be taken sphereless (that 

i s , all components of S have Euler characteristic < 0 ) . 

Definition. || uj| = rnin {- x(S) I S is a sphereless framed surface representing u } . 

It is important to observe that a sphereless framed surface S in M , with 

|| u|| = - x(S) , must be incompressible (that is , for each component c S , 

rc^S.) -+ Tr̂M is injective). For (see Kneser's lemmar 11 ]), one could otherwise 

attach a 2-handle to S. so as to lower -\{S) without introducing spherical components. 

The justification for the notation ||u ¡| is the following result. 

1 
Theorem 3 [13] . ||u|| is a seminorm on H (M ; . 

This follows from standard 3-manifold techniques. The triangle inequality 

follows from the incompressibility of minimal representatives and some cut and paste 

arguments. The homogeneity follows by the covering hornotopy theorem for the cover 

z n : S1 - S1 . 

One instance where ¡Í ujj is easily computed is when u is represented by 

the fiber K of a fibration f : M -+ S . W e have : 

Proposition 1 [13] . If K -+ M-í—> S1 is a fibration, then || [f*(d6)]|| = -x(K) . 

Proof. By homogeneity we may suppose that u = [f*(d8)] is indivisible, that is 

u(77yM) = TT̂  S . This implies that K is connected and that KxlR is the infinite cyclic 

cover of M determined by u . If K is a torus we are done, so assume -x(K) > 0 . 

Any sphereless framed surface S representing u lifts to K x ]R , since for any 

component S^c S we have it^ c ker u = 77̂  K . If ~x(S) = || u¡¡ , then S is 

incompressible and ir^ SQ n^(K x ]R) = u^ K is injective. Since subgroups of rr̂ K 

of infinite index are free, we see that is a finite cover of K , hence 

||u|| = - x ( S ) > - x ( S Q ) ^ -x(K) , as desired. Q.E.D. 

In fact, we see that any sphereless framed surface S representing u with 

minimal - x ( S ) is nomotopic to the fiber K . 

The behaviour of || || is decisively determined by the fact that integral 

classes have integral serninorrns. We will show : 

Theorem 4 [ 1 3 ] . A seminorm || 11 : I£N Z. extends uniquely to a seminorm 
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EXPOSÉ 14 

jj ¡1 : ]Rn -+ [0,°°) . A seminoma on JRn takes integer values on ^nc=> || xj| = 

= max 12 (x) I , where F c Hom(Z,n,Z.) is finite. 
e€ F 

This enables us to state Thurston's description of the cone C of nonsingular 

classes, C c H1(M ; JR) - {0} . 

We will consistently use certain natural isomorphisms of the homology and 

cohomology groups of M . By the Universal Coefficient Theorem, H \ M ; 2£) = 

^ Horn (H (M ; ; Z) and H (M ; Z)/torsion - Horn (H1(M ; 1L) ; jL) . With real coef­

ficients, H^M ; 1R) and Hi(M ; 1R) are dual vector spaces for any i . By Poincaré 

Duality, we may identify Ĥ (iVl ; Z.) with H (M ; 1L) . Thus we regard the Euler class 

of a plane bundle F" on M , which is usually taken to be in H (M ; Z,) , as an 

element of H (̂M ; Z) and thus as a linear functional on H (M ; JR) . 

Theorem 5 [13] . C is the union of (finitely many) convex open cones int (T^) 

where T. is a maximal region on which || || is linear. The region T. containing a 

given nonsingular 1-forrn co is T. = { u £ H (M ; 1R) 1 jj uj; -= - \ ( u)} where Xn 

is the Euler class of the plane bundle F = ker cc . 

Note. When \; jj is a norm, we may say that C is all vectors v r 0 such that 
! i v; j 

belongs to certain "nonsingular faces" of the polyhedral unit ball. Incidentally, we 

have that I; 1! is a norm all T2 c M separate \i < > all incompressible 
2 

T c M separate M . 
We give our own analytic proof of theorem 4. 

Proof of theorem 4. Clearly j \\ extends by homogeneity to a serninorm || || on Qn 

This function is Lipschitz, hence has a unique continuous extension to a function 

lRn [0,EC [ . The triangle inequality and homogeneity follow by continuity. 

By convexity, all one-sided directional derivatives of N(x) = || x jj exist. 

Suppose T = (0, i p) , q € '2L+ , p = (p^, • . • ,Pn) £ ZR ^ is a rational point. For 

integral in , we compute 

b N 
(r) = lim M r + 1 / q m e , ) - N(r) 

rn^oc 1/qm 

lim (N(1 , mp , . . . ,mpn) - N(0,mp , . . . ,mp )) 
IH-•oc 

A Z ; 

since jK is closed. 
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By induction on n , we assume that N(0,x) , x € IRn 1 , is given by the 

supremum of finitely many functionals e (x) ^ a^ x^ + . . . + an xn > a2'* * ' ' an ^ ^ ' 

x ^ (x^, . . • ,x^) . By convexity, any supporting line L to graph (N) a ]Rn x ]R lies 

in a supporting hyperplane H (supporting means intersects the graph without passing 

above it). We choose x a rational point for which N ! 0 x ]Rn 1 is locally given by £ 

and choose L to pass through (0,x,N(0,x)) £ ]R x]R in the direction (l ,0, -r-— (0,x)) 

Then we see that H is uniquely determined as the graph of ( ^x (0,x)) x^ + a2x2 + • • • 

+ . So for a dense set of x , the graph of N has a supporting functional at 

(0,x) with integral coefficients. 

Reasoning for each integrally defined hyperplane as we have for {x̂  ^ 0}, 

we find integral supporting functionals € (x) = a^x^ + . . . + anxn , ^ € E> , to the 

graph of N exist at a dense set in ]Rn . Since N is Lipschitz, there is a bound 

| a. i < k , i = 1 , . . . ,n . Thus the supporting functionals form a finite set F , so 

S(x) = sup | € (x) \ is clearly a seminorm. But S(x) < N(x) and equality holds on a 
2 6 F 

dense set, implying that S(x) = N(x) by continuity. Q.E.D. 

Before giving the proof of theorem 5, let us observe one elementary conse­

quence of theorem 4 . Since || ¡1 is natural, any diffeomorphism h : iYl ̂  M induces 

an isometry h of H (M;JR) . If \\\\ is a norm, then the finite set of vertices of 

the unit ball spans H (M ; IR) and is permuted by h 1 . 

Corollary. If all incompressible T c M separate M , then the image of Diff(M) in 

GL(H1(M ; ]R)) is finite. 

Proof of theorem 5. Suppose to, to' are nonsingular closed 1-forms that are 

close. Then the oriented plane fields F = ker co , F ' = ker co' are homotopic and so 

determine the same Euler class \ni ^ EL(M ; ]R) . 

If f co' j is rational, let q [co 1 ] = £' € H (M ; Z) , where 0 < q € Q and 

/3' is indivisible. Then if K' is the (connected) fiber of the fibration associated to 

qco' , we have \ (K') = Xpi(K') = Xp(K') • Using this and proposition 1 , we find 

li = ^ ( - x ( K f ) ) =--Xrr(K' ) = - x ^ t ^ ' ] • Thus for all rational classes [co 1 1 q q r r 
near [co] , || |j is given by the linear functional - \ p . This shows that || I! agrees 

with - x p on a neighborhood of any nonsingular class f co] , as desired. 

It only remains to show that every a € int T is a nonsingular class, where 

T - { a£ H (M ; IR) | ||a|| = -Xp(a) } is the largest region containing [to ] on which 

¡ 1 i l is linear. 
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For this, we need a result of Thurston's thesis M4 concerning the isotopy 
of an incompressible surface S c M when M is foliated without "dead end components" . 
In fact, this result is only explicitly stated for tori, and one must see 8 tor a pub­
lished account of this case. Restricting our attention to the foliation d defined by a: 
(5 is tangent to ker co F) , we may state this result as follows : any incompressible, 
oriented and connected surface S^ c M with - \ ( S ^ ) 0 may be isotoped so as to 
either lie in a leaf of 3 or so as to have only saddle tangencies with S . (We call a 
tangency point s of with 3 a saddle if for some open ball B around s , the map 
yY LC : B H JR has a nondegenerate critical point at s which is not a local 
extremum.) 

Suppose a € T f H (M ; JL) is not a multiple of : tc ^ . Represent a by a 
framed sphereless surface with -\{S) \", u\, . As S is incompressible, each compo­
nent of S may be isotoped (independently) to a surface S. which either lies in a leaf 
of 3 or has only saddle tangencies with 3 . If some Ŝ  lies in a leaf L. of o , then 
(as in proposition 1 ) 71 ̂ L vvould be of finite index in 7r̂ L ker 1 tc . Since 
77\S. c ker a , we would find that c is a multiple of oc . Thus each S. has only 1 l i 
saddle tangencies with 5 . 

Lemma. For each i , the normal orientations of Ŝ  and 3 agree at ail tangencies. 

Proof of lemma. We compute \\ a\\ in two wavs. First . c: - \ ( S ) £ - \ ( S . ) . 
i 1 

Choosing some Riernannian metric on M , we may use the vector field V. on S. dual 
i I to co! S. to compute - \ ( S . ) . V. will have only nondegenerate zeroes of index - 1 , i l l 

since all tangencies are saddles. The Hopf Index theorem _o _ gives - \ (.S.) n. , 
where n. is the number of tangencies of S. with 3 , Thus c Z n. . I ^ I I 

On the other hand, we know that a c T implies a - \p(o;) . The natural 
normal orientations of F and S gives us preferred orientations on F and S^ , for 
each i . Each oriented plane bundle F , S. has an Euler class \ r.(S.) [S. J where 
[ S j €rT(S.;Z) is the orientation class . We compute \p(S.) as the self-intersection 
number of the zero section of F 1 S. . For this purpose, look at the field W;. of vectors 
on S^ tangent to 3 , which are the projection onto F of the unit normal vectors of 
S^ . Regarding W\ as a perturbation of the zero section of F S. , we compute the 
self-intersection number using the local orientations of F and . When these orien­
tations agree, one counts the singularity as - 1 (just as in the tangent bundle case 
already considered) but when the orientations disagree one counts -t-1 . Thus 
- v^i'G.) -••= n + - n . , where n+ is the number of tangencies at which the orientations F i l l l 
agree and n. is the number of tangencies at which the orientations disagree. Thus 
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Hall = 5 n + - E nT . 

Since n . = n+ +n~ , we have L n + + £ n~ - || all - L - L n . , whence 
1 1 1 • I i 

all the nonnegative integers n^ must be zero. This proves the lemma. 

Because of the lemma, we may define a framing N\ of S. with co(N.) > 0 

everywhere. This framing may be extended to a product neighborhood structure on 

U. 3 S. , where h : S. x [-1,1 1 -> U. is a diffeornorphisrn, h (-^7) - V on 

S. = S. x 0 and c c ( h ( T r ) ) > 0 . Let B : f0,« 1 be a smooth function 
1 1 \ * bt • +<\ ~ 

vanishing on |x | > ^ with \ B - + 1 . Letting r,. -(TT h ')*Bdt we find that, for 
<L _ -J 1 Z 

all s > 0 , (to + sr/.) (h ~- ) > 0 on U . But since a; + sr,-. -co away from U , we 

see that the closed 1-form co + sr/. is nonsingular. 

The portion of theorem 5 already proven gives 1 co + sr/. J € int T . 

Thus, [17. 1 = lim ^ + ST?1 ' € T Pi H1(M ; Z) , for all i . So replacing fa: ] by 

[co ] + ŝ  [73 ^ ] + . . . + s Lr/jL_i - > we see inductively that rco ] 4- s^ rt ^ + ... + 

s^fr/^1 is nonsingular for all s^,. . ., ŝ  > 0 . In particular, for all s > 0 , 

[co ] + s a = [co ] + S W [ i / ^ ] is nonsingular. 

We just showed that if /3 int T is a nonsingular class, then ¡3 + SOL 

is nonsingular for all a £ T P H (M ; and s > 0 . Now consider an arbitrary 

Y 6 int T , y £ ¡3 . By convexity we may find , . . . , v^ £ int T , d = dim H (M;]R) , 

so that y is in the interior of the d-simplex spanned by jS , v , . . . ,v We may 
1 + 1 choose v„ . . . v , rational, say v. = r- a. , some N ^ Z , a. € int T P H (M;Z) . 1 d J N j J 

We have y = tn/3 + D t. a. , with all t. > 0 . By induction on k , we see that each 
k J=1 3 J J 

¡3 + D (t . / tn)a. is nonsingular. Setting k = d and multiplying by tn > 0 , we see 
j=1 J u J u 

that y is nonsingular as well. Thus if one point /3 6 int T is nonsingular all 

y € int T are nonsingular. Q.E.D. 

We will sharpen Thurston's theorem 5 in the case when M is atoroidal 

(contains no incompressible imbedded tori ) and H (M;Z) / Z . We show (theorem 7) 

that a nonsingular face T ( i .e . one containing a nonsingular class) of the unit || || -ball 

determines a canonical flow <p̂ . : M ~> M such that int T consists precisely of all [co ] 

where co is a closed one form with co ( ^ ) > 0 . We must begin by relating the ator­

oidal condition to Thurston's classification of surface homeomorphisms. 
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1 
We suppose f : M -> S is a fibration. Then flows ^ for which 

^ - f m) > 0 (we will only consider flows having a continuous time derivative) deter­

mine an isotopy class of surface homeornorphisms. For any k £ K t ^(1) , we consi­

der the smallest time T(k) > 0 for which H<T^(k) £ k . Tins map T(k) : k ^ (0,°°) 

is smooth (since the flow lines of y are transverse to K) and the return map 

R(k) ^ ^x (k )^^ is a nomeomorPhism • By varying ^ , we obtain an isotopy class of 

homeornorphisms of the fiber K as return maps ; this isotopy class will be called the 

monodromy of f and denoted m (f) . 

We remark that the monodromy of f is determined algebraically by the cohomo-

logy class ¡3 i ~d6 € H (M \'2L) , or equivalentlv by the map f : n .\i -> TT. S 
First assume that /3 is indivisible. From the exact homotopy sequence 1 -> n k ~> 

f w 1 ' 
^ 77.M — 7 7 „ S -* 1 . we see that 77 Al is the semidirect product T7̂ K c* jL , where 

1 1 1 1 1 a ' 
a is the outer automorphism of 77 ̂ k determined by the monodromy of f . Thus 77̂  K 

(= ker f ) and a are determined by f̂  alone. Clearly the topological type of k is 

determined by 77 ̂ k : but Nielsen also showed that isotopy classes in Diff(k) cor res ­

pond 1 - 1 to outer automorphisms of 77̂  k . In general, ¡3 n ¡3* is a positive integer 

multiple of an indivisible class /3' , and n is determined by coker F jL/xxfL . We 

see that the fiber of f consists of n copies of k (where T7^k ̂  ker f^) which are 

permuted cyclically by the monodromy. The nth power of the monodromy preserves k 
and acts on 77 k by a (the outer automorphism of ker f ) . Thus we may unambiguously 1 1 * 
speak of the monodromy of a nonsingular class /3 6 H (¡U ; . 

We say that the monodromy rn(f) of a fibration f : M ~+ is pseudo-Anosov 

if the isotopy class has a pseudo-Anosov representative R . This representative is 

then uniquely determined within strict conjugacy, that is for any two pseudo-Anosov 

representatives R^, R^ 6 m(f) there will be a homeomorphism g isotopic to the iden­

tity for which RQg = gR^ . 

1 1 
Proposition 2. Suppose that H (M ; 2L) f 'jL . Given a fibration f : M -+ S , M is 

atoroidal precisely when the monodromy m(f) is pseudo-Anosov and the fibers of f are 

not composed of tor i . 

Proof. Suppose M contains an incompressible torus S and let 3 be the foliation 

of M by the fibers of f . Again using the result of Thurston's thesis discussed in the 

proof of theorem 5 I 8 ,14] , we may isotope S to either lie in a leaf of 3 or to be 

transverse to 5 (since \ (S) Ü , the presence of saddle tangencies would force there 

to be tangencies of other types) . If S does lie in a leaf, then the fibers of f are com­

posed of tori parallel to S . If the torus S is transverse to 3 , then otie may define a 
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flow ^ on M that preserves S and satisfies ^ " ( f o ^ ^ l • Thus the return map 
: K -+ K , k = f~^(l) , preserves the family of curves S Pi K . Since S is incom­

pressible , each of those curves is nomotopic ally nontrivial in K . If the monodromy of 
f were pseudo-Anosov, these curves would grow exponentially in length under iteration 
by ip^ . So we see that when m(f) is pseudo-Anosov and the fibers of f are not unions 
of tori, then M must be atoroidal. 

Conversely, when the fibers of f are unions of tori, these tori are essential. 
So we assume the components of the fibers have higher genus and that the monodromy is 
not pseudo-Anosov (hence reducible or periodic) and look for an incompressible torus. 
If m(f) is reducible, we may construct ^ with ^"(fo^) = 1 f°r which ^ cyclically 
permutes a family of homotopically nontrivial closed curves C c K . Then { ^ C} 
is an incompressible torus. If rn(f) has period n , after Nielsen (see expose 11) , we 
may choose ^ with Jff(f°fy) = 1 for which ^ = identity. Thus iYl is Seifert fibred. 
One may easily compute that H (̂M ; Z) = Z^g+1 ? where g is the genus of the topolo-
gical surfaces which is the orbit space of ^ [ 7 1 . As we assumed H (JV1 ; Z) / Z , 
we must have a homologically nontrivialcurve in this orbit space which corresponds to an 
incompressible torus in M . Q.E.D. 

1 
We may consider flows transverse to a fibration over S from three view­

points. The first is to begin with the fibration and produce transverse flows and an 
isotopy class of return maps. The second is to begin with a homeomorphism R : K * K 
and produce a fibration over S with fiber K and a transverse flow cp with return 
map R . This is the well-known mapping torus construction, for which one sets 
X = K x [0,1 ] / (k , l ) = (R(k),0) , f: X -» ([0,1 ]/0= 1) - S1 the natural fibration and 
defines to be the flow along the curves k x [0,1 j with unit speed. Clearly 
^ I K x 0 = R is the return map of ^ , as desired. This flow ^ is called the 
suspension of R . The third viewpoint is to begin with a flow ^ on X and to seek a 
fibration f over S^ to which v is transverse - a fiber K is called a cross-section 
to ^ . Note that K and ^ determine the return map R and an isotopy class of fibra­
tion s f . 

In general, one has little hope of finding cross-sections, since many manifolds 
1 

don't fiber over S at all. But there is a classification of the fibrations transverse to 
^ which is especially concrete in the case of interest to us now. 

Suppose that some cross-section K to a flow <p has a return map R : K -+ K 
admitting a Markov partition Hi = {S^, . . . ,S^} (see expose 10 - the case we need is 
when R is pseudo-Anosov). There is a directed graph with vertices S^, . . . , S^ 
and arrows S. -> S. for each i and i for which R(S.) meets int(S.) . A loop Z i J r v r 1 
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for IT is a cyclic sequence of arrows S. S. S. -+ S. . Each loop t 
determines a periodic orbit for R and thus a periodic orbit y(«) for' cp . If allot 
i^V . . ,i^ are distinct, we call 't minimal. There are only finitely many minimal loops i . 

We now discuss the classification and existence of cross-sections to flows. 
Given a flow ^ on a compact manifold X there is a nonempty compact set of homology 
directions D c H (X ; 1R)/ JR+ , where the quotient space is topologized as the dis-
joint union of the origin and unit sphere. A homology direction for ^ is an accumula­
tion point of the classes determined by long, nearly cfosed trajectories of ^ • We note 
that when K is a cross-section to ^ , K is normally oriented by ^ and so determines 
a dual class u € H1(X ; 1L) . Let C - { u € H1(X ; Z) | u is dual to some cross-
section K to v } . 

Theorem 6 !_1,2 j . ^ ^ ( ^ ) ; u u ( ^ ) > 0 } • H cp , as above, has a cross-section 
K and the return map R admits a Markov partition IT , then C (<p) { u u(y(^)) > 0 
for all minimal loops 2 for IT } . 

Thus, C (^) consists of all lattice points in a (possibly empty) open convex 
cone C (^) - { u ! u(D. ) > 0 } c H (X ; R) - 0 } . It follows easily from theorem 6 
that C (^) = {[a: ] | w is a closed 1-form with c o ( ^ ) > 0 } . 

Returning to our discussion of three-, lanifolds, we call a flow go on M 
pseudo-Anosov if it admits some cross-section for which the return map is pseudo-
Anosov. We now describe the cross-sections to pseudo-Anosov flows, a d show; they 
are uniquely determined by their homotopy class among nonsingular flows on M . 

Theorem 7. Suppose M fibers over S . Then each flow v ^n ^ that admits a 
cross-section determines a nonsingular face T(^) for the norm \\ \\ on H'(M ; 1R) . 
Here T(ty) - { iju ij - - \ v x ( u)} and i^1 denotes the normal plane bundle to the vector 
field ^ . One has ^ ( v ) c int T ( v ) . 

For any pseudo-Anosov flow <p on M , C (cp) = int T(cp) . 
IK 

The face T(<p) (or the class \ , I ) determines the pseudo-Anosov flow cp 
up to strict conjugacy. Thus any nonsingular face T on an atoroidal M with 

I 
H (M determines a strict conjugacy class of pseudo-Anosov flows. 

Proof. For u t c ^ ( ^ ) , there is a cross-section K to ^ dual to u . We have 
u |; - \ ( k ) , by proposition 1 . Since the restriction I K is the tangent bundle 

of K , we have - x (K) ™X, J_ (u) • Thus "X^J_ is a linear functional on H (i\i;]R) 
that agrees with '\\ on C ^ ( v ) and the first paragraph of theorem 7 is shown. 
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We now observe 

Lemma. Any cross-section K to a pseudo-Anosov flow <p on M will have pseudo-
Anosov return map R„ . 

Proof. By definition there is some cross-section L to cp with pseudo-Anosov return 
map R^ , but K and L will generally not be homeomorphic (one calls return maps to 
distinct cross-sections to the same flow flow-equivalent). in any case, any structure 
on L invariant under is carried over to structure on K invariant under R^ under 
the system of local homeomorphisms between K and JL determined by cp . This shows 
that R^ preserves a pair of transverse foliations 3 ̂  and 5^. with the same local 
singularity structure as a pseudo-Anosov diffeomorphism. 

We now show that the closure P of any prong P of o ̂  or 3 ^ is the compo­
nent KQ of K which contains P . By passing to a cyclic cover M̂  -+ M determined 
by the composite hornornorphism ^ M (flyM/T^K^) = %L -* Z / n Z and restricting to the 
cross-section K~ c M we may assume that K is connected and that RT. leaves P 0 ri J K 
invariant (choose n so that P is invariant under R. ) . Consider the closed RT 

_ K0 L 
invariant subset {cp̂ . P} O L = I . Since I contains the closure of a prong for the 
pseudo-Anosov diffeomorphism R^ , we know that I is dense in some component 
L~ c L . As L„ is a cross-section to <p , we find that {cp, P} = M . As P is R,.. U U t K 
invariant, we find P ^ K as desired. 

Similarly we can check that the foliations 3 ^ and 5 ^ have no closed leaves. 
It follows by the Poincaré-Bendixson theorem that each leaf closure contains 

a singularity, and thus a prong. So we find that all leaves of 3 S^ and o ̂  are dense 
in their component of K . 

We may see from this density of leaves and the fact that the local stretching 
and shrinking properties of RT. are the same as those of RT that the Markov partition 
construction of exposé 10 works for R^ . (it is easiest to construct birectangles for 
R^ by "analytic continuation", from immersed birectangles in L. This makes sense 
because K and L have the same universal cover.) As in the Anosov case [9] , the 
Parry measures for the one-sided subshifts of finite type associated to IT push forward 
to give transverse measures on 3 and 3 that transform under RT. oy factors 

X ^ and X k i for some X ^ > 1 . As leaves are dense, these measures have positive 
values on any transverse interval but vanish on points. Thus RT, is pseudo-Anosov. 

Q.E.D. 

1 2 1 Now suppose cp and cp are pseudo-Anosov flows on M for which C (cp ) JR 
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2 1 2 1 
intersects C (p ) . Then we may choose u ( C (p ) P C,.J<p ) P H (M ; ^ ) and find 
fibrations f. : M S with -£-(f.op|) > 0 and u - f. (db) ~ , I 1,2 . 

As discussed earlier, u determines m(t) . This gives a homeomorphism 
h : M -+ M such that f oh - f̂  where h acts on 77 M by the identity. Thus h is 
isotopic to the identify . 1(> ~ . Hence, by this preliminary isotopy , we assume 
f ̂  = f̂  = f and denote the fiber by K . 

Each p determines a return map R. : K K . By the lemma above, these 
R̂  are pseudo-Anosov. Since the maps R̂  are in the same isotopy class h(f) , they 
are strictly conjugate by the uniqueness of pseudo-Anosov diffeomorphisms (expose 12). 

Now suppose that gR -- R g , with g isotopic to the identity. Then the map 
CQ : M ^ M defined by C^(p^ k) - (p | gk) , I P K , 0 < s < 1 , is a homeomorphism 
conjugating flows cp̂  and p^ and 1O(^Q -= f • As i K ^ g is isotopic to the identity, 
CQ may be isotoped to C where f o f , for t € [u,1_ and fixes K . Since 

DiffK is simply connected [4 j , we may isotop to the identity (through 
satisfying f o - f , t t r l , 2 j ) . 

We have shown so far that if p1 are pseudo-Anosov flows, 1 = 1,2 , then 
either ^ ^ ( 9 ) equals ( ) or is disjoint from it, since conjugating a flow by a 
conjugacy isotopic to the identity doesn't affect C . It follows easily that the open 
cones ^ ^ ( ^ ) and Cj^(c ) are either disjoint or equal. 

Now suppose that p is pseudo-Anosov but ^ (p) is a proper subcone of 
int T(p) . Bv theorem 6 , C (p) is defined by linear inequalities with integer coeffi-
cients, and so there is an integral class u € int T ^ cC^(p) . Then u is nonsingular 
(theorem 5) , the fibration corresponding to u has pseudo-Anosov monodromy (propo­
sition 2) and one obtains an Anosov flow ^ with u 6 cp (p ) • This shows that Cjp(v) 
and C (p) are neither disjoint nor equal, contradicting the previous paragraph. IK 

Thus we see that pseudo-Anosov flows satisfy C(p) = int T(p) . Q.E.D. 

Theorem 7 shows that pseudo-Anosov maps satisfy an interesting extremal 
property within their isotopy class. Suppose h : K -+ K has suspension flow 
V : M M , where we take K connected and dual to the indivisible class u € H (M;2L). 
Given an isotopy ĥ  starting at h^ , we may deform ^ through flows v with cross-
section K and return map h . We regard u \ ^ ) as a subset of H (M.; ]R)/]R^ and 
note that we always have D t c u (1) . Bv the Wang exact sequence : 

H (K : ]R) ho^"Id > H^K ; F) -+ H1 (M ; IR) ——> JR -* 0 , 

we may identify u (1) with u (0) = coker (hQ^-Id) by some fixed splitting of u . 
Whenever h = h, . the simple connectivity of Diff K [4] implies that s - D t • 

S t <p y 
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Thus we may unambiguously associate a set of homology directions D. c coker(h -Id) 
to homeomorphisms h isotopic to h^ . Now assume that h^ is pseudo-Anosov. By 
theorem 7 , we have C K ( v S ) c int T(^S) - int T(ip°) - C^(^°) . Thus we find, using 
theorem 6 , that the convex hull of (which may be identified with the asymptotic 
cycles of tyS in this situation [3,10]^ always contains the convex polygon determined 
at s - 0 . Thus we may say that pseudo-Anosov diffeomorphisms have the fewest gene­
ralized rotation numbers in their isotopy class. 

We may analyze the topological entropy of the return-maps R^ of the various 
cross-sections K to a pseudo-Anosov flow C . We parametrize these cross-sections 
K by their dual classes u t H1(M ; Z) and define h : C (<p) (0,<») by h( [K ]) = h(RR), 
the topological entropv of RT, . We showed in [3] that 1/h extends uniquely to a 
homogeneous, downwards convex function 1/h : C~~Tp) -+ [0,°°1 that vanishes exactly 
on c)C^((p) . Thus h(u) may be defined for all u 6 H (M ; JR) in a natural way. The 
smallest value of h on int TO { || u || = 1} defines an interesting measure of the com­
plexity of op (or equivalently, by theorem 7, of the face T - T(cp) ) . The integral 
points at which h is largest give the "simplest" cross-section to the flow cp (see 
[3 ]) . 

If one is given a pseudo-Anosov diffeomorphism h : K -» K and a Markov 
partition IT for h , theorems 6 and 7 give an effective description of the nonsingular 
face T determined by the suspended flow cp : M M of h , in terms of the orbits 
corresponding to minimal loops. As the computation of minimal loops in a large graph is 
difficult, we observe that there is a more algebraic way of using to to obtain a system 
of inequalities defining T . (We refer the reader to [3 j for details, where we used 
this method to construct a rational zeta function for axiom A and pseudo-Anosov flows.) 
P'or sufficiently fine T , we may associate to № a matrix A with entries in 
H (̂M ; Z)/ torsion ^ H . The expression det (I - A) , regarded as an element in the 
group ring of the free abelian group H , may be uniquely written as 1 + S a. g. , 
g. 6 H - 0} , â  € Z, - 0 } , ĝ  distinct. Then T is defined by the inequalities 
uigj > 0 . 

3 
To illustrate Thurston ' s theory, it is convenient to work on a bounded M . 

The norm considered above can be extended to such M by omitting spheres and discs 
before computing the negative Euler characteristic. One should restrict to the case 
where òhi is incompressible, and then theorems 2 and 5 and proposition 1 extend 

[5,13] . 
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We let K be the quadruply connected planar region and h the indicated 

composite of the two elementary braids (figure 1 ) which fixes the outer boundary 

h 

Figure 1 

component. We will let M be the mapping torus of h and compute j¡ I . Rather than 

finding a pseudo-Anosov map isotopic to h , which would only help compute one face, 

we will instead compute ker (u : 77 M -+ "JL) for several indivisible u G H (Ai ; L) . 

When this kernel is finitely generated, theorem 2 shows u is nonsinguiar and propo­

sition 1 enables us to compute u ¡ . From a small collection of values of || ||, theorem 5 

allows us to deduce all the others, indicating the existence of nonsinguiar classes that 

would be hard to detect using only theorem 2 . 

We first compute 77 tx Z, . Writing 7 7 a s the free group on the loops 

a , ¡3 and y shown in the diagram, we find : 

7T M - < a , / ? , y , t | t ' a t y , t 1/3 t - y 1luy , 

t \ t = (y 1ay)£ (y V / ) 1 ; 

= <a ,£ ,y ,t ; t 1c:t y , t 1£ t - y 1ay , y£ t = jS t|8 > 

-- < y , t | ( t y 1ty t V)2 = r ( t y 1 ty t 1y)t> • 

Abelianizing gives H (̂M ; 1L) ILy & Z t . Suppose u € H (M ; 2.) is indivisible, so 

that a - u(y) and b u(t) are relatively prime. The Reiderneister-Schreier process 

gives a presentation for ker(u : ir M L) (essentially by computing the fundamental 
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group of the infinite cyclic cover corresponding to u ) which is very ungainly for 
large a . When a = 1 , one finds the relatively simple expression : 

ker U = ^i ' Vi+b-1 *i+b *i+b+1 ti+2b ti+2b+1 " 1̂+1 ti+b *i+b+1 ti+h^2) ' 

For b > 1 , this relation expresses t. in terms of t. , . . . ,t and expresses 
1 1+ I I t. „ in terms of t., . . . ,t. ou . Thus ker u is free on t , . . . ,t„, . . Similarly i+2b+1 i i+2b 1 2b+1 

if b < -1 , then ker u is free on t̂  , . . . , t ^ a n d if b - 0 , then ker u is free 
on t^, t^, . If b - t 1 , however, one may abelianize and obtain 
(ker u)ab = Z[ t , t "1 ] / 2t3 - 3t2 + 3t - 2 which maps onto the collection of all 2n th 
roots of unity, and so ker u is not finitely generated. 

By theorem 2 (Stallings), there is a fibration for u (1 ,b) when b £ ± -] , 
with fiber satisfying TT^K^) --= ker u . By proposition 1 , || UJ| -= - x ( ^ ) > which 
is clearly - 1 + rank(H KY) = f |2 b I , b > 1 , b 6 Z 

2 , b = 0 . 

We will see that these values determine || || completely. Using the dual 
basis to (y ,t) , we know that : 

| | ( L , B ) | | f !2bi , b > 1 , b G Z 
1 2 , b - 0 

But || (1 ,b)|| is a convex function f of b by theorem 3 and it takes integer values at 
integer points. By convexity, f(l) must be 2 or 3 . Were f(l) = 3 , convexity would 
force f(x) = | 2+ x for 0 < x < 2 and then 0,2) would not lie in an open face of 

1 2 x for x > 2 
the unit ball, contradicting theorem 5 . Thus one must have f(l) =2 , and likewise 
f (-1) = 2 . By convexity, we find f (x) = max ( |2x ! ,2) . Homogenizing shows 
|| (a,b)|| = max ( I 2 a | , |2b |) , i . e . || u|| = max (| u(2y) I , | u(2t) I ) . 

By theorem 5, u £ H (M ; IR) is nonsingular | u (y) \ ^ \ u (t) | . 
This example embeds in a larger one, constructed with the mapping torus Mn 

of the transformation h (MQ is a triple cyclic cover of M) . H (MQ,2£) is free abelian 
on a,p ,y ,t , so there is a norm on H1(MQ ; ]R) whose restriction to h\m ; 1R) = 
^ { u e H1(MQ ; JR) | u(a) = u(jS ) = u(y)} is 3 || || . We leave its computation as an 
exercise. 
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