@incollection{AST_1980__80__5_0, author = {Berger, Marcel}, title = {Rapport sur les vari\'et\'es {d'Einstein}}, booktitle = {Analyse sur les vari\'et\'es (Metz, 1979)}, series = {Ast\'erisque}, pages = {5--19}, publisher = {Soci\'et\'e math\'ematique de France}, number = {80}, year = {1980}, mrnumber = {620166}, zbl = {0473.53039}, language = {fr}, url = {http://archive.numdam.org/item/AST_1980__80__5_0/} }
TY - CHAP AU - Berger, Marcel TI - Rapport sur les variétés d'Einstein BT - Analyse sur les variétés (Metz, 1979) AU - Collectif T3 - Astérisque PY - 1980 SP - 5 EP - 19 IS - 80 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1980__80__5_0/ LA - fr ID - AST_1980__80__5_0 ER -
Berger, Marcel. Rapport sur les variétés d'Einstein, in Analyse sur les variétés (Metz, 1979), Astérisque, no. 80 (1980), pp. 5-19. http://archive.numdam.org/item/AST_1980__80__5_0/
[1] Le spectre d'une variété riemannienne. Lectures Notes in Math. 194, Springer 1971. | MR | Zbl
, , .[2] Foundations of Differential Geometry. Volume 1, Interscience, 1963. | MR | Zbl
, .[3] Existence and conformal deformations of metrics with prescribed Gaussian and scalar curvatures. Annals of Math. 101 (1975), 317-331. | DOI | MR | Zbl
, .[4] Spineurs harmoniques. C.R. Acad.Sciences Paris, 257 (1963) 7-9. | MR | Zbl
.[5] Classification of quaternionic spaces with a transitive solvable group of motions. Math. USSR Izvestija, 9 (1975), 297-339. | DOI | Zbl
.[6] Métriques kählériennes et fibrés holomorphes. Annales Scient.Ecole Norm.Sup. 12 (1979), 269-293. | DOI | EuDML | Numdam | MR | Zbl
.[7] Sur les variétés d'Einstein compactes. C.R. IIIe Réunion Math. Expression latine, Namur (1965), 35-55. | MR | Zbl
.[8] Die Grundlagen der Physik, Göttingen Nachr. Math.Phys.Klasse, 395 (1915). | EuDML | JFM
.Die Grundlagen der Physik, Göttingen Nachr. Math.Phys.Klasse, 53 ( ). | EuDML | JFM
.[9] Foundations of Differentiel Geometry. Volume II, Interscience, 1969. | MR | Zbl
, .[10] Reine Infinitesimalgeometrie. Math.Zeitschrift, 2 (1918), 384-411. | DOI | EuDML | JFM | MR
[11] Riemannian Geometry. Princeton University Press, 1949. | MR | Zbl
.[12] Classification of certain compact Riemannien manifolds with harmonic curvature and non-parallel Ricci tensor. A paraître. | Zbl
.[13] Remarks on Kähler-Einstein manifolds. Nagoya Math. J. 46 (1972) 161-173. | DOI | MR | Zbl
.[14] Remarques sur les groupes d'holonomie des variétés riemanniennes. C.R. Acad.Sciences Paris, 262 (1966), 1316-1318. | MR | Zbl
.[15] The geometry and structure of isotropy irreducible homogeneous spaces. Acta Math., 120 (1968), 59-148. | DOI | MR | Zbl
[16] Curvature operators : Pinching estimates and geometric examples. Annales Scient.Ecole Norm.Sup. 11 (1978), 71-92. | DOI | EuDML | Numdam | MR | Zbl
, .[17] Naturally reductive metrics and Einstein metrics on compact Lie groups. Memoirs of the Amer.Math.Soc. Vol. 18, 1979. | MR | Zbl
, .[18] A compact rotating gravitational instanton. Prépublication.
.[19]
, à paraître.[20] Travaux de Thurston sur les difféomorphismes de surfaces. Séminaire d'Orsay 76-77. Astérisque, 1979. | Numdam | MR | Zbl
[21] Vector fields and Ricci curvature. Bull. Amer. Math. Soc., 52 (1946) 776-797. | DOI | MR | Zbl
.[22] The splitting theorem for manifolds of nonnegative curvature. J.Diff.Geomatry, 6 (1971), 119-128. | DOI | MR | Zbl
, .[23] Self-duality in four-dimensional Riemannian geometry. Proc.R.Soc.London, 362 (1978), 426-461. | DOI | MR | Zbl
, , .[24] On Einstein metrics. J.Diff. Geometry, 9 (1974), 521-530. | DOI | MR | Zbl
.[25] On the second derivative of the total scalar curvature. Osaka Math.J. 16 (1979), 413-421. | MR | Zbl
.[26] Première classe de Chern et courbure de Ricci : preuve de la conjecture de Calabi. Séminaire Palaiseau 1978. Astérisque 1978. | Zbl
[27] Sur quelques variétés d'Einstein compactes. Annali di Math.Pura e Appl., 53 (1961) , 89-96. | DOI | MR | Zbl
[28] Compact suitably pinched Einstein manifolds. Prépublication.
[29] Géométrie des groupes de transformations. Dunod, 1958. | MR | Zbl
.[30] Some remarks on the Gauss-Bonnet integral. J.of Math.Mechanics, 18 (1969), 779-786. | MR | Zbl
.[31] Equations du type de Monge-Ampère sur les variétés kählériennes compactes. C.R. Acad.Sciences Paris, 283 (1976), 119-121. | MR | Zbl
.[32] On the Ricci curvature of a compact Kähler manifolds and the complex Monge-Ampère equation I. Comm. Pure and Appl.Math., 31 (1978), 339-411. | DOI | MR | Zbl
.[33] On Kähler manifolds with vanishing canonical class. Algebraic Geometry and Topology, A Symposium in honor of Lefschetz, Princeton Univ. Press. 1955, 78-99. | MR | Zbl
.[34] Applications de la formule de Gauss-Bonnet-Chern aux variétés à quatre dimensions. C.R. Acad.Sciences Paris, 256 (1963), 5488-5490. | MR | Zbl
.[35] Remarques sur les variétés de dimension 4. C.R. Acad.Sciences Paris 264 (1967), 738-740. | MR | Zbl
.[36] Déformations localement triviales des variétés riemanniennes, in Differential Geometry. Proc.Symposia Pure Math. Vol. 27, part I, American Math.Soc, 1975, p. 3-32. | MR | Zbl
, , .