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Representation Theorems for Holomorphic and Harmonic functions in LP 

by 

R.R. Coifman and R. Rochberg 

§1. Introduction. The main result of this paper is that functions in certain 

Bergman spaces and in certain generalizations of Bergman spaces can be written as 

sums of building blocks of an especially simple type. This can be regarded as an 

extension to the Bergman spaces of the atomic theory of generalized Hardy spaces 

presented in [3] and of the molecular theory of Hardy spaces which is presented in 

this volume by Taibleson and Weiss [26]. (See also [31].) 

Let D be a bounded symmetric domain in C n . (That is, D has a transitive 

group of biholomorphic automorphisms and each point of D is the fixed point of a 

biholomorphic automorphism of period two. ) For example D could be the unit disk 

in C or the unit polydisk or the unit ball in Cn . Let dV(z) be Lebesgue 

measure on D and let B(z , £) be the Bergman kernel for D . For instance, if 

D is the unit ball in C n , then 

B(Z , O = c n ( i - z . o " ( n + 1 ) 

where ze £ = Ez^£^ • For 0 < p < <*> the Bergman space AP = AP(D) is defined to 

be the supapace of LP (D , dV(z)) consisting of holomorphic functions. 

We will prove the following result. 

Theorem I. Suppose 0 < p < 2 . There are points £i, , i = 1 , 2 , , . . in D 

and constants C-̂  , which depend on p and on the points £^ so that 

(a) if_ F is in AP then there are numbers X. such that 

(1.1) F(z) = 
00 

i=l 
y1 

B 2 ( z ^ .y 
a(£i,£i) 

I 
p 

with £|X. | P <C J | F ( Z ) | P dV(z) , and 
1 D 

(b) if X i are numbers such that s| X^| P < 0 0 then the function F(z) 

Both authors supported in part by grants from the National Science Foundation. 
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REPRESENTATION THEOREMS 

defined by (1.1) is in AP and satisfies 

r | F (z ) | P dV(z) < c 9 s | \ . | p . 

Our main result is actually for Bergman spaces defined on unbounded realiza­

tions of such domains. In that context we obtain results for the full range 

0 < p < QO and also for weighted Bergman spaces. A similar, but slightly more 

complicated result is obtained corresponding to the end point p = » . The end 

point result involves spaces of functions similar to Bloch functions. Decomposi­

tion theorems are also obtained for certain spaces of harmonic functions defined 

on the unit ball in Rn . 

Part (a) of the theorem is derived from, and can be regarded as a discrete 

analog of, an integral reproducing formula for functions in AP . Part (b) of 

the theorem is elementary for p < 1 . For p > 1 , part (b) is derived from and 

can be regarded as the discrete analog of, the fact that the integral reproducing 
P P 

formula gives a bounded projection of L onto A 

The proofs of the decomposition theorems for holomorphic functions is given 

in Section 2. The proof of the analogous result for harmonic functions is in 

Section 3. 

In Section 4, we give various consequences of these decomposition theorems. 

One of the main themes of these applications is that various computations or 

estimates which are relatively simple for the individual summands in a decomposi­

tion such as (1.1) can then be extended by linearity to the entire space. Using 

this point of view we obtain inclusion relations between various Bergman and Hardy 

spaces and description of the behaviour of the Bergman spaces under various inte­

gral and differential operators. Other applications include results about zero 

sets for holomorphic and harmonic functions, results about automorphic forms on the 

disk, and a nuclearity criteria for Hankel operators. 

In proving the decomposition theorems for holomorphic functions we use certain 

facts about the Bergman kernel function on Siegel domains. Since the proof of 

these facts has a different character than the rest of the arguments we use, and 
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since the facts themselves may be of independent interest; we present those results 

in an Appendix. 

We acknowledge with thanks the many helpful discussions we had with our 

colleague, G. Weiss, during this research. 

We follow the custom of using the letter "c" to denote many different con­

stants. 

§2. Spaces of holomorphic functions. 

Our main results for holomorphic functions, Theorems 2 and 2 ' , are proved for 

Bergman spaces of holomorphic functions on symmetric Siegel domains of type two. 

The primary reason for working in that setting is that the proofs are based on 

certain estimates for the Bergman kernel and those estimates, Lemmas 2.1, 2.2, and 

2.3 are obtained using, among other things, Gindikin's theory of special functions 

for such domains [11]. Due to work of Stoll [25] and Forelli and Rudin [9], 

similar estimates are available for products of complex balls and hence we also 

obtain Theorem 2 in that context. Certain cases of Theorem 2 are invariant under 

biholomorphic automorphisms of the domain and hence will be valid for all bounded 

symmetric domains. This observation produces Theorem 1 from Theorem 2. 

The proof we offer makes frequent use of the fact that the domain being con­

sidered has a transitive group of automorphisms. In most cases it is clear that 

this is just a convenience, and it seems reasonable to conjecture that results 

similar to Theorems 1 and 2 are true for a much more general class of domains. In 

this direction we note that Theorem 3 (the analog of Theorem 1 for the ball in R n) 

does not use (in any obvious way) the homogeneous structure of the real ball. 

For any open set D in C n , we denote by B(z , f ) = ^>^(Z J G ) the Bergman 

kernel function for D . We will denote the Euclidean volume element of D by 

dV(z) and will denote the volume of a subset B of D by | B | . Thus | B | = 

= J dV : The spaces of holomorphic functions which we will consider are the 
B 

weighted Bergman spaces P?,V(D) which are defined as follows. For p and r , 

0 < p < QO and r real, A P j , r (D) is the space of all holomorphic functions F on 
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D for which 

!!FL r. = (f l F ( z ) l p B(z,z)" r dv(z)) 
PJ> t ^ 

p 
<oo 

We will call !'jF||p r

 t n e "norm" of F even in the case when p < 1 . For the case 

of D the unit disk of C , many properties of these spaces are presented in [23]. 

For z and w in D , we denote by d(z , w) the Bergman distance between 

z and w . This distance is invariant under biholomorphic automorphisms of D 

and on compact subsets of D is equivalent to the Euclidean distance. A fuller 

discussion of the Bergman kernel and the associated geometry can be found in the 

books by Baily [1] and Kobayashi [29] and in the references listed there. 

Suppose Tj is a given positive number. We will call a sequence of points 

J£ ĵ in D an T] -lattice if , Q ) > Tj whenever i ^ j and if given any 

z in D there is a £̂  with d(z , < T) • Hence the balls centered at £ 

with radius 7) (in the Bergman metric) cover D and there is control on the amount 

of overlap in the covering. (We will also use this terminology when the actual 

inequalities satisfied are d(£_̂  , £^) > f]/a and d(z , Q^) < ajj for a large 

constant a which does not depend on z , i , j } or f| . This slightly imprecise 

usage avoids the need for an additional parameter in the definition. ) 

We now recall the terminology and notation for Siegel domains. A homogeneous 

Siegel domain of typ-e two (an "affine-homogeneous Siegel domain of the second kind" 

in the terminology of [11]) is obtained as follows. We start with V a regular 

open affine-homogeneous cone in Rn and a homogeneous V-Hermitian bilinear form 

F defined on Cm X C m . The domain D is then defined to be the (z^ , z^) in 
n+m n m n m . , C = C X C with z 1 in C , z 2 in C for which 

lm(z1) - F(z 2 , z ) e V . 

A detailed discussion of analysis on such domains is presented by Gindikin in [11]. 

Other good sources of background information on such domains are the article by 

Vagi [32] and the references there and the book by Kobayashi [29]. 

A discussion of the Fourier analysis for the simpler special case of domains 
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of tube-type is in [24]. 

One reason for the significance of this class of domains is the result of 

Vinberg, Gindikin, and Pyatetzki-Shapiro which states that every bounded homogen­

eous domain is biholomorphically equivalent to such a domain. 

Our results are proved for a subclass of these domains — the symmetric domains. 

This corresponds to the case where the cone V is self-dual. We suspect the 

results are valid for the full class of homogeneous domains but we have not been 

able to provide proofs for the results of the Appendix in that more general case. 

The simplest example of such a domain is the upper half plane in C (n = 1 , 

m = 0) . This example should be kept in mind when reading the proof of Theorem 2. 

Also, Theorem 2 is presented for spaces A P j , r (D) . The choice r = 0 simplifies 

the reading of the proof and involves no real conceptual loss. 

We now state the main result of this section. 

Theorem 2. Let D be the unit ball in C n or a symmetric Siegel domain of type 

two. There is a positive constant which depends on D so that the Bergman 

space A P - , r (D) with 0 < p < oo , -e^ < r < » satisfies the following. Given 

9 > (1 + r) max (-1 , p - 2) there is an T]Q = 7]Q(D , p , r , 6) so that if the  

points are an T| -lattice in D , T] < T(0 then 

(a) If F is in A P j r then there are numbers yi so that 

(2.1) F(z) = Eyi 
/B 2 (z,G .y 

a(£i,£i) 

1+r 
P B ( z,C I) ' 

a(£i,£i) 

0 
kp 

and E|yip < C||F||pp,r| 

(b) if ! p < » then F defined by (2.1) is in A P ' r and ||F1|P
 r < 

< c 2 |X . | P . 

The constant c can be chosen to depend on only D , p , r , 6 and Tj (not on 

F , the X 's, or the particular T| -lattice). 
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Before starting the proof, several comments should be made: 

1. For these domains the Bergman kernel is never zero, (see the proof of Lemma 

2.3 in the Appendix) hence the fractional powers in (2.1) cause no difficulty. 

2. The sum in (2.1) converges absolutely uniformly on compact subsets of D and 

* r 

converges in A norm. 
3. The numbers \^ in (2. 1) (which are called in the proof) are obtained in 

a constructive way as continuous linear functionals on A ^ r . 

4. The representation (2.1) ( i . e . , the choice of is not unique. 

5. The Bergman kernel of a product of two domains is the product of the Bergman 

kernels for the domains. Hence, if Theorem 2 is true for two domains, it is 

true for their product. In particular the theorem is true for the polydisk. 

6. is less then 1 . Hence 1 + r > 0 and thus the simplifying choice 8 = 0 

is always allowed if 0 < p < 2 . 

7. For D the ball in C n , e = —77- . For this D , the spaces A P ^ r with 
D n+1 

r < -e^ contain only the zero function. 

The basic idea of the proof of part (a) is the following. We use an integral 

reproducing formula (Lemma 2.1) to represent F in kP,r by an integral. This 

integral is then approximated by a Riemann sum using the values of F at the 

points of an T] -lattice. If T) is sufficiently small then this produces a good 

approximation and iteration of the process yields the representation (2.1). 

Part (b) of the Theorem is elementary if 0 < p < 1 . For p > 1 we must 

show that a certain linear operator from I? to A^}T is bounded. We do this by 

using a boundedness criterion of Schur [21], which was used by Forelli and Rudin 

[9] in a similar context (Lemma 2.7). The estimates which are needed to apply this 

criterion are estimates on integrals of powers of the Bergman kernel. (Lemma 2.2). 

Thê  history of the reproducing formulas which we use, and of the closely 

related results on the boundedness of certain projection operators, is complicated. 

We refer to [9] and the discussion there and also to [14] and [22]. 

The following three Lemmas are estimates we will need for the Bergman kernel. 
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We suppose D satisfies the hypothesis of Theorem 2. 

Lemma 2.1. There is a constant > 0 which depends on the domain D such that 

if r > -e^ then for appropriate constant c , c B (z . r r o 1 + r is the reproducing 
2 r 2 r kernel for A 9 ; that is, for all F jLn A 3 

F(z) = c r J F(Ç)B(z , £ ) 1 + r B(r , C ) " R dV(Ç) 
D 

1+r 

In particular, setting F(z) = B(z , w) and then taking w = z and 

recalling that B(z , £) = B(f , z) we obtain 
B(2 , 2 ) 1 + r = c r J | B ( 2 , £ ) | 2 ( 1 + R ) B (C , r)" r dv(C) . 

D 

This is related to the next result. 

Lemma 2. 2. If A > r > -e then 

r |B(Z , C)! l 4 < X B(C , C)" r dv(C) < c ^ B(Z , z ) a " r 

D 

with c not depending on z .  
A, r £ - -

Lemma 2. 3. if z , £ , £Q are in D and d(£ , £Q) < 10 then 

I B(z,Q 
'B(z,c0) 

1| < c D d(C , C 0 ) 

with c^ not depending on z , £ , or £Q . 

These results are proved for symmetric Siegel domains of type two in the 

Appendix. In that case we have equality in Lemma 2.2. For bounded symmetric 

domains, Lemma 2.1 is due to stall [25]. Lemmas 2.1 and 2.2 for the ball in £ n 

are due to Forelli and Rudin [ 9 ] . In that case e_ = —r- . If D is the ball in 
L D n+1 

C n then Lemma 2.3 is straightforward. 

We now describe a decomposition of D which we will associate with any given 

Tj -lattice (with f| small). Informally, and slightly imprecisely, the construction 

is as follows. We cover D with sets B̂  , balls of radius one which are almost 

disjoint. Each B̂  is covered by sets B.. which are balls of radius T| , are 

almost disjoint and each B^ contains exactly one point of the T) -lattice. 

More precisely, let ZQ be some fixed base point of D • Pick z^ in D 

with d(z^ , ZQ) > 1 and d(z^ , ZQ) as small as possible subject to that 
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condition. (The fact that the choice is not unique does not matter. ) Proceed 

inductively picking so that ^(z^ > zj_) — 1 f ° r i = 0 , . . . , j - 1 and 

d(z_. , ZQ) is as small as possible subject to this constraint. It is clear that 

the balls B. = j z ; d(z , z . ) < 1/2} are disjoint and it is clear after a moment s 

thought that the balls B = |z ; d(z , z .) < ll form a cover of D . (If z 
i 1 

were in no B̂  then the sequence of numbers <1(zQ > would be bounded. 

However, the balls IL are disjoint and all have the same invariant volume, hence 

they can not all fit in a set of the form jz; d( z } z ^ ) < MJ . ) The set jz^j is 

a 1 -lattice. (A similar construction could be used to obtain an T) -lattice for 

any T) and hence there are 7] -lattices on any such D . ) 

Let he the points of the given 7] -lattice. We rename the 1 s as 

follows. Let £Q j , j = 1 , 2 , . . . , NQ be those which are in B̂  but not 

in B. for i = 1 , 2 , Let £ . for j = 1 , 2 , . . . , N, be those £ . 
l l̂ J 1 b i 

which have not been previously selected and which are in B-̂  but not in B̂  for 

i = 2 , 3 , . . . . Proceeding in this way we end up with being renumbered as 

in such a way that all the £ are in B̂  and every point of the t\ -lattice 

which is in B. is among the £.. . 

We now construct a covering of D associated with this T) - lattice. Let 

B_ and B be the balls of radius 7] and 7]/2 respectively, centered at 

£. . . Let D. . be the B.. made disjoint. That is, let 
D01 = B o i \ [ 

: i , j)-^(o,D 
ij} 

D02 = B 0 2 ^ 0 1 U 

(i, j)^(0,2) V 1 

D03 = B 03 M D 01 U D02 U 

(i, j)^(0,3) V 1 

Continue this way through the finite number of BQ^ and then set 

D l l = Bll\[U D0k k 
U ( U B )] 

( i , j ) ^ ( l , l ) L J 

etc. Let D. = U D.. . 
1 j L J 

These quantities will be fixed for the rest of this proof. The following is a 
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summary of the properties of this construction. 

Lemma 2.4. (a) the are a n T) -lattice. The D̂ _. are a disjoint cover of 

D , i.e. , U D. . = D . 

r.. € B . . c D . . c B.. 

(b) The points z^ are a 1 -lattice and, denoting by B̂  the ball centered  

at z_̂  and of radius 2 , and B̂  the ball of radius 4 

z. € B c D. c: B. c B. . 
1 L 1 1 1 

(c) There is a constant M (which depends on D and 7] but not on the z 

or f. .) such that no point of D belongs to more than M of the B.. nor to 
— c — - — & ij 
more than M of the B. nor of the B. . 

L L 

We will make frequent use of the following fundamental invariance property of 

the Bergman kernel. Let g be any biholomorphic map of D to itself. For z , 

£ in D 

B(gz , g£) det g ' (z) det g1 (Q = B(z , £) 

(Here g ' (z) denotes the complex differential of g at z . ) Now suppose z^ is 

a fixed base point of D . When we set z = Q = g(zg) l n t n e previous equation we 

obtain 

(2.2) B(z , z) = 1 
I det g1 | 2 

B(zQ , z Q ) 

Lemma 2. 5. If f is holomorphic on D then 

B. 
1 

| f(z)|dV(z) < c 
B. 

1 

| f ( z ) | P B~r (z , z)dV(z)) 
1 
vP a 

l+r 
p 

a 
(z± , z±) . 

Proof. B. = gB for some transformation g . Hence, by a change of variables 

B. 
1 

| f ( z ) | dV(z) = 
B0 

f(g£) |det g ' | 2 dV(£) . 

| f ( g ( £ ) ) ! P is subharmonic for any positive p , hence, for any small Euclidean 

ball A centered at £ , 

|f<G<C»l < ( j ^ J A | f ( § o l p dv(C>: 

1 
p 
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Since we can require that A be inside BQ and that | A | ^ be bounded, this 

yields 

I -
B. 

l 

| f (z)|dV(z) < c |det g ' | 2 

B0 
| f (gC) | P dV(C)) 

I 
P 

= c |det g1I 
2(1 1_. 

' P* 
B. 

l 

| f ( z ) | P dV)) 

I 

By Lemma 2.3, B(z^ , z^)/B(z , z) is bounded below for z in B, . Hence 

B. 
l 

If(z)l dV(z)<cB(z. , z.: i i i l 

r_ 
|det g ' | 

2(1 - 10 
P 

B. 
l 

| f ( z ) | P B(z , z ) " r dV(z): 

1 

An application of equality (2.2) yields the desired result. 

Lemma 2. 6. If f is holomorphic on D then 

ID.. | f CO - f CC±1>I dv(C) < c n 2 ( n + m ) + 1 

JÏ7 
1 

|f(C)| dV(C) 

(recall that n + m is the complex dimension of D . ) 

Proof. D_ C gBQ^ for some g transforming D to itself with gz^ = £ij. 

Hence, 

I = J D | f ( 0 - f d V ( C ) < |det g ' | 2 ( J B | f ( g s ) - f(gzQ)|dV(C)) • 
i j J 01 

Now | f(gs) - f (gz Q ) | < ( sup |v ( f (gs) ) | ) \q - z J . We dominate \ Q - z \ by 
£EB01 

cT] and dominate sup by c times the volume integral over the much bigger ball 
B01 

BQ and obtain 

|f(gs) - f (g£ 0 ) | < cT] J | f (gz) | dV(z) . 
B0 

Hence, 

I < cT] |de tg* | 2 (J | f (gz ) | dV(z)) f dV(0 
0 01 

£ c 1 12(n+m)-l (p | f ( g z ) | | d e t g l | 2 d v ( z ) ) a  

0 

Reversing the original change of variables yields the desired estimate. 
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The next lemma is the extension used by Rudin and Forelli [9] of the bounded-

ness criterion of Schur [21]. 

Lemma 2. 7. Let (X , v) be a measure space. Suppose 1 < p < œ and 
1 1 - + -
p q 

= l 

and that Q(x , y) is a non-negative measurable function on X X X . If there is 

a_ g(x) which is non-negative and measurable and a constant c such that 

(2.3) Jx Q(x , y)g(y)q dV(y) < cg(x)q a.e. 

and 

(2.4) J x Q(x , y)g P (x) dV(x) < cg(y) P a. e. , 

then the operator which sends f into Tf given by 

(Tf)(x) = J Q(x , y)f (y) dV(y) 

is a bounded map of LP(X , v) to itself. 

Lemma 2.8. Suppose p > 1 , r > -e , G > (p - 2)(r + 1) and a = 2r + 2 + 9 . 

Let T be the linear map which sends the function f defined on D to the new  

function Tf defined on D bv_ 

(Tf)(z) = 
D 

IB(Z ,C)| 

a 
P 

b(C,C: 

a , 
— r- 1 
P 

f(ç)B~ r (cc)dv(C) • 

T is a bounded map of LP(D , B~r (£,£)dV(£)) into itself. 

Proof. We apply Lemma 2.7 on the measure space (D , B(Q,Q) *" dV (Q)) . The 

required function g(z) is B(z , z)^ . The estimates (2.3) and (2.4) follow from 

Lemma 2.2 for sufficiently small positive 6 . More specifically, to obtain (2.3) 

replace a in Lemma 2.2 by a/p-1 and replace r by a/p - 1 - 6q . To obtain 

(2.4), replace a in Lemma 2.2 by a/p-1 and r by -6p + r . If 6 is 

sufficiently small and positive, then all the required inequalities are satisfied. 

We now prove the theorem. 

Proof of Theorem II. We begin with part b of the theorem. We wish to show that 

given a sequence \ . . with s i x . . I P < 0 0 then 

P IIX. .k. . ( z ) | P B(z , z ) " r dV(z) < c S|\ . | P 

where 
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k l j (z) = 
B 2 (z , c t j ) 

a(£ij,£ij) 

l+r 

P B(z,Cij) 

B(£ij,£ij) 

p 

and are the points of an T) -lattice. 

By Lemma 2. 2, ük..(z)'! P < c 11 i j "P,r - for some constant c which does not depend 

on i , j . If P < 1 then 

I | S X . . k . . f < E | | x . . k . . f < c Z | x . . | P 

and we are done. We now suppose p > 1 . 

Let 

ID-.I = 
1 1 1

 1 r 
ID. . B" R (Ç , Ç)dV(Ç) . 

We estimate [D^I^ by first using Lemma 2.3 to replace B r (£ , Q) in the 

integral by B' (£ , ^ i j^ a n C * t ^ i e n evaluating the resulting integral by making 

the change of variables which sends £ to £ ^ . This yields 

(2.5) I 1 j l r I n2(n+m) B-(r+1) VbLJ 'D1j/ 

Let y D ^ e t n e characteristic function of D . Set 

H(z) = s i x . . | |D. .1 
! -LJI r i : J l r 

1/P 
* D . . ( Z ) • 

11 

Clearly llnf = S | X . . | P . 

We now claim that 

(2.6) | S X 1 . k (z) | < cTi 
2(n+m)(l - - ) 

D (TH)(z) 

(where T is defined in Lemma 2.8). As in Lemma 2.8, let a = 2r + 2 + 9 , then 

(TH)(z) = SlX-.l | D . . | r 

I 
P 

D. . 

[B(z,£) 
a 

I p 

B(CC) 

a 
P r-1 

B(c , 0" r dV(Ç) . 

Hence, by Lemma 2.3, (TH)(z) is of size comparable to 

s|x..I 
|B(z,Cij) 

a 
IP 

Ba(£ij,£ij) 

a 
P 

r-1 
B (C , C)" r dV(Ç) . 
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Now, using (2.5), we obtain 

(th)<Z) ~ s |x h 
2(n+m) (1 • 

1/p 

B ( C L J , C t J ) 

-(r+l)( l -
P' 

a 
P 

fr+1 
|B(z , 

a 
IP 

= E|Yij|n 
2(n+m)(l 

P' 1^(2 )1 

which establishes (2. 6). An appeal to Lemma 2. 8 completes the proof of part b of 

the theorem for p > 1 . 

We now prove part (a) of the theorem. If suffices to give the proof for 

functions in a dense class with the appropriate norm estimates. Hence we can 

assume that the integrals in the proof are absolutely convergent. We start with a 

function F(z) which we may (by the comment just made) assume to be in p^-,a/p 1 ^ 

By Lemma 2. 1, we may write 

F(z) = c J D 

B(z,Q 

a 
P 

B ( 0 0 
a 
P 

1 
F(Ç)dV(£) . 

We will approximate F(z) by a Riemann sum for the integral based on the decompo­

sition D = U D.j . That is, letting c denote the same constant as in the 

previous equation, set 

G(z) = c E 
B( 2,Cii> 

a 
LP 

BCC^Cij) 
£-1 
p 

F(£. .) |D. .I . 

Thus, for any z in D 

(2.7) |F(z) - G(z)| < c T, JD |F(C) 
B(z,Q 

a 
P 

B(C>G) 
. D 

-F(£ij) 
B(z,£ij) 

a 
p 

BCCIJ.CIJ) 

i l ' 
dv(c) 

< c T j | F ( C ) - F ( C ) | 
I I J 

|B(Z,I£J) 

a 
IP 

B ( ^ i j ^ i j ) 
,0/P 

dv(c) 

+cE|Dij | F(£)| B(Z ,C: 

a 
nP 

B(c>c: nP 

B(z,Cij: 

a 
nP 

B(Cij.Cij) 
p 

dV(C) . 
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By Lemma 2. 6, the first sum can be estimated by 

Ê  < c E 
^2 (n+m)+l |B(z,Cij)l 

a 
I P 

B(£i,£i) 
ä-1 

Ji |F(C)|dV(Ç) 
i 

By Lemma 2. 3, this yields 

S I < E 
ij 

^2(n+m)+l 
6B(z,£i) 

a 
p 

B ( C i 5 q : 

1-1 
p 

fi. 
l 

|F(C)| dV(C) . 

The terms summed do not depend on j . Using elementary volume estimates, we see 

that for fixed i there are 0(T] 2 ( n + m ) ^ terms in the sum. Hence 

^ < c il S <f- | F ( C ) | dv (C» 

i i 

|B(z,£.) | 
a 

I P 

BCq.q) 

1-1 
p 

We obtain the same majorant for the second sum on the right hand side of (2.7) as 

follows. Use Lemma 2. 3 to obtain the estimate 

Su < c il s (J | F ( C ) | dv (C» 
|B(z,Ç ) | 

a 
P 

B ( ^ i j ^ i j : 

P-1 

Then, using Lemma 2.3 again to replace £ by £_̂  , note that (by Lemma 2.4) 

U D. . C B. . 

j 1 J 1 

Combining the estimates for E and E.̂  j> and then using Lemma 2.5, yields 

| F (Z ) - G (Z ) | < c T] E (J== | F ( £ ) | p B" r (£ , £) dV(£)) 
i i 

_L 
,P |B(z , £.) 

a 
IP B(£i,£i) 

(l+r-a) 
P 

Define k^(z) by 

k.(z) = |B(Z , z±)\ 

a 
P B(z. , z±) 

(l+r-a) 

P 

The previous estimate can be rewritten 
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|F(z) - G(z)| < c T) | F ( C ) | p B" r (c , C)dv(c)) p k. 
1 

(z) 

Since the k_ (̂z) are the functions of the type used in the proof of part b of the 

theorem (only now for the 1 -lattice jz^j) ^ we conclude 

!!* - Gli^ r < c n p s ( J ^ | F ( C ) | p

 B - r (c , C)dv(c)) • 

Since the B̂  are almost disjoint (Lemma 2.4(c)) , this implies 

(2.8) '|F - G|| p < c i f ]|Ff . 
,1 " p, r — " 11 p, r 

Since the size of c is independent of T] , we may choose 7] so small that 

c T]P < (~) P . Thus, denoting by A the linear operator which sends F to the 

approximating sum G , we have the operator norm estimate 

!!i - a!I < \ • 
Hence the operator A = I - (I - A) is invertible. Thus F can be written as 

F = AH for some H with norm comparable to that of F . That is the required 
k 

conclusion. (Note that H can be obtained constructively as H= £ (I - A) F. ) 

k=0 

The proof of the theorem is complete. 

Since every bounded symmetric domain D is biholomorphica1ly equivalent to a 

domain U to which Theorem 2 applies and since the 6 = 0 version of Theorem 2 is 

invariant under biholomorphic changes of variables, Theorem 1 follows from Theorem 

2. In more detail, the relation between the Bergman kernels for the two domains is 

that for any z , £ in U and g a biholomorphic map of U to D 

(2. 9) BD(g(z) , g (O) det g' (z) det g' (£) = B^z , Q) . 

Suppose f is in AP(D) . Using g to change variables one verifies directly 

that F(£) = f ( g ( 0 ) ( d e t g ' ( 0 ) 2 / P i s i n AP(U) and has the same norm as 1 . 

Theorem 2 can be used to give a decomposition of F . Using (2.9) this is seen to 

be equivalent to having a decomposition of f of the type described in Theorem 1. 

The same considerations also yield the analog of Theorem 1 for the spaces 

A^,T,r > -e . We know of no reason to doubt that the full analog of Theorem 2 
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(that is, including the case 8 ^ 0 ) is true for this class of domains. 

The limiting case of these results as p becomes large is a description of 
1 r * 1 r the space (A 9 ( D ) ) , the dual space of A 9 . We will denote the norm of a 

1 r 

linear functional L on A ' by HLJ]̂  r = ||L||.V • Our description of the dual 

space will be with respect to the weighted pairing. Set 
< f 9 s > r = JD f^>g(C)B(C , C)" r dV(C) . 

Theorem 2 ' . Let D be a symmetric Siegel domain of type two and e the posi­

tive constant associated with D by Theorem 2. Suppose r > -e^ . There is an 

T]Q = T]Q(D , r) such that if the points are an 7] -lattice , T] < T]0 ^ then 
1 r * 

the space (A (D) ) has the following description: 
1 r * 

(a) Every L in (A ) can be realized as a weak * convergent series 

(2.9) L = 
oo 

i=l 
1 

B(z ,q) i+r 
vB(£,,C.y 

That is, L(f) = lim <f , 
n 

n 

i=l 
yi B(z,C.) 1+r 

O(£i,£i) > 

The constants X. may be chosen so that sup 1 l1 — 11 11 -, r 
(b) If_ sup |X i| < 00 then (2.9) is a weak * convergent series and L 

defined by (2. 9) has 'JL^ r < c sup | x j . 

(c) If L is represented by (2.9) and a is positive then K L defined 

by 

(2. 10) K L = 
a i=l 

X. 
l 

B(z,C.) 1+r+a 

B(q ,ct) B(z,z) 

is a bounded function with I|K L|| <c1JL!1. which represents L in the follow­

ing sense. There is a constant d = d(<x , r) such that 

(2.11) L(f) = d<f , K L > 
3 a r 

(d) If the numbers \^ are a given bounded sequence and K L and L are  

defined by (2.10) and (2.11) then 

INI*,r < c!! K
a
Lt < °2 s u p 1^1 

The constant c can be chosen to depend only on D , r , 7] and a . 
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Informally, (a) and (b) of the theorem are the limiting case, a = 0 , of 

(c) and (d). However, the actual situation is a bit more complicated. The sum 

(2. 9) need not converge pointwise to a function L(z) and need not converge in the 
1 r * 

norm of (A ' ) . These issues and others are discussed after the proof. 
The proof is very similar to that of Theorem 2, hence we only give an outline, 

1 r 

Proof outline. We start with an L in (A 3 ) . By the Hahn-Banach theorem 

there is a bounded function b such that 
(2.12) L(F) = <F , b> r 

1, r 

for all F in A . For any fixed positive a , F can be represented by the 

reproducing formula F(£ ) = c 
„ N l+r+a B(C,z) 

B(z,z) 
F(z)B(z , z ) " r dV(z) . 

Hence L(F) = <F , L > with L defined by 

L a ( z ) = 
B(z,£) l+r-kx 

B ( z , z ) a B ( c , O r 

b(£)dV(C) • 

Now note that B (C) = z 
B(C,z) l+r-kx 

B(z,z) 
1 r 

is uniformly (with respect to z) in A 9 

(as a function of £) . Hence L ( B

z ) is uniformly bounded. However L ( B

z ) = 

= L (z) . Thus | L

a ( z ) | < G|lL1,!̂  . Conversely, using Theorem 2, |L(F)| < 

cJILJIJIFĴ  r . Hence lî JÎ  ~ i!L||,v • We now go back to (2.12) and replace b by 

L for some fixed positive cc„ . This gives a choice of b which is not holo-

morphic but which is a function whose modulus of continuity can be estimated. 

We would n°w like to replace the integral representation for ^ a ^ z ) with a 

sum of the type 

(2.13) L (z) = 2 X. 
a l 

B(z ,q ) Na+r 

B ( z , z ) a B ( c . , C i ) r 

with points of a given T] -lattice and a bounded sequence of scalars. To 

do this, we start with the integral formula defining L • L e t 0 = 1)0^ be the 

covering of D associated with the T] -lattice (analogous to the D^̂  in the 

proof of Theorem 2). 
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B(z , z) aL (z) = 
a 

1+a+r 
B(z»C)  

B ( ç , O r 

L (C) dv(C) 

= S 
i 

B(z,C.Î 1+a+r 

B (C 1 ,C i )
r 

L 
a o 

(CP h j 

+ S J D . 
1 1 

„ , _ N. 1+a+r 
B(z,Ç)  

B(C,C) r 

[L (C) - L (Ç )] dV(C) 
A 0 0 

1 1 
rB(z,C) 

B ( C , O r 

, .1+a+r B(z,Ç t) 

B ^ Ç / 
]L (Ci)dV(C) 

= x^ + z 2 + £ 3 . 

To estimate the terms in XL > note that 

K (o - La <cT>L < C ! 
0 A 0 

| B (Z , C ) 
l+an+r 

. < c , o a ° 

B(z ,Ç . ) 
l+aQ+r 

B(£i,£i) 0 
B(z , z ) " r dV(z) 

By Lemma 2. 3, this is dominated. 

< c H j 
|B(Z,Ç,)| 

1+a+r 

B ^ q : 
0 B(z , z ) " r dV(z) 

«rhich, by Lemma 2 . 2 , is dominated by c Tl . Hence B(z , z) a Ez is dominated by 

c "H llL!i* J D L B < Z » C > | 1 ' t a * r B ( C , C)" r B(Z , z ) " a dv(c) . 

By Lemma 2 . 2 , this quantity is dominated by c T) || LJĴ  . Application of Lemmas 2.2 

and 2.3 yield a similar estimate for B(z , z) a Z . Hence 

! ' L a 0

( z ) ' 6 ( 2 ' Z ) " a S l L ^ C 1 1 "LH* 

Now note that the bounded function h(z) = L

a ( z ) " B(z , z) a £̂  has the following 

property. If we start with the linear functional given by L^(F) = <F , h> and 

form the associated bounded function L, then we recapture the function h . 

1, a 

This fact is a direct consequence of the various definitions and of Lemma 2 . 2 ' . 

Since h is its own representing function we can iterate the previous construction. 

If T] < ^0 A N C* ^0 ^ S s u f f i c i ^ t l y small, then iteration of this process will 

converge and will give a representation of L a (
z ) as a sum. Since 
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|D^| ~ B ̂  (Q^ J Ĉ ) tne sum is °f tne form (2.13). Also, by construction, if F 

is any function in A"^ r then 

L(F) = <F , L̂ > 

= S \ ± <F 
_ , _ Na+r 
B ( z , c t ) 

B ( z , z ) a B ( c . , c i ) 
-> 
r r 

To complete the proof we note that representations of functionals given by 

the function in (2. 10) are equivalent to those given by (2. 9). The reason for this 

is the observation that there is a constant d = d(a , r , D) such that 

d <F , 
B(z,£.) 

B ( z , z ) a B ( c i , C i ) r 

> r =<F , 
B ( z , c i ) r 

B(£i,£i) 

for all F and £. . This equality is an immediate consequence of Lemma 2.2' and 
1 r 

of the representation of F in A 3 given in Theorem 2. 

The proof outline is complete. 

Using Riemann-Liouvi1le fractional integrals, the previous result can be 

reformulated in a way which emphasizes the analogy between these dual spaces and 

the space of Bloch functions on the unit disk. Let &a = 9.^^ ^ a where & is 

the Riemann-Liouvilie fractional integral operator for the domain D . This opera­

tor is described in a bit more detail in the Appendix and in full in [11]. The 

fact of interest to us is 
« a B P (. , £))(z) - c a p B a + P (z , C ) • 

0 
Hence the operator $ for various positive e is the operator which establishes 
the equivalence of the various decompositions in Theorem 2 ' . Also, formally, L is 

1 r 
in A 3 if and only if L has the representation (2. 9) and 

(2. 14) |lB(z , z ) " a i f L | | r o < cJ|L|U • 

However, L is not really a function. Consider the case of D the upper half 

plane and r = 0 . The sum (2.9) is the Riemann sum for the integral 

L(z) = J b ( 0 1 
(z-C> 

dV(£) 
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for some bounded b . However, if we choose b(£) = (i - £) |i - j | ^ then the 

integral defining L(i) diverges. However, for any z , the integral for L(z) -

-L(i) converges absolutely. Hence the integral for L(z) diverges for all z . 

Since the functions in A"^^ all have mean zero, the "function" L(z) need 

only be specified up to an addative constant. Hence the absolutely convergent 

integral for L(z) - L(i) can be used to realize the functional L as a function. 

The situation for general domains is not clear. 

If the domain being considered is the unit ball in Cn then the very simple 

formula in Lemma 2.2' is not valid. However, in that case, series such as (2.9) 

are the discrete analogs of absolutely convergent integrals and results analogues 

to Theorem 2' can be obtained directly. 

If the domain being considered is the disk, then the spaces described by the 

representations (2.9) for different r are the same; that is, a function has a 

representation in the form (2.9) for some r if and only if it has a representa­

tion for all r . One way to see this is to use the known result that (modulo 

polynomials) the space of holomorphic functions on the disk for which 

sup 1(1 - | z | 2 ) a f ( a ) (z) | < . 

doesn't depend on a (even for non-integer a . ) 

It is an interesting open problem to find the appropriate generalization of 

these observations. 

§3. Spaces of harmonic functions. 

The main result of this section is that the natural analog of Theorem 1 is 

valid for spaces of harmonic functions defined on the unit ball in 1Rn . Many of 

the technical details of the pr~of are quite different from those of the previous 

section. Instead of working with reproducing kernels obtained from the Bergman 

kernel, we work with kernels obtained from the Poisson kernel. The automorphism 

group of the ball is not used; instead local estimates are made directly. However, 

the basic structure of the proof is the same as the proof of Theorem 2 and at 

certain points we will only sketch the proof. We also obtain results corresponding 
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to the end point p = » which is analogous to Theorem 2' . 

Some further remarks on the relation of these results to those of the previous 

section are presented at the end of this section. 

We begin with some notation. Fix n > 2 . Let Bn denote the unit ball in 

Rn . For x in Rn , let |x| be the length of x , x' the vector of unit 

length parallel to x ; that is, x' = x / |x | , and let x denote the inversion of 
2 

x in the unit sphere, x = x / |x | . We will use the notation e(x) = 1 - |x| . 

Denote Euclidean volume measure by dx and surface measure on the unit sphere 
S t = dB by da n-1 

Let Yj(x) j = 1 , 2 , . . . , d(k , n) be a real orthonormal (on X̂  )̂ 

basis for the spherical harmonics of degree k . Hence any harmonic function h(x) 

on B can be represented as 

h(x) = S al . Y k(x) = Z a. . | x | k Y k ( x ' ) . 
k ^ k,j J k,j J 

(See, e.g., Chapter 4 of [24] for this and related points.) If a . = 0 for 

k < r then we say that h(x) vanished to order r (at the origin). 

We will frequently use polar coordinates and will often write x = Rx' and 

y = ry' . With this notation, the Poisson kernel for harmonic functions is given 

by 

P(x , y) = c l-(rR) 2 

(l-2rRx'y '-hr2R2) 
n 

) 2 
k,r 

(Rr) k Y k (x ' )Y k (y ' ) . 

We will need reproducing formulas for harmonic functions in the various spaces 

L 2(B n , (1 - | x | ) m dx) . For non-negative integers m let 

(3. 1) 

b ( x , y) = m k,r 
(2k+n+m) 1 
(2k+n-l)I 

(Rr) k Y k (x*)Y k (y ') 

= [p1-n(e/ep) m+1 n+m ^ . , P P(Rx P 2 ^ ' ) ] p = / 7 
Proposition 3.1. If g(x) is harmonic and bounded in Bn then 

8(x) - c^m J n g(y) bm(x , y)(l - | y | ) m dy . 
B 

Proof. It suffices to verify the formula for each Yr . That verification is 
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immediate when the integration is done in polar coordinates and the orthonormality 

of the Y on the sphere is used, r 

For T) with 0 < y < 1 , we define an T| lattice in Bn to be a set of 

points. jy.j C Bn such that the balls B_̂  with center at y^ and radius 

(1 - | | )T]/10 are disjoint and the balls B_̂  with the same center and radius 

(1 - |y | )T] cover Bn . 
P cc n P cc For 0 < p < » and a > -1 , denote by A,/ (B ) = A ' the intersection of H H 

L^(Bn , (1 - I x | ) a dx) with the space of harmonic functions. Our main result in 

this section is the following. 

Theorem 3. Suppose n , m , a , and p are given with 

n an integer n > 2 , 

0 < p < » 

a > -1 and a < p - 1 _if p > 1 , and 

m an integer, m > max (0 , n(- - D) 

then there is an T) - lattice jŷ J in Bn so that 
P a (a) _If f(x) is in A ' then there are numbers X. so that H i 

(3.2) f(x) = a . bm(x , y . ) ( l - | y . | ) m+n-(m+a)/p 

and 

E[Yi|p<c[[f||pp,a and 

(b) If z | X . | P < c o then the function f(x) defined by (3.2) is in A ^ a 

l H 

and satisfies 
||f||pp,a < c E|Yi|p 

The constants c depend on p , a , n , m and T) but not on f or the  

particular choice of jy^j . 

Note. As before, the sum in (3.2) converges uniformly and absolutely on compact 

subsets of Bn and converges in A^/ a norm. The X. can be chosen in a contin-
H i 

uous and linear way and it is not claimed that the representation in (3.2) is 

unique. Also, it is not clear if all the restrictions on a , m , and p are 

actually necessary. In particular, it is not clear that p - 1 > a is needed. 
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Before starting, we need several lemmas. The first collects information about 

the reproducing kernels. 

Lemma 3. 2. If x , y € ß n then 

(a) Ib ( x , y ) | < c | x - y | n m  
1 m — 1 

(b) |v y bm(x , y ) | < c|x - yl" 1 1-" 1- 1 

(c) For /1 
m > n(- - 1) , 

(d) 

[Bn |bm(x,y)(1-
| y | ) 

m+n n P 

dx < c 

For m > n (- - 1 ) - 1 
P 

[En-1 |bm(x , y)( l - ly |) 
m+n- n-1 

P 

P 

da (x ) < c . 

Proof. The results are trivial if |y| < .9 . We now suppose 1 > !y| > .9 

When the differentiation in (3.1) is done explicitly, the dominant term obtained is 

bm(x , y) = _d_ 
dr' 

m+1 P(Rx' , ry ') . 

We will outline the proof of (a) and (b) for b^ , the other terms are treated by 

similar or simpler arguments. The Poisson kernel can be written as 

P(x , y) = 1 
n I ~ I n r |x - y| 

hence 

^ . k l ( x , y)(l - (rR)2)|x - y | - ( n + ^ ) 

+ k2(x , y)|x - y | " ( n + m ) 

for some bounded functions k^(x , y) . Part (a) of the lemma follows from this 

equation and the estimate 

|x - y| > |y| - |x| = I - R = i ( l - Rr) . 

Part (b) of the lemma follows from the same considerations and the fact that the 

functions k.(x , y) have bounded derivatives. 

Parts (c) and (d) of the lemma are standard consequences of the estimates in 
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part (a). We only outline the proofs. Let e = e(y) = 1 - |y| . By elementary 

geometry 

(3.3) |x - y| ~ |x - y ' | + e(y) 

Hence, by (a) of the lemma the integral in part (c) is dominated by 

J n B 

mp+np-n 

(Ix-y'l+e; (m+n)p 
dx 

This integral can be estimated as follows. First expand the region of integration 

to all of Rn . Then make an affine change of variable to eliminate y' . One 

then uses a dilation of the integration variable to see that the integral does not 

depend on e . Finally, by going to polar coordinates, one checks that the result­

ing integral is finite for the indicated range of m , n , and p . 

Part (d) of the lemma is proved by similar argument after first noting that 

the integral over £ n ^ can be estimated by an analogous integral in Pn . 

The next lemma is the replacement we need for Lemmas 2. 7 and 2.8. 

Lemma 3. 3. Suppose l < p < o o , m > 0 , - l < a < p - l . The operator mapping the 

function f(x) defined on BR to the function (Kf)(x) defined by 

(Kf)(x) = J |b (x , y)| (1 - | y | ) m f(y) dy 
B 

is a bounded linear map of L^(Bn , (1 - | x | ) a dx) to itself. 

Proof. By the previous lemma and (3.3) 

(Kf)(x) < c(Sf)(x) = ' I n B 

m 
e (y) (|x-y|+e(y)) v n+m f(y) dy 

The operator Sf is the adjoint of the operator which sends g to S g given 

by 

S g (y) = c 1 

s ( y ) n 
I n B 

1 

(H e (y) 
n+m 

dx 

(Here we are realizing the dual space of L P(B n , e ( x ) a dx) as LP (Bn , e(x) 
ccp ' 
V P dx) 

with the pairing <f , g> = J fg dx. ) To see that the operator norm of s" on the 

dual space is finite, we dominate S g pointwise by Mg , the Hardy-Littlewood 

maximal function of g . Then note that by the theory of weights [2], the Hardy-
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Littlewood maximal operator is bounded on P' n 
V (Bn , e(x) 

, P dx) if ^ > -1 . 
P 

We now prove the theorem. 

Proof of Theorem 3. First we prove (b). The case p < 1 follows from Lemma 3.2. 

Now suppose p > 1 . Start with an 7| -lattice jy^l • As in section 2, construct 

B. so that y. G B. C B. , the B. are disjoint, and MB. = Bn . Let l l i — i l l 

g(x) - S I X J H X BJI^ XB.(x) . 

l l 

Clearly l'êllp a

 = S|X^| P . Hence, by the previous lemma 

(Kg)(x) = S l xJHx 11"^ L |bm(x , y) | ( l - | y | ) m dy 
i F j ' i 

is in LP (Bn , (1 - | x | ) a dx) . e (y) varies by a bounded factor as y varies 

over B. and b (x , y .) equals its mean value over B. . Hence the function 
l m l l 

f(x) of (3.2) is easily seen to satisfy 

| f (x)| < c(Kg)(x) . 

Thus f(x) is in A^^a and satisfies the required norm estimate. 

In order to prove part (a) we proceed as we did for Theorem 2. Start with a 

X -lattice for fixed small X . Call it jy^\ . Now choose an T| -lattice i w j l 

for some 7| , T] < < X • The size of 7] and X are to be selected at the end of 

the proof using the same considerations as those used in selecting T] at the end 

of the proof of Theorem 2. As in the previous section, rename the i w j 1 a s i^ijl 

where y. . € B. . (B. is the disjoint covering associated with the y . ) . Let 
^ i j l l l 

B^ be the disjoint cover of Bn associated with the 7] -lattice and constructed 

in a way similar to the construction of the D^̂  in Section 2. To prove part (a) 

of the theorem, we start with F(x) , and then use Proposition 3.1 to write 

F(x) = c n m J n F(y) bm(x , y)( l - | y | ) m dy . 
B 

We approximate this by 

G ( X ) = Cnm F. IB.. F ( y i j ) b m ( x ' (x,yij) - l y i j l ) m d y • 
1 J 1 J 

In addition to the estimates in Lemma 3. 3, we also need the following 
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Lemma 3.4. If f is harmonie on B*1 then 

sup 
xEBij 

|vh| < (Diameter B j -n-1 
B. 

l 

|h(x)| dx . 

Proof. For the unit ball, this type of result follows from, for example, Lemma 

3.2(b). The general result then follows by translation and dilation. 

Finally we need a substitute for the subharmonicity of | f ( z ) | P . 

Lemma 3. 5. If f is harmonic on Bn and 0 < p < » then 

1 
|B t | Jb. 

1 

|h(x)|dx < C I 1 ~ n, p 
1 

B,| JB. l 
| h (x ) | P dx) P 

1 

Proof. For p > 1 , this follows from Holder's inequality. For p < 1 , it is a 

direct consequence of a result of Kuran [16] or of Fefferman and Stein (Section 9, 

Lemma 2 of [8]). 

Once all these estimates are available, the proof is completed exactly as the 

proof of Theorem 2. 

We now consider the limiting, p = » , case of these results. We obtain a 

characterization of the dual space ( A ^ A ) for the case when a is a non-negative 

integer. We will describe the dual of A^ 0 0 with respect to the pairing 

(3.4) <f , g> = JB 
E(x)g(x)(l - | x | ) a dx . 

That is, we wish to describe the dual space of AH1,a as a space of harmonic 

functions g such that 

l<f > g>l < cg!l f!li,a • 

We then define !|gl|,v to be the smallest such c^ and wish to find an intrinsic 

characterization of ||g||^ • (To avoid consideration of integrals which do not 

converge absolutely, we will obtain an a priori estimate for a dense class 

of functions f) . 

Theorem 3'. Suppose n is an integer, n > 2 and that a is a non-negative  

integer. There is an T] -lattice {y j (T] only dépends on a , n) such that the 
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following conditions are equivalent for a harmonic function defined on B n . 

(a) b(x) is in (AH21,a with respect to the pairing (3.4). 

(b) For some bounded t(y) , 

(3.5) b ( x ) = J n b a ( x > y ) ( 1 ' l y l > a l ( y ) d y * 

In this case L(y) can be chosen with ||l||oo - ||b||* 

(c) sup 
EB 

(1 - |x| )|vb(x) I = C < œ . 

In this case c - iWL . 

(d) For some bounded sequence {Yi} 

b(x) = E X. ba(x , y . ) ( l - | y . | ) n + a 

i 

In this case can be chosen with sup L J ~ M L 

(e) b(x) is in B.M.O. (Bn) . 

In this case M m 0 ~ l|b||̂  . 

(f) The harmonic function B(x) such that b(x) = x ' VB(x) has boundary  

values in the class A (£ ^) of Zygmund. In this case !! b | 'A* ~ \W\+. • 

Furthermore, a harmonic function b which satisfies any of the conditions b , c , 

d , e , f is in ( A ^ a ) and has Hbj]̂  dominated by the appropriate quantity. 

Note. Three of the conditions do not involve the index a . Hence the space 

defined by these conditions does not depend on a . Also, the requirement that a 

be an integer is forced by the fact that we have only defined b^ for integer a . 

However, the proof of the theorem actually shows that the space described is also 

the dual of A ^ a even if a is not an integer. 
H 

First, we recall some definitions. For x in Bn and r > 0 let B (r , x) 

be the intersection of Bn with the ball centered at x with radius r . For f 

a function defined on Bn , x a point in Bn , and r > 0 , set 

M (f) = r,x 
1 

|B(r,x)| B(r,x) 
f(y) dy . 

A function f defined on Bn is said to be in B.M.O. (Bn) (to have bounded mean 
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oscillation on Bn) if 

sup 
x€B , r>0 

M (I f - M (f ) I ) = c < » . r,x 1 r,x 1 

The B.M.0. norm of such a function is given by 

||f||B.M.O=c+||f| 

We will also be considering the related space of functions of local bounded mean 

oscillation, B.M. 0. ̂  (Bn) which is defined and normed in the same way but with 

the additional restruction r < (1 - | x | ) . A general reference for this type of 

space is [3]. This type of local B. M.0. space in this context is discussed in [5]. 

A function B(x') defined on £ En-1 is said to be in the Zygmund class. 

A*(E ) if for all rotations p of S by angle of size at most h n-1 n-1 
(B(px') - 2B(x') + B (p _ 1 x ' ) J < ch . 

The infimum of all such constants c (plus the modulus of B at some fixed point) 

gives the norm ||B||^* . These spaces are discussed in detail in [6]. (Although 

the presentation there is n = 2 , the ideas generalize in a direct way to higher 

dimensions. ) 

Proof of Theorem 3'. Suppose b(x) satisfies (a) . By the Hahn-Banach 

Theorem, we can find a bounded £(x) so that for all f in A ^ a 

H 
<f , b> = J f(xK(x)(l - | x | ) a dx . 

By Proposition 3. 1, we can write 

f(x) = c J f(y)ba(y , x)( l - | y | ) a dy . 

Substituting this into the previous equation and interchanging order of integration 

yieIds 

<f y b> = c I f(y) (J £(x)b (x , y)(l - |x|a)dx)(l - | y | ) a dy . 

Hence, b(y) is given in the form (3.5). Thus (a) implies (b). 

Suppose b is given by (3.5). We wish to show that b satisfies (c). It 

suffices to show 

sup 
x(EBn 

(1 - | x | ) J |vx b j x , y) | (1 - | y | ) a dy < » . 
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Let e(x) = 1 - |x| and e (y) = 1 - |y| . Note | x - y | ~ |x' - y ' | + g(x) + e(y). 

Hence by Lemma 3.2 (b) it suffices to show 

sup 
x 

J n 
B 

e (x)e ( y ) a 

( |x '-y' |+e(x)+e(y)) vn+a+1 
dy < œ 

changing to polar coordinates and making trivial estimates for the case \A<\, 

and the part of the integral involving |y| < \ it suffices to estimate 

sup 
CXe<-

1 
? 

E -i n-1 

e e,(y) 
/ l i I 1 / \ \ n+a+1 (|x"-y' |+e+e (y)) 

da (x 1 )de (y ) . 

Denoting e(x) by t , estimating the integral over Ê  by the corresponding 

integral over !Rn ^ , and changing variables to put x' at the origin of Rn ^ , 

we obtain the following expression to be estimated 

sup 
<Xe<j 

_1 
2 

J ^n-1 

a 
€ t .1 ,i .n+a+1 (|y' |+e+t) 

dy' dt . 

Now introduce polar coordinates on ]Rn ^ . Thus it suffices to estimate 

sup 
e>0 

œ œ a n-2 et r 
. x n+a+1 (r+e+t) 

dr dt 

Making the change of variables which sends t to et and r to er shows that 

the double integral is finite and independent of e . 

We now show (c) implies (a). If b satisfies (c) and f is in AH1,a then 

H 
the mapping of f into 

1(f) = J n f (x)( l - R k | b(Rx')(l - | x | ) a dx 
B 

is a bounded functional on AH1, . Write 
n 

b(x) = E b. . Rk Y k ( x f ) 

Direct computation and then integration by parts yields 

^(Yj(x)) = c b. . k 
n kj 

1 

i 

2k+n-2 / n Na+1 j r (1 - r) dr 
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= c b. . n,a k, j 
k 

2k+n-l 

1 

I 
0 

2k+n-l / 1 xa , r (1 - r) dr . 

Since k 
2k+n-l 

is essentially constant for large k , it follows easily that the 

linear functional L defined by 

L(Yk) = c b. . n j 

1 2k+n-l / n Na , r (1 - r) dr 

is also bounded on . But H 

L(f) = I f(x)b(x)(l - | x | ) a dx 
B 

thus (a) holds. 

Now that we know ]|b||^ < c sup (1 - |x|)(7b(x)) we can go back to the compu­

tation used in showing that (b) implies (c) and read it as a proof that the map of 
1 * L into (A/ ) 

given by ( 3 . 5 ) is bounded. One that is known, the proof of the 
H 

equivalence of (d) to the other conditions goes exactly as the proof in Theorem 3. 

The equivalence of conditions (c) and (f) in two dimensions is a well known 

result of Zygmund. The proof given in [6 ] extends in a straightforward way to 

To obtain (c) from (f) , one writes Vb(x) as the integral of b(y) - b(x) 

against the appropriate kernel defined on the shell jy ; j ( l - | x | ) < |y - x| 

< 1 - |x|j . The integral is then dominated by the norm of the kernel times 

the L norm of |b(y) - b ( x ) | 
on the shell. This last quantity is dominated by 

MB . M . O . • 

To show that (c) implies (f) one first notes that a function which satisfies 

(c) is in local B. M. 0. Thus the proof of the theorem is complete as soon as we 

have the following. 

Lemma 3. 6. B.M. 0. L Q C (B n) = B.M.O. (B n) . 

This lemma is implicit in recent work by P. Jones [28]. (The proof of Lemma 

2.11 of [28] also yields Lemma 3 . 6 . ) 

The proof that (b) implies (c) in Theorem 3 ' rests on the fact that a certain 
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linear operator is a bounded map from L to B. M. 0. (B ) . We could use this fact 

as the basis of an alternative proof of Lemma 3. 3. Namely, the same operator is 

also a bounded map from a certain weighted L to itself, hence, by the extension 

to spaces of homogeneous type of the interpolation theorem of Fefferman and Stein 

(see [18]), we conclude that the operator maps certain weighted LP to LP for 

1 < p < oo . It is not clear if this approach extends to, for example, the complex 

ball. One difficulty would be proving (or avoiding) the analog of Lemma 3. 6. 

However, it would be interesting to obtain a proof of Lemma 2. 8 by such an approach. 

§4. Applications. 

In this section, we present some applications of the previous results. We 

emphasize results in familiar contexts. Throughout this section, we denote by 

Bn the unit ball in Cn , DR the unit polydisk in Cn , and Rn the unit ball in 

Rn . 

First we note that many well-known results can be read off quite easily from 

Theorem 2 by observing that the results are elementary for each summand. For 
1, r 1 

example, suppose f is in A (D ) . By using Theorem 2 with p = 1 , Q = 1 , 

one can write f as a sum. The sum can be differentiated term by term, and 

Theorem 2 can be used again (now p = 1 , 9 = -r-) to find that f1 is in 
A (D ) . 

As another example, in [4] it was shown that, for certain r , every function 

in A"^ r(B n) could be written as a sum of products of functions in k~,r (Bn) . 

This was obtained as a corollary of the corresponding result for the Hardy space 

H "̂(BBn) . Theorem 2 together with the observation that the Bergman kernel never 

vanishes provides an alternative proof and generalization of the result. The dif­

ference between the two proofs, one based on Theorem 2 and the other given in [4], 

provides an instance of the general fact that the Bergman spaces are often easier to 

work with then the corresponding Hardy spaces. In this case the relative ease of 

analysis in the Bergman spaces is directly related to the existence of a bounded 

projection operator mapping the ambient L̂  onto the Bergman space. 

42 



REPRESENTATION THEOREMS 

4. 1. Zero Sets. 

In the proof of Theorem 2, and in the proof of Theorem 3, the only thing that 

was required of the points (called y^ in the harmonic case) is that they be 

an 7] -lattice for some sufficiently small T] . Now note that if the function F 

being analyzed in the proof of Theorem 2 vanishes at each £ , then the approxima­

tion G in the proof of Theorem 2 must vanish identically. Similar observations 

hold for Theorem 3. Thus we have 

Proposition 4.1. Let D > P 3 r be such that Theorem 2 applies. There is an 

7]Q = 7]̂ (D , p , r) such that if f is in A P j , r (D) and f vanishes at each point 

of an 7] -lattice for some T] < 7]Q then f must vanish identically. The same 

result holds for harmonic functions f in A ^ a ( B n ) . 

For the classical Bergman space ( i . e . , D = D"S , this result on zero sets is 

less precise than the results of Horowitz [13]. Examination of Horowitz's examples 

shows that our result is sharp in the following crude sense. Given an 7] , there 

is a p sufficiently small so that one can find an f in APj,^(D"^) which 

vanishes at each point of an 7] -lattice without vanishing identically. From this 

we also conclude that the choice of 7] in Theorem 2 must depend on p . (The 

discussion in part 5 of this section actually shows that 7)Q = 7]Q(D^ j P j 0) must 
-1/2 

satisfy T)Q = 0(p ) as p -* 0) . 

We know of no other results similar to Proposition 4. \ for harmonic functions. 

It would be interesting to have a more direct proof of the proposition for harmonic 

functions. Also, it would be interesting to have a local version of Proposition 

4. 1. 
4.2. Inclusion of Hardy and Bergman Spaces in Bergman Spaces. 

Consideration of the 9 = 0 case of Theorem 2 suggests that the spaces 

A P ' r (D) and AP (D) should be very closely related if (1 + r)/p = (1 + r ' ) /p ' . 

Suppose 

(4. 1) 0 < p < p' < 1 , r > r ' > -e (D) , and 1+r' 
P* 

1+r 
P 

In this case the only difference between the two spaces is that forced by the 
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different homogenieties of their norm functions. To make this precise we recall 

that for 0 < p < 1 , the p -convex hull of a subset X of a vector space is the 

set of all finite sums XX. x. with \. > 0 , EX? = 1 and x. in X ([23]). 
1 1 l — i l 

Since iF c £ P if p < p' , a consequence of Theorem 2 is 

Proposition 4. 2. Suppose (4.1) holds, then 

A P ' r ( D ) C A P ' r (D) , 

the inclusion is continuous, and the closure in AP ' r of the p' -convex hull of  

the unit ball of A^'* contains a ball of AP 3 T 

The informal statement of the result is that AP 3 r is the "smallest 

p' -convex space" containing A P ^ r . In particular, when p' = 1 , p}'3 P)̂ P 

is the smallest Banach space containing A^ r ( i . e . , the Mackey completion of 

A P ' r [23]). Thus 

Corollary 4. 3. The spaces A?'r and A"̂  have the same dual. 

From certain points of view, the Hardy spaces on the boundary of the domain 

D can be regarded as the limiting case (as r approaches -e^ ) of the Bergman 

spaces. In particular, let HP(T n) denote the Hardy space of the n -torus (see 

[10] for definitions) and let HP(oBn) denote the Hardy space associated with the 

boundary of Bn . (See [12] for definitions.) 

Proposition 4. 4. If_ p , p* < 1 , r' > I 
~2 

and 2p 
1+r1 

P 
then 

(4.2) H P ( T n ) C A p , , r ' (Dn) • 

If p , p' < 1 , r' > 1 
n+1 and 

n 
(n+l)p 

1+r* 
p' 

then 

(4.3) HP(ÔBn) ç A p S r ' ( B n ) 

In both cases, the inclusion is continuous and the closure in AP ' r of the 

p1 -convex hull of the unit ball of HP contains a ball of AP 3 * 

Proof. We first consider the case n = 1 (and hence (4.2) is the same as (4.3)). 

In this case, the inclusion and its continuity is a result of Hardy and Littlewood 

(page 87 of [6]). The second part of the conclusion follows from Theorem 2 as soon 
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as we show that the family of functions of z given by 

V z ) - ,B 2(z,C) 

l+r' 
p 

is uniformly (with respect to £) in LP(d0) . However, if | z | = 1 , then 

| h , ( Z ) | p i- lr l 2 

I i—cr 

which is the Poisson kernel. Thus J |h ( e ^ ) ^ d6 = 1 . 
T s 

For n > 1 the proof follows the same pattern. The result of Hardy and 

Littlewood has been extended to the polydisk by Frazier [10], and to the ball by 

Hahn and Mitchell [12]. In both of these cases |h^(Z) | P is the Poisson kernel. 

One immediate consequence of the proposition is that linear operators which 

map HP to HP continuously automatically extend to continuous maps of AP ' T 

to A P ' ' r ' . 

Taking p' = 1 in the proposition and then passing to dual spaces yields the 

identification of the duals of certain Hardy spaces with the duals of certain 

Bergman spaces. For n = 1 this identification (and some of the other results in 

this section) are due to Duren, Romberg, and Shields [7]. For the polydisk it is a 

result of Frazier, for the ball, a result of Hahn and Mitchell. 

For n = 1 , p' < 1 , this result had been conjectured by J. Shapiro [23]. 

Modulo the result he gave a proof of the following proposition (extending earlier 

work by Horowitz, Oberlin, Rudin, Duren and Shields). 

Proposition 4.5. Suppose 0 < p < » and n > 2 . The map of holomorphic 
n 1 functions on the polydisk D to holomorphic functions on the disk D which 

sends f(z^ , z^ j ) ẑ ) _to_ f(z , z , . . . , z) is a continuous map of 

HP(T n) onto A P j 1 + n / /^(D''") . (Another proof of this result and some cases of the 

previous proposition has been given by J. Detraz [27]. ) 

There is an obvious and immediate real variable analog of Proposition 4.2. 

There is also a natural analog of Proposition 4.4; however, before presenting that 

result we must introduce the appropriate Hardy space on T^^i > the unit sphere in 
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R . 

In the discussion which follows, we will identify distributions on Z 
n-1 

with their Poisson integrals defined on B n . 

Suppose 0 < q < 1 . We now define (Zn ^) . Pick an integer r , 

r > (n - 1) (— - 1 ) . A function a(x ') on Z -, is called a q-atom if either q n-1 

a is a spherical harmonic of degree at most r with ||a||oo < 1 

or 

a is supported on a set of diameter e . 

(4.4) 
| a (x ' ) | < e - ^ - D ^ and 

a is orthogonal to spherical harmonics of degree less that or equal 

to r . 

We define H^(Zn ^) to be the space of distributions which can be written in the 

form Z X.a. with q-atoms a. and scalars X. satisfying Z|X. .1^ < 0 0 . The 
1 1 1 1 y o | x | 

i - 1 / 
norm of this distribution is defined to be inf j(Z|X^|^) ^j , where the infimum 

is over all sums of the same type which produce the same distribution. We will 

also denote by H^(S ^) the space of harmonic functions on ftn which are 

obtained as Poisson integrals of the distributions just described. 

This definition of (Zn ^) is completely analogous to the description of 

given by Latter [17]. The fact that the space described does not depend on 

the integer r is proved by Taibleson and Weiss in [26]. A general discussion of 

this approach to Hardy spaces is given in [3] (see also [20] and [26]). 

Proposition 4. 6. If p , p1 < 1 , a > -1 , and n+a/p = n-1/2 then 

(4.5) HP(En-1)=Ap'u (Bn) 

The inclusion is continuous and the closure in AP ' Œ of the p' convex hull of 
i 

the unit ball of HP contains a ball of AP ' a . —. 1 H 

Corollary 4. 7. HP and A^ n + ^ n have the same dual. 

Proof of the Proposition. Since 1 > p' > p , to prove (4.5) and to show that the 

inclusion is continuous, it suffices to show that if a is a p-atom then A(x) , 

the Poisson integral of a(x ') given by 
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A(x) = J a(y')P(x , y ')da(y') , 

is in AP ^ a and has AJj ,CL norm bounded by a bound which does not depend on a. 

The case when a is a spherical harmonic is immediate. We now claim that if a 

satisfies (4.4) and y^ is any point in the support of a(x') then for all x 
n 

in IB 

(4.6) |A(x)| < c 
n+r- (n-fa)/p 1 

e 
( | x - y : | + e ) n + r 

(Here e and r are given by (4.4)). If |x - y' |< e then 

|A(x)| < HalL Hp!̂  < e " ( n - X ) / P = e - ( n ^ ) / p ' 

If |x - y^l > e we must use the moment condition on a and the information on 

the support of a . 

A(x) = J E aP = J* a(P - R) = 
|y-yil<« 

a(P - R) 

where R is any sum of spherical harmonics of degree r or less. We need the 

following 

Lemma. Given x , R = R can be chosen to that   
x 

sup 
|y'-y'o|<e 

|p(x , y*) - R ( y ' ) | < c 
r+1 

e I I I n+r 

with a constant c independent of e , y^ , and x (as long as |x - y^| > e). 

Proof. This is just Taylor's theorem on the sphere. We need to know that any 
s t 

(r + 1) order partial derivative of P(x , y ' ) (as a function of y ' ) evalua­

ted near y^ is dominated by |x - У ¿ | n + r • This follows from the same argument 

that was used to prove Lemma 3.2. 

Using this choice of R we then obtain (4.6) for x far from y^ by using 

the estimating 
|A(x)| < (Area of |y - y'0\ < e)||a||œ ||P - R||œ . 

Once (4. 6) is verified, the calculation to show A(x) is in AP } Q L is the same 

type of calculation as the calculation done in showing that condition ( b) implies 

condition (c) in the proof of Theorem 3'. The restriction on the exponent is 
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r > -n + (n - l)/p . Since r can be chosen as large as is needed, the inclusion 

is established. 

By Theorem 3, we may finish the proof by showing that the functions of x' 

given by 

M (x' ) = b (x1 , y ) ( l - | y | ) ^ - ( n - t a ) / p ' 

are in H P (S n ^) and have their HP norm bounded by a constant which does not 

depend on y . Write b (x' , y) = b + P where P is a linear combination of r J m m . 

spherical harmonics of degree at most r and b^ is orthogonal to spherical 

harmonics of degree less than or equal to r . Let My = h^(l - | y | ) r r H ~ n ( n + a ) / p 

We will show that My are uniformly in H P , for |y| near 1 . (The cases of 

|y| small and the term P(l - ly l )™* 1 1 ^ n + a ^ p are proved by elementary arguments 

which we omit. ) 

We will show that M satisfies 
y 

(4.7) ( J 2 | 5 y ( x ' ) | 2 da ( x ' ) ) P ( J s | M y ( x ' ) | 2 |x ' - y . |2(n-l)/p d a ( x . ) }

2 P < c 

for some c independent of y . A function which satisfies (4.7) and is ortho­

gonal to the harmonics of degree less than or equal to r is called a 

p -molecule. Such a function is in HP ([26]). To estimate the left hand side 

of (4.7) we use part a of Lemma 3.2, which clearly extends to , estimate 

|x' - y'I by Ix' - y 1I 4- e(y) , and use the fact that (n + a)/p f = (n - l)/p . 

Thus we must estimate 

c(fE ^(m+n- (n-l)/p) 

( | x ' - y ' | + € ( y ) ) 2 ( n + m ) 

da(x')) 
P 
(fE 

2(m+n-(n-l)/p) 

( | x ' - y ' | + e ( y ) ) 2 ( m f m ) 

! x ' - y ' | 2 ( n - 1 ) / p d a ( x ' ) ) 
2-p 

These integrals are dominated by the corresponding integrals over Rn ^ . These 

integrals are computed in polar coordinates centered at y' . Thus we need to show 

CO 

i 

2(m+n-(n-l)/p) 

( r - f e ) 2 ( l ^ n ) 

n-2 , , r dr ) 
P 00 

6 

e2(m+n-(n-l)/p) 

( r + e )

2 ( n h f n ) 

rn-2+2(n-l)/p dr) 
2-p 

is bounded by a bound independent of e . The substitution of er for r shows 

that the product is independent of e . To insure that the product is finite for 
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any e , one must select an m that is large enough to insure that both integrals 

converge at infinity. However, Theorem 3 allows m to be selected as large as is 

needed. The proof is complete. 

As with the case of holomorphic functions, it follows that bounded linear maps 
P P 

of H to H extend to certain Bergman spaces. For instance we have an extra­

ordinarily roundabout proof of the following. 

Corollary 4. 8. Suppose 0 < p < 1 , a > -1 . The map which takes a harmonic  

function U on the disk to its harmonic conjugate U , is a bounded map of 

A P ' a ( B 2 ) to itself. 
n 

Proof. Let r = p/(2 + a) . The map of U to U is a bounded map of Hr(d0) 

to itself. 
4.3. Inclusion of Bergman Spaces in Hardy Spaces. 

In this section we will regard functions f in the various A P^(fB n) as 
H 

defined on all of Rn by setting f(x) = 0 if x is in ^ n \ B n • We wish to show 

that AP^^ is contained in the Hardy space (in the sense of Stein and Weiss) of 

the ambient Euclidean space. However, we must first discard some functions in 
A P ' ° . We define AP by H 

? ( « n ) = Xp = i f ; f € A P ' V ) and the expansion of 

f in spherical harmonics contains no 

terms of degree < n(1 
p 

I)} 

We denote by HP(Rn) the Hardy space (in the sense of Stein and Weiss) of 

]Rn . (A discussion of these spaces from the point of view we will use in in [3] 

or [26]. ) 

Proposition 4. 9. Given n > 2 , 0 < p < 1 , there is a continuous inclusion 

Xp(«n) c HP(Rn) . 

Proof. The proof is essentially the same as the proof of the last part of Propo­

sition 4.6. By Theorem 3, we may write f in AP(ft n) as a sum of terms 

My(x) = bm(x , y)( l - | y | ) ^ n - n / p . 
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Splitting b as a sum of spherical harmonics of degree at most r and a m 
remainder b , f can actually be written as a sum of terms m 

My(x) = bm(x , y)(l - \y\)^n-n/P 

plus a sum of spherical harmonics of degree at most r . This latter sum contains 

no harmonics of degree < n(-ĵ  - 1) (since f does not) and hence is easily seen 

to be in HP . 

We now show that the are p-molecules and hence, by the results in [26] 

are in HP(lRn) with uniform estimates on their HP norm. That is, we show that 

the M (now regarded as functions on Rn which vanish identically off Hn) are 

orthogonal to the spherical harmonics of degree r (the appropriate r is deter­

mined by n and p ) and satisfy 

? P ? ? I 2 _ P 

(J M^(x)dx) (J M (x) I x - y| dx) < c 
R y R 

for some universal constant c . 

This condition is verified in the same way that (4.7) was verified. 

4.4. The atomic theory of Bergman Spaces. 

In this section we let D denote the unit disk in the complex plane. 

We will show that the Bergman spaces A P j , a (D) are exactly the holomorphic 

functions in certain "atomic Hardy spaces" associated with certain "spaces of 

homogeneous type." We must refer to [3] and [26] for motivation, details of the 

atomic theory of Hardy spaces and definitions of some terms. The spaces we 

consider are related to those of example 10 in [3]. This is also the point of 

view taken in Section 5 of [5]. 

Let p and a be fixed , 0 < p < 1 , a > --j- and consider the measure on 

D given by dv = (1 - | z | ) 2 a dx dy . For z , w in D we introduce the 

"measure distance" between z and w = 

m(z , w) = inf jv(B H D) ; B is a Euclidean ball 

which contains z and wj . 
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The triple (D , v , m) is the space of homogeneous type which we will consider. 

The atomic Hardy space associated with this triple consists of distributions 

which can be written as iP sums of simple functions called "atoms". However, it 

is proved in [3] and [26] that one obtains the same space if one takes £ P sums 

of p-molecules. A p-molecule for the triple (D , v , m) is a function M 

which is supported on D , has vanishing moments up to order r for some large r 

and, for some Q in D , satisfies 

(4. 9) 
o P ? ? I 2-p 

(J |M(z) | Z dv(z)) (J |M(z)| Z m(z , O ) dv(z)) < c 

with a constant c which does not depend on the function M . It is proved in 

[26] that the space obtained in this way does not depend on r if r is at least 

as large as some critical r^ determined by p and a . For example, if a = 0 , 

then r^ = 2 [̂  - 1 ] . We regard r as fixed for the rest of this section. Condi­

tion (4.9) and the obviously closely related (4.7) and (4.8) are special cases of 

(2.7) of [3]. An exposition of the properties of such functions in this context, 

for example the fact that a molecule can be written as a sum of atoms, is in [26]. 

We emphasize that we are considering the atomic Hardy spaces built from 

molecules (ar atoms) with vanishing moments. This is slightly different from the 

point of view in [3]. 

We will prove 

Proposition 4. 10. If f is in A P ' a then f = fQ 4- Z ^ I ^ where fQ is a  

polynomial of degree r , the are p-molecules, and \ scalars, with 

! | f j p + e | X . | p < c » f f . 
11 0"p,a L ~ i i PJ,CC 

Corollary 4. 11. A P ^ a is contained in the atomic HP space associated with the  

space of homogeneous type (D , v , m) . 

Proof of the proposition. Write f = f̂  + z g where f̂  is the sum of the first 

r terms in the Taylor series of f . f̂  satisfies the required estimate. g is 

in A^,CL and j|g|| < c|]f|| . We now apply Theorem 2 to g . 
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g = E X. 
( H c l 2 ) ' 

I (l+a)/p 

1-£iz)4 

It now suffices to show that the functions 

M. (z) = 
d - l c j 2 ) 2 

(l-C.z) 4 

(l-ta)/p 
B(z,£i)2 

B(z,£i) 

(l-kx)/p 

satisfies (4. 9). Before doing that we need the following estimate on m(z , £) . 

(4. 10) m(z , £) < c max (1 - I d , I* - C l ) 2 ^ 

This estimate is obtained making direct estimates for each of the several possible 

geometric situations. The estimate for the first integral in (4.9), i .e . , 

i t - J D |B(Z , £ ) | ^ V e B (c r N-2 (l-kx)/p ^ . \ ~~CL j 
£) B(z , z) dxdy . 

follows from the disk case of Lemma 2.2. This yields 

| i 1 | p < c B(C , c ) ( 1 + o ) ( 2 - p ) . 

To estimate 

I 2 = JD |M(z) | 2 m(z , 0 2 / P dv(z) 

we write = 1̂  + I2 where 1̂  is an integral over B = ( | z - £ | < 1 - \c>\\ 

and I" is the remainder. Using (4. 10) gives 

^ < I B | B ( Z , C ) | 4 ( 1 ^ ) / p B ( C , „N-4(l-Kx)/p _ , N-a , , O B(z , z) dxdy 

which, by Lemma 2.2, can be estimated by 

| I 2 | 2 - P < C B ( S , c ) - ( ^ ) ( 2 - P ) . 

A similar argument yields a similar estimate for Î ' • These estimates together 

show that M satisfies (4. 9) and the proof is complete. 

The corollary follows directly from the proposition and the results of 

Taibleson and Weiss in [26]. As a consequence of the corollary, if f is is 

k^,Ci then f can be written as a sum of atoms with the atoms supported on D . 

This is an interesting companion to Theorem 2.28 of [3] which establishes a similar 

local decomposition for distributions supported on the unit interval. 

Many of the general results in [3] can now be used on the A^,a spaces. For 
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example. 

Proposition 4. 12. Suppose a > - 2" -0 < ? 1 < 1 < p 2 < CO Suppose T is a 

linear map of holomorphic functions, and T is a bounded map of A P j , C C to itself 
P 2 ' a P a and A to itself. Then T is a bounded map of A to itself for 

Px < P < P2 • 

Proof outline. By Lemmas 2. 1 and 2. 8 we may pick ß so large that 

Kh(z) = J D B(z , C) ß B(C , C ) " ß + 1 MÇ)dÇ 

is a bounded projection of LP(B(£ , 0 a dv(£)) onto A^'^ for 1 < p < . K 

will not be a bounded for p < 1 but is a bounded projection of the Hardy space 

associated with the space of homogeneous type (D , v , m) onto A^,V . We now 

apply the Marcninkiewicz type interpolation theorem (Theorem D) of [3] to the 

composite operator TK and conclude that TK is bounded on the atomic HP space 

if p x < p < 1 and on LP if 1 < p < p 2 . Since TK = T on A P ' a and A P ' a 

is contained in the appropriate HP or LP , the conclusion follows. 

There are two details of this argument which are straightforward but lengthy 

and have been omitted. First, it must be proved that K is bounded on the atomic 

Hardy spaces. This follows from arguments similar to those used in [3] on pages 

598-600. Second, the interpolation theorem, Theorem D of [3], must be extended to 

the case of HP spaces defined in terms of atoms with vanishing moments. 

4. 5. Automorphic forms. 

In this section we again suppose D is the unit disk in the complex plane. 

One method of obtaining automorphic forms on D is to form the Poincaré 

series of functions in appropriate Bergman spaces. In some cases, when this is 

combined with the representation of the Bergman spaces given in Theorem 2 a parti­

cularly simple expression results. One can then show, for example, that certain 

spaces of automorphic forms are finite dimensional. We now present this in a 

simple case. The applicability of Theorem 2 to the general theory of automorphic 

forms has not been investigated. As general references for the theory of automor­

phic forms we refer to the books of Kra [15] and Baily [1]. 
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Let T = iA.jJ™_]_ k e a discrete group of conformal automorphisms of D with 

Â  the identity transformation. Let q be an integer, q ̂ _ 2 . A holomorphic 

function f defined on D is said to be an automorphic form of weight q (with 

respect to f ) i f 

f (A. (z ) ) (A | (z ) ) q = f(z) i = 1 , 2 . . . ; z € D . 

We denote the space of all such f for which 

||f||r=[[|f(z) 
B 

i-q/2 
(z , z)dV(z) 

is finite by A 
i , f - i 

(D , D Here R is any fundamental domain for T . In 

particular, if T is the trivial group then A 
1 ! 
L>2 (D , D = A 

1 1 
(D) 

For f holomorphic on D we define the Poincaré series of f by 

(4.11) (Qf)(z) = (9 _ f)(z) = E f(A, (z))A! ( z ) q 

q,T t l l 

Our starting point is the following result (see, for example, Chapter 3 of [15]). 

Theorem. If f is in A 

1,1/2-1 
(D) then (4.11) converges uniformly and absolutely 

on compact subsets. In fact, 8 is a continuous map of A 
1^-1 
L>2 1 (D) onto 

A 

1, p/2-1 
(D , D . 

Now suppose that T has a compact fundamental domain B . For a given e , 

choose points Q^ , ... , Q in B so that each point in B is within invariant 

distance e of some C. . Let C.. = A (C ) . It is straightforward to check b i b ij i b j 

that the points f. could be chosen so that the form a ce-lattice for some 

constant c which does not depend on e . We will suppose that the points have 

been chosen so that that is true. 

1 £ - 1 

We now apply Theorem 2 to the space A (D) using the points as the 

required T) -lattice. Let 
H..(z) = B(z , C i j ) q B ( C i j , C i / " 7 2 • 
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By Theorem 2, if f is in A 
1 ^ - 1 

, 2 (D) then 

f - S X . . H.. 

with < cj|f|| 

A direct computation using the invariance properties of the Bergman kernel, 

(2. 9), shows 

0H.. = a.. 9H,. 

with a. . a constant of modulus one. Thus, setting n. = £ a. . X. . . we have 

n 
Qf = Z u , 9H,. -

j = l J i J 

Hence, 

Proposition 4. 13. A 1,q/2-1(D , D is spanned by the functions 9(H .) j = 1 , 

. . . , n . 

Since it is known that dim (A 
1, p-1 
2 (D , D) grows linearly with q , and 

since the number n obtained in the previous argument is roughly 7] , the 
-1/2 

quantity 7|Q in Theorem 2 must satisfy 7]̂  = 0(q ) for large q and p = 1 

One can carry the analysis further and also show that the space of automorphic 

forms is finite dimensional even if it is only assumed that B has finite invariant 

1 S.- i 
area. We outline the argument. If f is in A (D , F) then 

f = Bereif» 

where v is the characteristic function of B and P is the projection from B 

i , f - i i , f - i 

L (D) onto A (D) used in the proof of Theorem 2. (See Chapter 3 of 

[15]). Thus, as in the proof of Theorem 2, i t suffices to show that P(x^f) can 

n 
be well approximated by sums of the type £ X. H..(z) with the 

j=l J 1 J 1 J 

appropriately chosen points in B . This is done exactly as in the proof of 

Theorem 2, but there is an error term that cannot be estimated by a "Riemann sum" 
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argument. That term is estimated using the fact that such an f must have the 

limiting value zero at each cusp in an appropriately chosen fundamental domain. 

4. 6. Hankel Operators. 

Before proving the theorem which was stated in the introduction about trace 

class Hankel operators, we introduce some notation. For a function g defined on 
v 

the positive real axis, let g be the inverse Fourier transform of the function on 

the real axis which is zero for negative argument and which agrees with g for 

positive argument. Thus 

I(x) = J g(t) e 2 r t i t X dt . 

Such a function g has a natural extension to a holomorphic function in the upper 

half plane. (For discussion of all these issues, see [24].) We shall denote this 

extension by g(z) . Furthermore, 

lim 
y-> 

CO 
I 
-co 

|g(x + iy) I 2 dx = 
co 
I 

|g(t) | 2 dt , 

2 v 2 that is, if g is in L of the half line, then g is in H of the half space. 

Proposition 4. 14. There is an 7] -lattice jz^} in the upper half plane such that 

the following conditions are equivalent: 

(a) The linear map of L+ to itself given by 

(Hf)(x) = 
CO 
i 

k(x 4- y)f (y)dy 

is of trace class. 

(b) There are numbers \ ± with T,\\^\ < » such that 

k(t) = S X.UmzJe 
- iz . t 

(c) The function (K(z))" is in the Bergman space A 1 of the upper half 

plane. 
Proof. As was noted in the introduction to this volume, it is elementary that (b) 

implies (a). The fact that (c) implies (b) is a direct application of Theorem 2 
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followed by a Fourier transform calculation. We write K(z)" using formula (2.1) 

with the indicies p = 1 , r = 0 , 0 = -1/2 . Note that if the domain being con­

sidered is the upper half plane then the Bergman kernel is B(z , w) = C(z - w) ^ . 

Let y^ = Im(z )̂ . The decomposition we obtain is for the function it" . After 

integrating twice we obtain 

K(z) = S \ ± 

y i 
(z-z.) 

for a summable sequence . Taking Fourier transforms on both sides of this 

equation yields the required representation. 

We now wish to show that (a) implies (c). The theory of trace class operators 
2 

on L spaces insures that k(x + y) can be written in the following form 

(4. 12) k(x + y) = 
CO 

i=l 
ui(x)v (y) x , y > 0 

with u. and v. in L̂  and S||u^||2 IK-J^ < 0 0 * (Whether this representation is 

a theorem or a definition depends on the point of view taken. ) Multiply both sides 
1/2 1/2 

of this equality by x y and apply the inverse Fourier transform ( i . e . , the 

mapping from g to g) twice, first in the x variable and then in the y 

variable. We then evaluate the resulting expression on the diagonal x = y . We 

denote the new variable by s . The right hand side of (4.12) becomes 
Z(x"^^ u) V (s) ( y ^ ^ v ) V (s) . However, up to a constant factor which we ignore 
(x*^ u) V is the inverse Fourier transform of the half-order derivative of the 

function uV . Thus the transformed version of the right hand side of (4.12) is 
1/2 1/2 

Z(D u^)(s)(D v . ) (s ) . The half order differentiation operator is a constant 
2 2 multiple of a unitary map from the Hardy space H (]R) to the Bergman space A of 

the upper half plane. (This is easy to check using Fourier transforms. ) Hence the 

right hand side of (4.12) is transformed to a sum of the products of elements of 
2 

A with the sum of the products of the norms finite. By the Cauchy-Schwartz 
inequality, this transformed function is in Â" . 

To finish the proof we now analyze the behaviour of the left hand side of 

(4.12) under this transformation. Let J?x denote the operation which sends g to 
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g with x as the variable in g . 3^ is defined similarly. The proof will be 

finished as soon as we prove the following lemma. 

Lemma. 3 3 x 1 / 2 y 1 / 2 k(x + y)l = c£" 
y x J J \ x=y 

Proof. The left hand side is 

7 7 1/2 1/2 . . , . 2*i(tx 4- ry) I 
I ! r t k(r + t)e J x-y 

7 7 1/2 1/2 . , t . 2itix(t+r) _ , = I I r t k(r 4- t)e dtdr 

If we let r and s = r 4- t be new integration variables we obtain 

°T ? 1 / 2 / x 1 / 2 t / x 2tt ixs , , J I r (s - r) k(s) e drds . 

Computing the r integral yields 

00 
c ^ s k(s)e 2TTixsds 

= c(^ k ( s ) e 2 l t Ì X dx)" 

which is the required formula. 

It should be emphasized that we obtained this proof only after we learned that 

V. V. Peller had proved the equivalence of (a) and (c) in the discrete case ( i . e . , 

for Hankel matrices acting on Z + ). Peller also announces a characterization of 

those Hankel matrices which give operators in the Schatten p class, with p > 1 . 

His condition is that K(z)' , which is a function on the disk, be in the space 

Ap, (p-1)/2 . This result is compatible with the speculation that condition (b) of 

Proposition 4. 14 characterizes the Hankel operators in the Schatten p class for 

0 < p < co if the condition E|yi- < 0 0 is changed to S |X i |
P < » . 

The choice of the power 1/2 in the Lemma was not really necessary for the 

proof. Other positive powers would have led to results which are equivalent (via 

fractional integration) to the proposition. The choice of the power zero does not 

give the full result. A direct calculation of the Fourier transform of (4.12) 
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shows that Jc' (z) must be in Ĥ" . This result, due to Howland and Rosenblum, is 

not a sufficient condition. 
2 

A similar calculation can be carried out for Hankel type operators on the L 

space of any homogeneous self-dual cone. A combination of Fourier transform theory 

for such cones ([11], [24]) and Theorem 2 yields results similar to the previous 
2 2 proposition. If the L space of the cone is replaced by the L space of the 

cone with an appropriate weight, the result that is obtained is a nuclearity 
2 r 

criterion for Hankel type operators defined on the spaces A 3 . This extends the 

results of [5]. 

Appendix. We now outline the proofs of Lemma 2.1, 2.2 and 2.3. We prove the first 

two lemmas by carrying further some of the ideas presented by Gindikin in [11]. We 

will make free'use of the results and arguments of [11], especially of Section 5. 

The proofs are quite computational and use the machinery of special functions on 

Siegel domains of the second kind. However the basic ideas are quite straightfor­

ward. The following three ideas are the basis for these computations. First, the 

theory of the Bergman kernel can be developed using Fourier transform techniques. 

Second, the domains being considered have a large group of automorphisms. Using 

this group, many computations can be replaced by homogeneity considerations. 

Finally the Riemann-Liouville fractional integrals are unitary maps between the 

various Hilbert spaces P?3C . This allows the results for A^?^ to be used as a 

basis for other results. 

We restrict our presentation to the case when the base cone V is self-dual 

( i . e . , D is symmetric). We start by recalling that 

(A. 1) B(z , O = c 
z1-£i 

2 
- F(z 2 , C2)) 

2d-q 

where z = (z^ , z^) , z^ £ Cn , z 2 € and ( ) P is the "compound power 

function" with multi-index p . d = (d^ , . . . , d^) is a vector of non-negative 

integers q = (q^ , . . . , q^) is a vector of positive integers and I is the rank 

of V . We also need the result that if iy = (iy , 0) for y in V then 
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B(iy , iy) = cy^2d q is the density of the measure on D which is invariant under 

the automorphism group. 

2 0 
Gindikin presents the basic Fourier transform description of the space A 3 

and the Plancherel-Parseval formula (Proposition 5.5). His proof extends directly 

2 r 
to the weighted spaces A 3 and gives the following 
Proposition A. 1. There is a positive constant ED which depends only on D s_o_ 

2 r 

that if r > -e^ then G(z) is in A >' (D) if and only if G has a representa­ 

tion 
G(z) = G(z 1 , z 2 ) = J v g(X , z 2 )e 

i(X,z ) 
d\ 

with g(X , z^) defined on V X Cm , entire in z^ and satisfying 

-2(X,F(z , z )) , , 
U Z2>l £ X d - ( 2 d - " ) r d z 2 d 7 2 d X < » 

c 

2 
In this case the previous integral equals C ||G|L 

r Z, r 

Proof. The basic idea is to reduce to the classical case. The details are exactly 

those of the proofs of Propositions 5.4 and 5.5 of [11]. 

Once the proposition is verified, Lemma 2. 1 follows in the same way in which 

Gindikin's Theorem 5.1 follows from his proposition 5.5. 

Another consequence of Proposition A. 1 should be mentioned. The expression 

for the norm of G involves a factor of X -(2d-q)r ̂ r . Hence, the operation of 

multiplication of g by various compound powers of X will produce isometries 
2 r 

between the various spaces A 3 . More precisely, the Riemann-Liouvilie fraction­

al integral operator RPV defined in Section 5 of [11] (RP involves multiplica-
-o 2 r 2 r ' tion of g by X ) is an isometry from A 3 to A 3 with r' = r + a , 

p = - ja(2d - q) . From this point of view, our Lemma 2.1 is very close to Theorem 
5. 5 of [11]. 

We now prove Lemma 2.2. We must evaluate 

(A. 2) |D |B(z,£) 1-kx 
B(c , C ) ' P dV(C) 

Let z = (x + iy , z 2 ) and £ = (% + i7) , £ 2 ) . So, by (A. 1), 

B(z , O = c 
x£ 

' 2i 
y+Ti 

2 
ReF(z2 , Ç 2

} ' i I m F ( z 2 > £2 } ) 

2d-q 
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Note that the factor B(£ , £) ^ doesn't depend on the variable § . Hence, when 

we evaluate (A. 2) by doing the integration in !• first, we are led to evaluate 

integrals of the form 

(A.3) |Rn |(i£+s)2d-q 
l+cx 

d£ 

Here we have made a linear change of variable and have set s = y 4- 7) - 2ReF(z , ^) . 

(Notice that y - F(z 2 , z2> and 7] - F(£2 , Q^) are both in the cone V and 

hence so is s . ) To evaluate this integral, we use the integral representation 

for the generalized power function. By (2.6) and (2.29) of [11] 

(A. 4) (i£ + s) 
:2d-q) 

1+q 
2 =c[v 

e 
-iÇ-X e -sX x 

"(2d-q) 1+a 
C 2 Yd Y 

Hence we may evaluate (A.3) using Plancherel's theorem for the cone V . This 

gives 

(2d-q)(l+a)-d 
c s 

Let p x = (2d - q)(l + a) - d and p 2 = -ß(2d - q) . With this notation (A. 2) 

equals 

c 
c m 7]-F(C2,C2)^V 

,y±H 
2 

P l P2 
- ReF(z2 , C2>) 01 " F(C2 y C 2 »

 d 1 l d C 2

d C 2 

Set 7]' = 7] - F(£2 , £ 2 ) and use the polarization identity for ReF(z2 , Q^) . 

The integral becomes 

CJ" m JV

 ( Y _ F ( Z 2 ' V + F ( C ' ° + V / V / 2 d-n'dC2dC2 . 

We now perform the 7]' integration using the homogeniety of the cone V . This 

produces a new constant factor (involving the cone beta function) and gives 

CJ m ( y _ F ( z 2 ' Z 2 } + F ( £ ' C>: 
c 

px+p2-d 
dCdÇ . 

By an argument similar to that which proves Proposition 2.8 in [11], this integral 

equals 

c(y - F(z 2 , z )] 
P1+P2"d-q 

Since P̂  + P2 - d - q = (2d - q)(cc - 3) , this is the required result. The 
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restriction a > p > -e comes from the requirement that the various factors 

absorbed into the constant c be absolutely convergent integrals. 

It follows from (A. 1) and the Fourier transform representation of the genera­

lized power function (A. 4), that the operator $ = fô2c* q maps the various powers 

of the Bergman kernel to each other. That is 

ß a B(z , Ç ) b - c a b B(z , C ) 3 + b 

($ is being regarded as an operator in the variable z . ) We use this fact to 

produce a more general form of Lemma 2.2. By Lemma 2.1 applied to the function 

F (* ) = B ( • , z Q ) m we obtain 

B(z , z 0 ) m = c[ B(z , C ) 1 + r B(C , z Q ) m B(C , C)" r d V(C) • 

If we apply the operator $ a in the variable z this produces the equation 

B ( Z , z0)^
a = cj B(Z , c ) 1 + r + a B (C , C 0 ) m B (C , C ) " r dV(C) . 

when z = ZQ and m = l + r + a = (1+ a)/2 this becomes Lemma 2.2. However, in 

order to justify this formal computation, we need Lemma 2.2 to insure that the 

right hand side of the equation is an absolutely convergent interval. Using Lemma 

2.2 and Holder's inequality with the measure B(£ , Q) r dV(£) we obtain 

Lemma 2.2' . Suppose oĉ  ,a2 are positive and a1 + a2 + > r 4- 1 > -e 4- 1 then 

B(z , z Q ) 
a-4<x -r-1 

C a 1 ,a 2 , r 
B(z о£) 

q1 
в (С 

a 2 
z 0) B ( C C ) " r dV(C) . 

It should be noted that this formula is not conformally invariant and is false 

in the bounded realization of a domain. Also, the derivation of this formula 

suggests that it is the derivatives of the kernel functions which should play a 

role in the generalizations of this result, not the powers. This is also suggested 

by the results in Section 3. 

We now prove Lemma 2.3. We thank A. Kor^nyi for showing us this proof. 

First note that D has a transitive group of linear automorphisms. If g 

is a linear automorphism of D , then (2. 9), the invariance property of the Bergman 

kernel becomes 
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BD(g(z) , g(Ç)) |det g ' | 2 = BD(z , O 

2 

and the factor |det g ' | does not depend on z or Q . Hence, it suffices to 

prove Lemma 2. 3 for a single fixed £Q with a constant CD which does not depend 

on z or £ . Pick and fix £0. 

We now reduce to the case of a bounded domain. Let T be a biholomorphic 

map of D to a bounded domain R which has the property that if (z^ , . . . , z^) 
is in R and a. are numbers with cc. < 1 . i = 1 , . . . , n then l 1 l 1 — 
(a^z^ , a 2 Z 2 3 *'' 3 anZn^ ~*"S a ^ s o i Q R • We further suppose that T(£0) = Q . 

(The existence of such a T and R is insured by results in [30]. ) We denote by 

B the Bergman kernel function for R . We wish to show 
R 

B(z,C ) 
1 B(z,£) 

- 1|<CDd(£, £0) 

if d(z , £Q) is small. By (2.9) this is equivalent to showing that 

BR(Tz,0) 
, B R (lz i T£) 

det T*(C0) 

det T*(C) 
- 1|<CDd(£, £0) 

Now note that d is the invariant distance on D . Hence, denoting by d̂  the 

invariant distance on R , d (Tz , 0) = d(z , £ n ) . However we are only interested 
R 0 

in z with d(Q , £Q) < 10 . Hence Tz will be in a compact subset of B . On 

such a subset the invariant distance is comparable to the ordinary Euclidean 

distance. Also, the ratio det (T'(£ Q))/det (T'(£) is of the form 1 + 0(|T£|) 

for Q near £^ . Hence we must show that 
B (w, 0 ) 

'BR (w,v) 
1| < C|v| 

for all w in R and all v in a fixed compact subset K contained in R . 

The simple shape of R makes it possible to write down the form of the 

Bergman kernel. Let z a be the homogeneous monomial with exponent given by the 

multi-index a . We claim that there are positive constants c so that 
a 

BR(z , o - E c a z T 
i 

To show this, it suffices to show that the z^ are pairwise orghogonal and that 
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their span is dense in A (R) . The orthogonality follows from the rotational 

symmetry of R . The density of the polynomials is a consequence of the fact that 
2 

R is starshaped. More specifically, if f(z) is in A (R) and 0 < r < 1 then 
2 

fr(z) = f(ra) is in A and f is the norm limit of the fr . However f has 

a Taylor series representation using the z a and the coefficients of the series 

tend to zero at least as fast as r ^ . Hence the f and thus f are in the 
r 

norm closure of the polynomials. 

One consequence of this is that B(0 , Q) = CQ is not zero. Hence, since R 

has a transitive group of automorphisms, by (2.9) B(z , £) doesn't vanish. Thus 

it suffices to show 

|BR(w , 0) - BR(w , v ) | < c|v|BR(w , v) 
for all w in R and all v in K . However this is immediate as soon as we 
note that B (w , v) is actually real analytic in an open neighborhood of RXK . R 
The reason that B (• , v) extends analytically past R (when v is in K) is R 

the identity 

BR(^w , rv) = BR(w , v) 

which is a direct consequence of the formula for B . 
R 

It would be interesting to know if Lemma 2. 3 remains valid for other classes 

of domains - for instance, homogeneous domains. 
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