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T. JOSEFIAK, P. PRAGACZ, J. WEYMAN

1. INTRODUCTION

Let K be a commutative ring and fix an integer n > 1.
The polynomial ring K[{Tij}], 17 <i< j<n, in n(n+1)/2
variables Tij can be treated as a coordinate ring OX of
the affine space X = Symn(K) of all n by n symmetric
matrices. For a given r < n let Yr be the subvariety of X
of all matrices of rank at most r. The determinantal var-
ieties Yr have been the classical object of intensive
study. Let us recall here their relationship with classi-
cal invariant theory in case K is a field of character-
istic O.

Let Z = (Zij) be an r x n matrix of indeterminates.
The orthogonal group O(r) acts on the polynomial ring

S = K[{Zij}] by the formula

Zi5 = (BZ) ;s B € OCr) ,

O(r)

and the ring of invariants S of this action is equal

to K[{(tZZ)ij}]. Consider a map K[{Tij}] - 50 sending
Tij into (tZZ)ij. The second fundamental theorem of in-
variant theory, [Weyll, tells us that the kernel of this

map is equal to the ideal I (T) generated by all the

r+
(r + 1)-order minors of T = (Tij), where Ti' = T for

3 ji
0(r) can be identified with the coor-

i > j. Therefore S

dinate ring of Y.
This paper can be considered as a continuation of

those classical results because it is devoted to explicit

descriptions of a minimal free resolution (i.e. all the

higher syzygies) of So(r) = OY = OX/I
r

OX contains the field of rational integers.

r+1(T) over 0X when
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RESOLUTIONS OF DETERMINANTAL VARIETIES

Simultaneously we treat the corresponding problem
for antisymmetric (= alternating) matrices. To be precise,
let K[{Tij}]’ 1 < i< j < n, be the polynomial ring in

(n-1)n/2 variables Ti It can be considered as the co-

5
ordinate ring OX of the affine space X = Altn(K) of all

n by n antisymmetric matrices. If sz is the subvariety
of X of all matrices of rank at most 2p, then the ideal

Pf2p+2(T) of functions on X vanishing on YQP is generated

by all the (2p + 2)-order pfaffians of T = (T..), where

iJ

T.. = -

14 Tij for 1 > 3, T = 0 (see [De Concini-Procesil).

ii

Pfaffians appear also in invariant theory. Let
Z = (Zij) be 2p xn matrix of indeterminates, 2p + 2 < n.
The symplectic group Sp(2p) acts on the polynomial ring
S = K[{Zij}] by the same formula as in the case of the

orthogonal group. However in this case the ring of in-

Sp(2p)

variants S is equal to K[{(tZJZ)ij}] where J is the

1
standard antisymmetric matrix: J = (_g g , I = ( q'O ).
1
Mapping K[{Tij}] onto sSP(ZP)
Sp(2p)

: t
by sending Tij to ( ZJZ)ij

with K[{Tij}]/Pf2P+2(T) [De Con-

cini-Procesi]. This is the second fundamental theorem of

one can identify S

invariant theory for the given action of Sp(2p).
We also present in this paper our description of a
minimal free resolution of SSP(2P) = 0 =OX/Pf

Y
2p
over OX when OX contains the field of rational integers.

2p+2(T)
An analogous problem for minors of a general generic
matrix is treated in [Lascoux] and [Roberts] (see also
[Nielsenl).
We recall that in both the symmetric and antisym-

metric cases Yr is a Cohen-Macaulay variety; see [Kutz],
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[Kleppe-Laksov] and comments in [Laksov]. Therefore the
length of a minimal free resolution of OY over OX is
equal to the depth of the ideal of functiins vanishing
on Yr' This number is (n-r)(n-r+1)/2 in the symmetric
case, [Kutz]l, and (n-2p-1)(n-2p)/2 in the antisymmetric
case, [J6zefiak-Pragacz], r = 2p.

To describe our results we need a basis free point
of view. Instead of speaking of T we consider a map
(symmetric or antisymmetric) ¢ : E* - E, where E is a
free Ox—module of rank n and T is the matrix of ¢ in a

basis of E and its dual basis of E*. We also write

(p), Pf (p) instead of I

2p+2 (T), Pf

P+ (T), re-

Ir+1 2p+2
spectively.
In section 3 we compute components of minimal free

resolutions of I () and Pf () in terms of the

r+1 2p+2

Schur modules of E. We apply a method which comes essen-
tially from [Kempf] and was developed and used in [Lascoux]
for solving an analogous problem for minors of a general
matrix. We will illustrate the method for antisymmetric
matrices.

Treating E as a trivial vector bundle over X, let us
consider a grassmannian G = Gn_p(E*) parameterizing sub-
bundles of E* of rank n-p. Let m : G -» X be the canonical

projection and 0 » F 3 E* > Q » 0 the tautological exact

sequence on G (where we write E* instead of w*E* for short).

Since the composition *

3 :Fr3Ex8E D pe

is again antisymmetric it induces a cosection A2P - 0G and

we define a subvariety W « G by putting Ow = Coker (A2F - OG).
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We have m(W) = Y (Lemma 3.1) and hence a commutative

2p
diagram
W = G
1 L
sz — X

We study syzygies of 0 over OX by analyzing a spectral

Y
sequence of hypercohomoiggy associated with m and the
Koszul complex of Ow over OG’ W being locally a complete
intersection in G.

Although m does not induce a birational isomorphism
of W and Y (as in [Kempf] and [Lascoux]) we obtain complete
knowledge of the higher syzygies in the antisymmetric case
(Theorem 3.14) by using an explicit w,-acyclic resolution
of the Koszul complex of OW over OG’

In the symmetric case we also apply variant of this
method to get the final result (Theorem 3.19).

The main results of section 3 were announced without
proofs in [Lascoux] and [J6zefiak-Pragaczl.

It seems to be rather difficult to define differentials
explicitly and to prove the exactness of the complex with
the above mentioned description in terms of the Schur mod-
ules. However some examples of another approach are already
known for determinantal varieties of low codimension
(see [Jbzefiak], [J6zefiak-Pragacz]). One uses both E and
E* to describe components and this makes it easier to define
differentials by means of o.

These examples lead to a discovery of a very fruitful
characterization of symmetric and antisymmetric maps which

we exploit in the remaining sections of the paper.
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With an arbitrary map ¢ : E* -» E treated as a complex
and given a partition I, one can associate a complex SIw
(the so-called Schur complex of ¢) in a similar manner as
for modules (see [Nielsen], [Akin-Buchsbaum-Weyman]). In
particular 8(1,1)w = Azw is a complex SZE* - E* ® E > A2E
and S, is a complex A%E* 5 EX @ E - S,E, where morphisms
are induced by ¢@. A map ¢ : E* - E is antisymmetric if and

only if the map

ATE - 0
T T
E* @ E = OX
T 1
82}3* - 0

is a map of complexes where the only non-zero horizontal
map is the evaluation map. Therefore an antisymmetric ¢
(i.e. a map AZE* -+ 0y) induces a map of complexes

Azw - OX [1]. Taking this as a starting point, in section 4
we study an analogue of the Brauer-Weyl algebra of the
symplectic group for complexes, and those complexes which
correspond to the irreducible representations of the
symplectic group.

Similar results also hold for a symmetric map ¢ (which
induces a map of complexes Szw - OX [1]1); these find their
source in the analogy with the orthogonal group.

In section 5 we use ideas and results from section U

to construct explicit minimal free resolutions of 0Y over

r
Ox (including differentials) for r+1 = n-1, n-2 in the sym-
metric case and for r+2 = n-1, n-2, n-3 in the antisymmetric
case.

Some of the above results are contained in the doctoral
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dissertation, [Pragaczl], of the second named author.

We would like to thank A. Lascoux and M. Miller for
a very careful reading of the manuscript and for their
valuable comments. Thanks are also due to J.-E. Roos for

arranging for the typing of this manuscript.

2. PRELIMINARIES
Partitions

By a partition I we mean a weakly decreasing sequence
of non-negative integers (i1,i2, e ey im). The non-zero
numbers ik are called the parts of I. We think of I as a
sequence of squares of lengths i1,i2,... and express it

pictorially in the plane by its diagram. For example,

(2.1)

is the diagram of the partition (4,3,1).
If im # 0 then m is called the length of I, m = 1g I,

m
and |I] = k§1 i, its weight. The length of the diagonal
of I is called the rank of I. For example, the diagonal of
the partition (4,3,1) is shaded in (2.1) and is of length 2.

Sometimes we use a notation for I which indicates the

number of times each integer occurs as a part:
n n n
I:(‘l 122, ... kX, )

means that exactly n, of the parts of I are equal to k.

To each square of a partition one can associate its
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arm which is a set of all squares in the same row lying

to the right of the given square, and its neck which is

formed by all squares lying in the same column above the
given square.

Still another notation for a partition I is occasion-
ally useful. If a is the length of the arm of the k-th
diagonal square of I and bk is the length of its neck then
we write (after Frobenius) I = (a1,..., arlb1,..., br)
where r = rank I. For example, (4,3,1) = (3,1]2,0).

For two partitions I, J we write I o J if ik > jk
for all k. If the columns of the diagram of I are of lengths

j1,..., 3 (in a weakly decreasing order) then the partition

qQ
J is called the conjugate of I and denoted by .
For two partitions I,J such that I o J we write I/J

for a corresponding skew partition. Its diagram is obtained

as a set-theoretic difference of the diagrams of I and J.

L]

For example

is the diagram of the skew partition (4,3,1)/(2,1). The dia-
gram of I/J has rows of lengths i1-j1,i2-j2,... . The weight
|I/J] of I/J is defined as the difference |I]| - |J|. We de-
note (I/J)~ = I7/J” and call it the conjugate of I/J.

We identify a partition I with a skew partition

I/(0,0,...).
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Schur modules

Let R be a commutative Q-algebra, E an R-module and
I/J a skew partition.

We write SI/JE for the Schur module of E associated
with I/J (see [Lascoux], [Nielsen], [Towber]). We also use

the notation AI/JE = %I/J)NE' The module S E depends

I/J
functorially on E and the corresponding covariant functor
is denoted by SI/J'

We will need the following formulas involving Schur
modules in the sequel. Let E,F denote free R-modules of

finite rank.

The linearity formula

E o S.F

(2.2) SI(E e F) = o SI/J J

J

where the sum ranges over all partitions J contained in I.

Plethysm formulas

(2.3) Sm(S2E) = e SIE

summed over all partitions I of weight 2m with even parts

and 1lg I < rank E;

2 -
(2.4) Sp(A"E) = @ ALE

summed over the same set of partitions as in (2.3);

(2.5) A™(A%E) = e S{E

summed over all partitions I of weight 2m of the form

(ayse.esa, |a1+1,...,ar+1) and 1lg I < rank E;
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Am(SzE)

= e A_E

I

summed over the same set of partitions as in (2.5).

The Cauchy formula

(2.7)

Sm(E ® F) =

® S.E ® S_F

I I

summed over all partitions I of m.

The Littlewood - Richardson rule

(2.8)

SIE ® SJE = @

(I,J;L) SLE

where the multiplicities (I,J3;L) have a combinatiorial

interpretation in terms of lattice permutations,

(I,J;L) =

0 if I¢ L or Jd & L and if |I| +

A special case of (2.8)

(2.9)

summed over

Ll = |J] +

(2.10)

summed over

[T] = [J] +

(2.11)

summed over

| T] = |J] +

SPE ® SJE

all partitions L

r and L/J has at

all partitions J

r and I/J has at

S E

177y

all partitions J

r and I/J has at

We refer to [Macdonald]

of Schur functions.

Moreover

e.g.

o] = |L].

is known as the Pieri formula

= @ SLE

containing J such that

most one square in each column.

@ SJE

contained in I such that

most one square in each column.

= & S.E

J

contained in I such that
most one square in each row.
for all these formulas in terms

the Littlewood - Richardson rule
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is treated in detail in [Schitzenberger] and [Thomasl], and
a more general approach in terms of shuffles of words can

be found in [Lascoux - Schiitzenberger]

(2.12) If E is a free R-module of finite rank then SIE
is again free and its rank is equal to the number
of standard Young tableaux of shape I filled out

by elements of a fixed basis of E (see [Towberl).

Schur complexes

If C = {Ck} is a module graded by the ring of integers,

then we adopt standard convention and write C[n] for the

module C shifted by n, i.e. C[n]k = Cn+k. In particular

this applies to complexes. We often write C_k instead of

k

C* if Xk < 0. For a complex C° let c ®™

be its m-th tensor

*®m

product. The symmetric group Zm acts on C by permuting

factors (up to a sign). For a partition I of m let e(I) be
a primitive idempotent in the group algebra of Zm corre-

*®@m

sponding to I. We define SIC' to be e(IDC and call it

the Schur complex of C° associated with I. For other de-

finitions of Schur complexes, see [Nielsen] and [Akin-

Buchsbaum-Weyman]. As for modules we also write AIC' instead

of S;~CT. Tf C': ... » 0>C% o' > 0o ..., then the

components of SIC' can be described in terms of the Schur

modules of C° and C1 in the following way, [Nielsen].

(2.13) ACO » o °ecl o ... 5 & A

Ar/qC

- el sIc1

In particular
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Moreover, it follows from [Nielsen] that

(2.16) A(c® » ¢! 5 cHt - e 42(C%) e sb(c1) e A°(C?)

and the sum ranges over all triples of integers a,b,c such
that a+b+c = m, b+2c = t.

In section 3 we will need the following

o 1 n

Lemma (2.17) If C': 0 - C° > C > ... > C"'" > 0 is an exact

sequence of vector spaces, then the complex

0 » A™c® 5 A™c! 5 ... > Cc™ s o0
is exact.
Proof Using the formula A™(C* @ D7) =~ .2 Am_iC' ® AiD'
(see. [Nielsen]) one easily checks that ;;; complex of the

id .
type A™C... >0 >M>M>0> ...) is exact. Now write C

as a direct sum

-1 n-1

(c® » ... o™ =¢(c® 5> ... 5 - 0) & (0 - ... » C2

1

Once again applying the above mentioned formula we get our

claim by induction on n.
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The Bott theorem

Definition (2.18) We define a map P :Nkll¢-+{partitions} udé

where N is the set of natural numbers, k > 2, and ¢ denotes

the empty set. We put P(¢) = ¢ and for k = 2
(a,b) if a>b,

P(a,b) = {(b-1,a+1) if a < b-1 ,
¢ if a = b-1

We call P(a,b) the elementary rectification of (a,b).

..,ak) € Nk. We define a sequence

Let k > 2 and (a1,.

(51,...,sk) € Nk as follows: P(a1,a2) = (51,b2), P(bz,a3)
= (sz,ba), P(b3,au) = (s3,b4), cees P(bk-z’ak-1) = (sk_2J%?1),

P(b ) = (s If for some i P(bi,a ) = ¢ (where

K-1°2% k-125K) " 141

we put b1 = a1) we define P(a1,...,ak) = ¢. When this is not

the case we put

(01""’ck—1’sk) if P(s1,...,sk_1)= (c1,.”,ck_1)

P(a1,...,ak) = {

¢ if P(s1,...,sk_1) = ¢ .

It follows from [Lascoux] that P(a1,...,ak) (if non-empty)

is a partition. We call P(a

1,...,ak) the rectification of
(a1,...,ak).
We write m(a1,...,ak) for the minimal number of elemen-

tary rectifications needed to pass from (a ..,ak) to

15-
P(a1,...,ak) and different from the identity. For example,
P(1,3,6) = (4,3,3), m(1,3,6) = 3.

Let X be a variety defined over a field of characteris-
tic 0. For a vector bundle E of rank n over X and a fixed

number r < n consider a grassmannian Gr(E) parameterizing

subbundles of E of rank r. Let m : GP(E) - X be the canonical
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projection and 0 » R - E 5 Q -» 0 the tautological exact
sequence on Gr(E) (we write E instead of w*E) so that
rank R = r, rank Q = q, r+q = n. For a partition I of

length < r we write

I' = P(O,...,O,i1,...,ir), n(I) = m(O,...,O,i1,...,ir)
— —_—
q q

Now we are ready to recall the Bott theorem as stated in

[Lascoux].

Theorem (2.18) If Rln* are higher direct images of w, then

1) Row*(SIQ) = S;E for 1g I < q ,
R¥ =
Tx(S;Q) = 0 for k > 1 .
Moreover
o . _ Ida
R7m,(S;(p) : S;E » S;Q) = S;E - S;E
if 1g I < q.
2) 0 if k %# n(I) ,
Rkn*(SIR) =
SI'E if kx = n(I) ,

and n(I) = q * rank I.
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3. COMPONENTS OF MINIMAL FREE RESOLUTIONS

A. Antisymmetric matrices

We assume throughout this section that the coefficient
field K has characteristic zero. From the point of view of
the final description of minimal free resolutions it is not
restrictive to assume also that K is algebraically closed.

We identify the affine space X = Altn(K) of all nxn
antisymmetric matrices over K with AZV, where V is a vector
space of dimension n over K. For U = V* the symmetric al-
gebra S.(A2U) can be treated as the coordinate ring OX of X.

Let E be a trivial vector bundle over X. The canonical
section of AZE induces a generic antisymmetric morphism
¢ : E*¥ - E. If {vi} is a basis of V; {V;} the dual basis of
U and Tij = v; A v%, then T = (Tij) is the matrix of ¢ with
respect to {v?} and {Vi}. It follows from the plethysm for-
mula for Sm(AzU) (see (2.4)) that there exists only one

(up to a scalar) natural map A2mU - Sm(AzU). For instance

U A AU, b 0€§ sign 0(u0(1) A u0(2)) oo (uc(2m—1) A uo(2m))
2m

1

is such a map where the sum ranges over the symmetric group

Zom On 2m letters. We define
and call it the pfaffian map. Explicitly:

m
Pf(u, A ... Au, ) = b signo 1 (u _4y AU )
1 2 oex, /T et Jo(2k=1) " Yo

where Fm is the subgroup of ZZm (of order 2™m!) consisting

of those permutations which leave the set of sets
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{{1,23, {3,4}, ..., {2m-1,2m}} invariant. For example,

for m = 2
Pf(u1 AU, AUz A uu)
= (u

1 A u2)(u3 N uu) - (u1 A u3)(u2 A uu) + (u1 A uu)(u2 A us) .

The ideal in OX generated by the image of Pf is called

the ideal of 2m-order pfaffians of ¢ and will be denoted

by Pme(w). A more familiar description of Pme is in terms
of the matrix T mentioned above. For a subset {i1""’i2m}
of {1,...,n}, Pf(vi A eee A VE ) is usually called the

1 2m
2m-order pfaffian of T determined by rows and columns

i1,...,i of T. Therefore szm(w) is generated by all the

2m

2m-order pfaffians of T.

We write Y for the subvariety of X of all matrices

2m

of rank at most 2m; by [De Concini-Procesil 0Y2m=:OX/Pf2m+2

Main geometric construction

For a fixed natural number p such that 2p+2 < n let us
consider a relative grassmannian G = Gn_p(E*) which para-
meterizes subbundles of E* of rank n-p and let m : G -» X be
the canonical projection. There is a tautological exact
sequence
1 0-F3 8

E*X 5 Q » 0

of vector bundles over G. Consider the following antisym-
metric morphism:

*
11 ?iEn—)F*

® : F E*

We define a subvariety W of G as the subvariety of zeros of

the associated cosection A2F - OG, i.e. Ow = Coker(AzF - OG).

124
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A point g of G is a pair (x,Fx) where x € X and FX is

a subspace of E; of dimension n-p. Observe that ¢ induces

an alternating form on each fibre E¥. Therefore g = (x,F )
is in W iff Fo is an isotropic subspace of E; with respect

to that form. Basic properties of W are contained in

Lemma 3.1 (a) m(W) < sz

(b) W is locally a complete intersection in G of codimension

n-p
( 9 ).

Proof (a) In view of the remark preceding the lemma it is
enough to prove that the existence of an isotropic subspace
Fx of E; of dimension n-p implies that rk x < 2p+2. By

assumption a matrix of @, has the form

)

in some basis of E;. By the Laplace expansion it follows

easily that every (2p+1)-order minor of such a matrix is

equal to zero.

(b) We restrict ourselves to a standard affine open
subset T of G, say, determined by the sequence (1,2,...,n-p).
A point g = (x,Fx) belongs to T if Fx is generated by rows

of a matrix of the form

1256
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Hence g is in W if and only if BT'B evaluated at g is zero,

where

1 0 y‘]’1 e e y1,p

B = . . .

0 " Yn-p,1 " Yn-p,p

<

and {yij} are affine coordinates in I'. A straightforward
calculation shows that BT'B = (cij) is an antisymmetric
matrix such that

c.. = T.. + f.. 1 <1i< 3 < n-p

where fij is a polynomial (of degree 3) depending only on
{Tkl} for 1 > n-p and {ykl}. This means that Cij are al-

gebraically independent.

Corollary 3.2 The Koszul complex associated with the co-

section AZF - OG

L° : 0 - ANA%F) - ... o A%ZA%F) - A%F o 0

is locally a free resolution of Ow over OG’ where N = (n;p).

Remark We consider the complex L ° to be graded by non-

m m

positive integers, i.e. L = A_m(AzF) form < 0, LT = 0

for m > O.
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A spectral sequence of hypercohomology associated

with m and L~

Since L  is a (locally free) resolution of 0, over
OG one of the spectral sequences of hypercohomology of =
and L° collapses so that the other spectral sequence con-

verges to Rnn*Ow :

(2) TR = REp ™ - R™ 0 .

We are going to compute the E, term of this spectral se-

quence in terms of the Schur modules SIE*.

Theorem 3.3 If ET’k = Rkﬂ*(Lm) then

0 5 if k # pt , t e Z ,
Em,k
1

® S;E* , if k = pt , t > 0,

where the summation runs over all partitions I satisfying

1) m = - |I|/2
2) there exists a partition J = (j1""’jt) s.t.
I = (t+j1,t+j2,...,t+jt,t,...,t,k1,...,ks) where
N R
2p+1
K = J7 = (k1""’ks) is the conjugate partition of J.

Remark The diagrams of the partitions I described above

o

look like:

2p+1
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Non-zero modules ET’k lie in the second quadrant, and the

first non-zero term (looking from the right) in the row pt

corresponds to a rectangular partition (t,...,t).
N

2p+t+1
A proof of the theorem will use the Bott theorem and

depends heavily on the following combinatorial lemma.

Lemma 3.4 Let I be a partition

(t+j1,...,t+jt,t,...,t,k1,...,ks)
i
for some partition J = (j1""’jt) and K = J7 = (k1,...,ks);

i.e. the diagram of I looks like

b
i
t
Jd
" L
If P(0,I) is the rectification of the sequence (0,i1,i2,...)

(see 2.18) then P(0,I) = ¢ for jt = 0. If jt + 0 then the

diagram of P(0,I) has the form:

R

i+2

where H = (j1—1,...,jt—1).
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Proof. Observe that for jt = 0 the process of rectifica-
tion of the sequence (0,i1,i2,...) leads after t-1 steps

to a sequence

t+j1—1 ,...,t+jt_1—1,t—1 staeee o

which cannot be further rectified because of the interval
(t-1,t). Therefore by definition P(0,I) = ¢.

Suppose jt # 0; in this case the rectification is poss-
ible and a simple calculation shows that the resulting

partition is equal to the one described in the lemma.

Proof of Theorem 3.3 It follows from (2.5) that L™ = A_m(AZF)

= e SIF where the sum ranges over all partitions of weight

-2m having diagrams of the form:

S~

for all possible choices of a natural number t and a parti-
tion J. To calculate Rkw*(SIF) for such I we use the Bott
theorem (2.19) applied to the grassmannian Gn_p(E*). This
means that we have to compute P(0,...,0,I). By iterated use

of Lemma 3.4 we get the required ré%ult.

Examples 3.5 We illustrate the geography of E1 for low

values of the difference n-2p. These examples will be treated

4n more detail in section 5.
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Instead of SI~E* we write I for short.

n-2p = 3
(n;n) 2p
(n,1) (n-=-1)
x < P
-2p-3 -p-2 -p-1
n-2p = 4
(n,n,n)
’x’ 1 3p
(n,n,2) (n,n-1,1) (n-1,n-1) 2
x x x + <P
(n,1,1) (n=-1,1) (n-2)
x X x .p
-3p-6 -2p-5 -2p-4 -2p-3 -p-3 -p-2 -p-1

Remark 3.6 The same argument leads to the obvious general-
ization of Theorem 3.3 for an arbitrary variety X (over a
field of characteristic 0), a vector bundle E over X, and
an antisymmetric map ¢ : E* - E, the only hypothesis being
that the counterpart of the Koszul complex in Corollary 3.2

be acyclic.

Corollary 3.7 le*Ow = 0 for i > 0.

Proof. In view of (2) it suffices to show that ET’k = 0 for

m+k > 0. As we noticed in the remark following Theorem 3.3

the first non-zero term (from the right) in the row pt cor-

respond:c to the partition (t,...,t) and its coordinates are
[N ——

2p+t+1
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k = pt, m = -t(2p+t+1)/2. Hence m+k = —(t2+t)/2 < 0 for

t > 0.

A m,-acyclic resolution of L°

We construct here an explicit m,-acyclic resolution
of L ° which leads directly to the main result of this sec-
tion.

Consider the map E* - Q appearing in (1) as a complex
with E* in degree 0 and Q in degree 1. Then by Lemma (2.17)

we have an exact sequence

0 » A2F 5 A%(E* > Q) » 0
which looks like
2 2ex *
(3) 0 » A"F » ANE*¥ » E¥ @« Q - 82Q - 0 .
Applying Lemma (2.17) once again to (3) we get an exact
sequence
(w) 0 » atca?ry - al[a%E*x - Q] - 0 .

We are going to define a w,-acyclic resolution D' of L'
to this end we take the complexes (4) as columns, i.e.

pm> - = A—m[Az(E* - Q)], m < 0. Pictorially:

D e > ATPA%(E* > Q)] > ...
*
. -m 2
L cee > A T(ATE) > ...

To define maps between columns of D' we consider the

more general situation of a complex A : A° - A1 - A2 of

OG-modules and a cosection s : A° - 0

of complexes

G’ We define a map
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a; : AtAT - At AT

.

as the composition of diagonalisation ATA™ - Al_1A. ® A

(see [Akin - Buchsbaum - Weymanl]) and the map id 121 .@ T
A A

where t is following map of complexes:

A A° s AT 5 A?

it s 1 3

OG 0G - 0 - 0
Lemma 3.8 di o di+1 =0
Proof. The map di o di+1 can be treated as the composition

of the natural injection

AP A s At A s AT e A

and the map A" & A tat 05 ® 05 = 04 tensored by the identity
on Ai-1A’. Using the Littlewood - Richardson rule (or by a
straightforward computation) we obtain that the image of
Ai_1A. under the above mentioned injection is contained in

2

Al_1A° ® A°A°. Since the composition AZA' - A" @ A 8% OG

is zero, we are done.
Applying this construction to the complex
. 20% *
A" i A“E* » E* @ Q » S,Q

and the cosection ¢ : AZE* - OG, we get a double complex D .

Corollary 3.9 The complex D is a m,—acyclic resolution of L°.
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Proof. Each column D™>° of D™ is a resolution of L™ in
view of the exactness of (3). Moreover each component of

D™*° is a direct sum of modules of the form S_E* @ 5;Q for

I
some partitions I,J. Since SJQ are m,-acyclic by the Bott
theorem (2.19) we infer that D™*° is a T,—acyclic resolu-

tion.

Corollary 3.10 The only non-zero homology of the complex

D’ = tot D" is in degree zero and equals Ow.

Proof This follows from 3.9 and the fact that L ° is a re-

solution of Ow over OG.

A resolution of OY over 0
2p

X

We define C” = m, (D) ; C™ is a double complex of

free OX—modules.

Corollary 3.11 The only non-zero homology of c* = tot Cc”

is in degree zero and is equal to Ron*Ow.

Proof We get the required result by standard arguments with

spectral sequences using 3.10 and m,-acyclicity of D™ .

From the definition of D and the Bott theorem it follows
that each component of C’ is a direct sum of tensor products

of Schur modules on E*.

Lemma 3.12 For each m the differentials of the complex cm -
are natural with respect to E*. In particular they are mor-

phisms of GL(U)-modules.
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Proof A commutative diagram of OG—modules

s g*
idi ip
B g

(see (1) for the definition of p) induces a surjective

morphism of complexes

AT™[A%(E* > E*)]
(5) {
ATPAZ(E* > Q]

Using (2.16) and (2.7), the plethysm formulas (2.3 -2.6)
and the Littlewood - Richardson rule, one can write (5) in
the form
* *
) SIE ® SJE - ...
(8) { id @ SJ(p)

...-»QSIE*QSJQ - ...

Recall (2.19) that
id

Sy(E*) = S (E*) if 1g(J) < p
TR (S5(0)) =

0 if 1g(Jd) > p

Hence by applying w, to (6) we get a surjective map of

complexes
-m,,2 id * * *
A T(AT(E* =5 E*)) I SIE ® S;E* - ...
$ i
cme” ce o ® SIE* ® SJE* - ...
lgd<p

Therefore CT?° has a natural differential as a quotient

of AT™[A%¢E*x ¥ E%)].
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Now we are going to compute Ron*Ow by using a spec-
tral sequence associated with the double complex c”
Since D™’ is a m,-acyclic resolution of L™ we have
Rkﬂ*(Lm) = H(C™>"). Therefore the first term of such a
spectral sequence is equal to that of the spectral se-
quence (2) of hypercohomology. From Theorem 3.3 it follows

that there is exactly one non-zero term on each of the

lines m+k = 0,-1,-2 as indicated on the picture below
2p+2
* *
Moprs, B ATE
Xo x N +p
\\ \\ \\
\\ \\ \\
N N N
> N N,
OX
-p-2 -p-1
Therefore
-(p+1),D _ ,2p+2., * 2p+2 .y
E2 = A E /Im(A2p+3’1E - A E*)
and E;(p+1)’P = E;i$+1)’p. Since E;(P+1)’p = 0, in

view of Corollary 3.7, we infer that:

d
g~ (P+1),p "pF1 pos0 _ 4

p+1 p+1 X

is an injection. Observe that SiE = S;U &y 0X and OX =e(0x)i
is a graded ring where (OX)i = Si(A2U). Therefore S;E is a
graded module over OX and the differentials of C° (both ver-

tical and horizontal) are maps of graded OX—modules and are
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natural with respect to U. Moreover the horizontal differ-

entials are homogeneous Ox—homomorphisms of degree 1. All

this implies that E;i$+1)’p is generated by A?P*2y over Oy
.= (p+1),p
and therefore the zero component of dP+1 'Ep+1 - 0X

is, up to a scalar, defined by the map Pf. This scalar must

be non-zero since dp+1 is injective. Hence Im dp+1 =Pf2p+2(w)
and ROW*OW = Eg’o = 0y, . This together with Corollary 3.7
2p

gives us

Proposition 3.13 Rlﬂ*Ow =0 for 1i > 0, Ron*Ow =0

sz
Therefore by [Kempf] Y is a normal, Cohen - Macaulay variety.
Now we are ready to prove the main theorem of this

section.

Theorem 3.14 The i-th component of a minimal free resolu-

tion of OY over OX is equal to
2p
*
& SIE

where the sum ranges over all partitions I satisfying 1), 2)

of Theorem 3.3 with m+k = i, m = -|I|/2, and k = p.rank (I).

Proof Recall that the i-th component F' of a minimal free
0
. . s . X
resolution is isomorphic to Tor_i(Osz,OX/(OX)+)®K OX,
where (OX)+ is the ideal in OX generated by the elements of

positive degree. Since C° is an acyclic complex of free

0,-modules with HO(C') =0 by 3.13 and 3.711 we have

X 2p

Y

il opicer
FY = HICT w0/ (0x) pay Oy -

However C° = tot C and horizontal differentials in C  are

0,-homomorphisms of degree 1. Therefore HY(C' » OX/(OX)+) is

X
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a sum of the corresponding homology of columns d™” e OXKOX)+’

which were computed in Theorem 3.3 (see Remark 3.6).

Corollary 3.15 sz is a Gorenstein variety.

Proof The last non-zero component in 3.14 is An nE*,
—_— seees

. . S————
which is of rank 1. n-2p+1

Corollary 3.16 Since Y, is a cone over a grassmannian

Gz(n), Theorem 3.14 gives all components of a minimal free

resolution of Gz(n) in this case (via the Plilicker embedding).

Now we are going to discuss differentials in a minimal

. 0 .
resolution of v over OX

2p
Lemma 3.17 Let S{E*,S E* be direct summands of F' and 1,
respectively, and I o L. If the diagrams of I and L are as

in the picture below

2p+1 2p+1

then either

177t = s , IJl = 'H|+1
or

2° t = s+1 ,|H| = |J|+t-1 and hy = 3+
for 1 < k < s, jt = 0.
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Proof It follows from I > L that s < t and hk < jk+x
where x = t-s. Therefore |[H| < |J|+sx. Since |J[+t(t+1)/2
= |H|+s(s+1)/2+1 we find that x2+x-2 < 0. We have there-
fore two possibilities x = 0, x = 1 which correspond to 1°

and 2° of the lemma.

Remark 3.18 In the case 2° T and L differ in one column

only by 2p+2 sguares.

Let di : Fi - Fi+1 be the differentials in our minimal re-
solution. These are OX morphisms which are natural with
respect to U. This together with the Littlewood - Richardson
rule implies that the restriction SIE* - SLE* of di is zero
if T $ L. If T o L then SIE* - SLE* (if non-zero) is an
OX—map of degree 1 in the case 1° of Lemma 3.17 and of de-
gree p+1 in the case 2°. Moreover in the latter case it is

described by 2p+2-pfaffians of ¢ (in view of Remark 3.18).

B. Symmetric matrices

From now on let X = SymnK be the affine space of all
symmetric n xn matrices over a field K. We can identify X
with 82V where V is a vector space of dimension n over K.

*
For U = V the symmetric algebra S_(S,U) can be treated as

2
the coordinate ring OX of X.

Let E be a trivial vector bundle on X. The canonical
section of 82E induces a generic symmetric morphism
@ : E*x - E. If {vi} is a basis of V, {vi} its dual basis
of U and Tij = v;v? € S2U, then T = (Tij) is the matrix of

@ with respect to {vi} and {vi}. The ideal I (p) generated

r+1

by all the (r+1)-order minors of T is equal to the ideal
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generated in S.(Szu) by Ar+1,r+1U‘ Observe that Ar+1,r+1U

is contained in Sr+1(82U) in view of (2.3). We write Yr

for the subvariety of X corresponding to I ().

r+1

The main result of this section is

Theorem 3.19 The i-th component of a minimal free resolu-

tion OY over OX is equal to
r

@ SIE*
m+k=1

where the sum ranges over all partitions I of the following

shape:
ZEZ::::>
r-1
7)
2t
J
2t '
and m = -|I|/2, k =(@/2)rk(I).
This means that there exists a partition J = (j1""’j2t)’
K =J7 = (k;,...,k) such that
T o2 (2643 50 e 2t4T 50528, 052,k 500 k)
AR

r-1
In particular the first component of the resolution is equal

to A

r+1,r+1E

At first we will study the ideals of odd order minors,

say, r = 2p.
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Consider a relative grassmannian G = Gn_p(E*) I x

with a tautological sequence 0 - F 3 E* 5 Q- 0 on G.

We have the following symmetric morphism
*
Jepx QL px

which induces a cosection 82F - OG' Let W be the subvariety

of zeros of this cosection, i.e.

Ow = Coker (82F - OG)

Similarly as in Lemma 3.1 we prove that m(W) < Y, and W

is locally a complete intersection in G of codimension

(n—§+1)' Therefore the Koszul complex

. 2
L : ... > A (S2F) - S, F -» OG - 0

2

is locally a free OG—resolution of Ow. Let D™ denote a

Tye—acyclic resolution of the Koszul complex L™

D —»A_m[Sz(E*—» Q] - ...
1+ T
cee o ATT(S,E) oLl

defined by exactly the same method as in part A. As in A.
the total complex D ° of D' has only one non-zero homology
HO(D") = 0. Let C” = (D7) and let C  be a total complex
of C™ .

Using the Bott theorem we are able to compute the

cohomology of columns in C' .

Theorem 3.20 The first term ET’k = Rkw*(Lm) of a spectral

sequence of hypercohomology associated with L™ and Ty Can

be described as follows:
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0 if k # pt ,
® S E* if x = pt , t >0 ,

where the sum runs over all partitions I satisfying

1) m = —-|I|/2
2) There exists a partition J = (j1”"’jt)’ such that
I = (t+j1,...,t+jt,E,...,t,k1,...,ks) where
r-1
K = J7 = (k1""’ks) is the conjugate partition of J.

Remark The diagrams of the partitions I described above

look like:

P~

To prove this theorem we use the plethysm formula

(see (2.6)) A_m(SzF) = @S F, where I runs over the set of

I
all partitions of weight -2m, rank t, and the following

BN

shape
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and we proceed exactly as in Lemma 3.4.
By analyzing the geography of E similarly as in

Corollary 3.7 we get:

Corollary 3.21 Rlﬂ*ow =0 for 1 >0

To compute ROW*OW observe that (by Theorem 3.20)
the only non-zero terms on the lines m+k = 0, m+k = -1,

m+k = -2 are OX,ArE*; A E*,A

* o *
e L N NI

E* respectively (see the picture below)

r+1,1

Ar+2,r+1,1,1

Therefore

E, = EO’° o E_P°P

©o

Using the naturality of the differentials (with respect

] =
to U) and the fact that Ar+1,r+1U doesn't appear as a summand

in ATU @ Sp+1(SZU) (by the Littlewood - Richardson rule) we

conclude that the differential dp+1 marked on the picture
d
vanishes. Therefore Ewp,p = E1p,p = Coker(A E*«J

Trx
r+1,1 ATE®)

where d1 is the first differential of the spectral sequence.
The above remark shows that:

d
E—(r+1),r _ Ker(E_(r+1)’r

r+1
B r+1 -

0y)

X
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d
1
* *
Coker (Ar+2,r+1,1E - Ar+1,r+1E ). But

-(r+1),r
r+1
-(r+1),vr _

o >> = 0 so that dr+1
-(r+1),r
r+1

where E

E is an injection. Note that

E is generated as a graded Ox—module by the 0-th

U. Since every natural map A

component A 1+

r+1,0+1 U= 54450

is up to a scalar determined by (r+1)-order minors of ¢, we

obtain Eg,o = 0, and hence:

Y

Lemma 3.22 Ron*ow = OY ® M, where M = E;P’p

r

Corollary 3.23 The only non-zero homology of c’ appears

in degree zero and is equal to OY ® M.
r

Recall that our main aim is to compute
. 0
F' = Tor_?(o

’OX/(OX)+) ®_  0_ where (OX)+ is the ideal of 0y

Y K X

r
generated by homogenous elements of positive degree. By
Theorem 3.20 and Corollary 3.23 we infer that

0

i X -
(8) F™ o Tor_{(M,0,/(0y),) = & S;U

where I runs over all partitions satisfying 1), 2) of Theorem
3.20 such that mtk=3i, m=-|I|/2, k=p rk(I). Observe that
the partitions (7) are among those specified above. Hence to
prove Theorem 3.19 it suffices to show that all the parti-
tions (7) really do appear in the decomposition of Fi and
none of the remaining summands of (8) can appear in F . To
achieve this goal we construct another free Ox-resolution

of OY (it appears already in [Lascoux]) by a method similar
to thgt used in the construction of C°.

Recall that X = 82V where V is a vector space over K

of dimension n. Let V' be a subspace of V of dimension r
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and denote by P the parabolic subgroup of GL(V) stabilizing

V' in V. We have a diagram (see [Kempf])

Z = GL(V) x* s,V' 3 s,
i
GL(V)/P
where Z is a homogenous bundle on GP(V) = GL(V)/P and Tt is

defined by r(g,v1v2) = (gv1)(gv2). It is easy to show that
1(Z) = Y (in fact t is a birational morphism). If we con-
sider a relative grassmannian GP(E) and a tautological sub-
bundle R, then Z is isomorphic to the subvariety of Gr(E)
which is locally a complete intersection defined by the
section OG () N = Coker(SzR - SZE) or equivalently by a
cosection E* - OGp(E)' Hence the Koszul complex of N* - OGr(E)
is locally a free resolution of 0Z over OGP(E)' We define

its my-acyclic resolution B™" by putting

BT = A_m(SzE* - S,R*) for m = 0 and defining horizontal

m+7, .

differentials B™* " - B in an obvious way. By similar

arguments as before with respect to C° we infer that the

total complex of AT = T*(B..) is a free Ox—resolution of OY
r

Since by the Bott theorem ROT*SIR* = S_E* if 1g I < r

I

and zero otherwise, we can write explicitly:

m,k

A = @ S E* ® SE* m<O0, k>0

L

where the sum ranges over L € L H € Hk' Here Ly de-

-m-k’
notes the set of partitions L appearing in the plethysm
formula Ai(Sz) = e S (see (2.6)) and Hi is a set of parti-
tions H with the ?ollowing properties

(a) |H| = 21

(b) The length of each part of H is even.

(c) The length of H is at most r.
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Remark The fact that the Schur functors occuring in the

resolution of OY over OX are the ones occuring in the
r
cohomology of the column A™>° can be shown in another way .

Recall that the i-th module in the minimal free resolution

of oYr over OX is just

0
Tor.X(O
i

Y X

r,OX/(OX)+)0K 0
Observe that the Tor written above is just a K-vector space.
But Torox(oY ’OX/(OX)+) can be computed as the cohomology
of the Koszui complex A'(S2E*) tensored with OY over OX'
This cohomology is annihilated by (Ox)+, sO we Zan compute
it in each homogeneous component separately. We see that

each homogeneous component is just a column of A" . It

follows immediately from the decomposition

[s_(s,u)/1 (@], = ® AU
2 r+1 t IT1=2t I
I has even rows
i15r

In view of the previous remarks the following proposi-

tion allows us to complete the proof of Theorem 3.19.

Proposition 3.24 ©Let I be a partition of weight =-2m, rank

s and with a diagram of the form

S
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for some partition J. Then SIE* appears in the cohomology

of A™ ' if and only if s is even.

Remark The proposition is valid for arbitrary r (not necess-

arily even).

Before starting with a proof of 3.24 we state the

following easy consequence of the Littlewood - Richardson rule.

Lemma 3.25 Let H,L be arbitrary partitions and let

1,h2+12,...
in AH ® AL.

P = (h1+l ). Then AP appears with multiplicity 1

In the sequel we write P for short instead of SPE.

Proof of Proposition 3.24

1) s = 2t

First we treat the case when the length of the first
column in J is equal to 2t. Consider three components of

the complex A™*" involved in the proof

Am,2tr—1 , Am,2tr , Am,2tr-+1

and write
LO = (2t+1+]1,2t+1+j2,...,2t+1+jt,]1,...,jq) € L—m—tr
k
Lo 2t
J
2t ]

and Ho = nl:..,r) € Htr'

2t
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m,2tr

We are going to prove that I occurs in A with

multiplicity 1 as a summand in the product Lo@ Ho and I

occurs with multiplicity 0 both in A™ 2= ong Am,2tr+1.

Since A™*" is a complex of Schur modules with natural
2tr

differentials this would imply that it occurs in H ™).

It follows from Lemma 3.25 that I really appears in LO ® HO

with multiplicity 1. Suppose I occurs as a summand of L @ H

H or (L,H) € L x H

-m-tr+1

where (L,H) € L

-m-tr-1 tr+1 tr-1

Observe first that the length of the arm of any diagonal

!
square of L can not be greater than the length of the arm

of the corresponding diagonal square in I, 4if I really

occurs in L @ H; therefore L < Lo’ and L € L Let us

-m-tr+1°

assume L € L Observe that to obtain I from L and H

-m-tr-1"°
(using the Littlewood - Richardson rule)
we must add a column of symbols to each

of the first 2t columns in L. Since

|H| = 2tr+2 and the length of each part

of H is even we conclude that H = (2t+2,2t,...,2t). But L
Pk A Rl
r-1
differs from Lo by two squares of which at most one lies

on the right of the 2t-th column of L. To obtain I from L
and H we must write the symbol twice on the right of
the 2t-th column of L. Hence we cannot obtain I, and we are
done.
If the length of the first column in J is less than 2t the

argument is similar. In this case:

LO = (j1+2‘t,...,jz,t_1+2tsj::-"5j’;)
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B

L 2t-1
o
J
2t-1
and H = (r,...,r).
o 2t

2t

2) Suppose now that the rank of I is odd, and I appears

as a summand in the product L ® H where L € L—m~tr’
H € Htr for some t. Observe that for each diagonal square
of I the difference between the length of its neck and arm

is r-1 while for each diagonal square of L this difference

equals -1. Let a diagram of L be of the form

BN

m+1

A moment of reflection shows that the only way to get I
from L by adding numbered squares from some partition
H € Htr in such a way that the resulting word is a lat-

tice permutation, is for H = (m+1,...,m+1). The resulting
R
r

partition is therefore of the form
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m+1

Since H € Hi the rank of the above partition is even. This
gives us a contradiction because we assumed that the rank

of I is odd.

/
Now let us treat (r+1)-order minors when r+1 is even.

By Proposition 3.24 we know that also in this case all
Schur modules SIE* corresponding to partitions (7) do
appear as summands with multiplicity 1 in the minimal re-
solution of OY over OX. We are going to show that these
are the only sﬂmmands.

Consider the affine space X' of all symmetric n+1 by
n+1 matrices over K and its coordinate ring OX' = K[Tij]
1 < i< j < n+l. Write E' for a trivial vector bundle of
rank n+1 over X' and ¢' : E'* » E' for the generic sym-
metric morphism which in some basis of E' and its dual
basis of E'* is determined by the symmetric matrix (Tij)'
By the previous considerations all components of the

minimal resolution F (¢@') of OX,/I (') over OX' are

r+2

known.
Let G° be the complex F'(@') localised at the powers

of T! . It is obvious that G° is a resolution of
n+1,n+1

0/1 (p") over (0 where " is the matrix:

r+2
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and 0 = (0,,) m, . Consider the ring homomorphism:
X'AT }
n+1,n+1

f 0 > OX’

T.. for 1 <1 < 3Jj <n

ij = - =
f(Tij) = <0 for J=n+1 , i=1,...,n
1 for i=j=n+1

Observe that f(IP+2(w")) = I (9) and length G’ = length F (")

r+1
= 1/2[n+1-(r+2)+1 ] [n+1=-(r+2)+2] = 1/2[n-(r+1)+1][n-(r+1)+2]

= depth(IP (Lp),OX) by [Kutz]. In view of Corollary 8 in

+1
[Kempf - Laksov] we see that H = G’ @OOX is a free resolu-
tion (non-minimal) of OX/IP+1(w) over OX' We are going to

use this resolution to investigate

0

X
(9) Tor_i(OX/I (w),Ox/(OX)+) ®, 0

r+1 K X

Observe that the complex H® = H’ ®) OX/(OX)+ is a complex
X
of GL(U)-modules and is equal to F'(y) @0(0X/(0X)+) where Y

is the following map of OX—modules:

Observe that SPE* appears as a summand in (9) if and
only if SPU is a summand in the i-th cohomology of H', and
recall that SPE* appears in (9) if and only if SPE* is a
summand in the cohomology of <A™ ") for m= -|p|/2,
k= -m+i.

Therefore it suffices to show that if SPU appears in
ﬁl, and is not of the form (7), then SPE* cannot appear in
AT,
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Let I be a partition such that SIE‘* occurs in Fr(e@').

Since r+2 is odd we know already that I has a diagram of

>

the form

(10)

2t

2t

By the formula (2.10) and the linearity formula (2.2)

we have

11) SI(E* ® OX) = @ SNE*

where the sum ranges over all partitions N contained in I
such that I/N has at most one square in each column.
Removing one square from each of the first 2t-columns
of I we get a partition I, of the form (7). Therefore the
following lemma completes our proof of Theorem 3.19 if r+1

is even.

Lemma 3.26 Let I be a partition with a diagram (10). Then
among the partitions N occuring in the sum (11) IO is the
only one occuring as a summand of a component of the double

complex A" .

Proof We are going to prove that if N appears in (11) and

N occurs in L @ H for L € L H € Hi then N = I .

-m-1i2 o

First observe that the largest difference between the

length of the neck and the arm of any diagonal square of a
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partition obtained as a result of tensoring two elements
from L___. and fl; is equal r-1. This follows from the de-
scription of the Littlewood - Richardson rule in terms of
lattice permutations.

On the other hand each N = IO occuring in (11) has
the property that there exists a diagonal square in N
having the difference between lengths of its neck and arm

larger than r. Hence our claim follows.

Corollary 3.27 The determinantal variety Yr is Gorenstein

if and only if n-r is odd.

Proof It follows from Theorem 3.19 that the last module

in a minimal resolution of OY over OX is equal to:
r

S n(E*) , if n-r is odd
(n-r+1)

S n-r r(E*) , 1f n-r is even
(n-r+1) (n-r)

Since this module is of rank 1 if and only if n-r is odd,

we are done.

4. SYMPLECTIC AND ORTHOGONAL SCHUR COMPLEXES

Let E be a free module over a Q-algebra R and ¢ : E¥ - E
an antisymmetric map. We will treat ¢ as a complex with the
component E* in degree -1 and E in degree 0. Let us consider

the complex ©®™ which is the m-th tensor power of ¢@. The

®m

symmetric group T, acts on ¢ by permuting factors:

-1 ® ... ® x _,

o(x, ® ... ® x ) = (-1F x
1 m s (1) o T (m)
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where o € Zm, x5 belongs to E or E*, and r = z deg)%_deg xj.

i<j
og(i)>o(3)

It is easy to show that o defined in this way is a map of

complexes and that these operators give a left action of

®m
Zm on @ .
We now define another family of operators on wOm. Let
us consider the map of complexes
tr : R[1] » 0o & ¢ ,
i = . * * . . i
defined by tr(1) § e; ® e¥ + E e¥ ® e, where {el} is a

basis of E and {e;} is the dual basis. We also have the

dual map
ev : @ ® @ » R[1]

defined by ev(x ® y*) = y*(x), ev(y*e x) = -y*(x) for
y* € E*¥, x € E. We write in general ev(x ® y) = (x, y).

We define now the basic operator
T 90> 0

as the composition T = tr - ev.

For m bigger than 2 we define the operator T4o

®m ®m

Tip 7@ =0

as 1 ® w@m—Z. For arbitrary i,j, 1 < i <m, 1 < j < m,

i % j, we define Tij as 01, ,0

o(1) = i, o(2) = j. One checks immediately that such a

for o € Zm such that

definition does not depend on the choice of o. In this

situation we have:

Proposition 4.1 The operators o, Tij satisfy the follow-

ing relations:

a) T.. = 0
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b) Tig T TTyi o0
el 9Ti5 T To(ide ()Y
d) (i, j)Tij = 155 where (i, j) 'stands for the trans-

position of i and j ,

e) TijTik = (3, k)'rik = Tij(j, k) for different i, j, k ,
) Tikal Tleij for different i, j, k, 1 ,
i, oo i3, .0 ]
g) ( 1 8_1 . S) T 5 e Ti 3 = signa T 3 e Ty 3
11 08901 Jas 171 s-s 1-1 S}
for different i1""’is’j1""js'

Proof We prove here only part a) of the proposition because
this is the relation which does not hold in the case of the
usual Brauer - Weyl algebras, and all the other identities
can be proved by direct calculation. In order to prover?.= 0

1]

it suffices to show it for T,,> SO We can assume that we

2

deal with ¢®° and we want to prove that the composition

2 T ®2 T
©®2 5 ¢®2 I ,®?

is zero. Since T is zero in all degrees different than -1,
it suffices to consider this composition on E ® E*. For

X € E, y*¥ € E*¥ we have:
2(x @ y*¥) = y*(x)t[= e; ® e¥ + T et o ei]
i

= y*(x)[? e¥(e;) - ? e¥(e;)]tr(1) = 0

Definition 4.2 We define the algebra Am to be the algebra

generated over R by the operators o, Tij.
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Now we compute Am as an R-module.

Proposition 4.3 Am is a finite dimensional free R-module.

All the elements

1) OT: = T. = cee Ta s

t1dq 122 tsds
where i1""is’ j1""js are different, ik < jk and
O(lk) < 0(jk) for arbitrary k, i, < i, < ... < i_,
0(i1) < O(i2) < ... < c(is), and s = 0,1,...[m/2], form

a basis of Am over R. Am is a quotient of a free R-algebra

generated by the symbols corresponding to 05T, by the

30
ideal determined by the relations a) - g).

Proof First we prove that the elements (1) generate Am

as an R-module. Using the relations a) - f) we see im-
mediately that the elements of form (1) generate Am as an
R-module, where i1,...is, j1""js are different,

i1 < L.l < is’ ik < jk for all k and s = 0,1,...[m/2]. Now

the relations c¢), d) and g) imply that for o', o" € r

' «« T. . Wwhenever o" = o'+0,

1
SJS

Ty oo e Tyos = iG"Ti ..

134 sJs 131

where o belongs to the subgroup of Zm generated by the
ije...1

3 cee]
elements(i is .1 .
al1” " "tasda1 " Jas

S

) and the transpositions (i ).

kjk
This gives us the additional condition on o in the for-
mulation of the proposition.

Next we show that the elements. (1) are linearly in-
dependent over R. We assume that dim E > m and we are
going to show that the elements (1) treated as endomor-

phisms of ¢®™ are R-independent.

We notice that an element cri 3 cee Ty o sends all
1-1 s s
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the components of wgm

of degree <s to 0. Hence it suffices
to show that the elements (1) with fixed s act indepen-

dently on m:. Let us consider the following element in w::

x=f ® ... ® f. e*¥® ...%e, ® ...3e*¥3 ...3e_® ... f
1 11-1 i1 | ;S .S m
1 J1 s Js
where f1""fi1""fi ,...,fm, €y5.-.e  are different basis
s
elements in E. We see that an element oT ce.T of
a1b1 asbs
form (1) sends x to 0 unless (ak,bk) = (1k,jk) for all k.
The action of oT., . ...T. . on x gives
143 1.3
11 s-s
OT: = «+.T. - (X) = # px £ @ ..
1434 1s3s Bisen-aBg O (1)
s
e ® tr; ® ... @ trg ® ... ® f _1
k k o (m)
O(lk) O(jk)

where I tr; ® tri stands for the image of 1 under the map tr
h

mentioned above. Therefore we see that the groups of elements
corresponding to different i1""js act in such a way that
to prove their independence it is enough to show the inde-

pendence of the elements ot. . ...T. . (x) of form (1) with
1434 1.7

i s’s

fixed i1""js'

In order to do this we can, without loss of generality,

forget about factors involving f's; i.e. we can assume that

m = 2s, and we want to prove the independence of the elements
= * o o o . o .
oty IURERRF (x) of form (1) for x=... @ ex ® ® e @ R
1-1 s s ip ]k

with s, ik, jk’ being fixed.

Let a; be oty 3.t Ti i (x) for o satisfying condition
1-1 s-s
(1). Let us consider a vector ... @ ei @ ... ® e @ ... in
ax by
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w@Zs for a fixed set a1,...bS of distinct numbers from

[1, 2s] such that a, < a < a a, < bk for all k.

1 2 """ s’ Tk
Look at the coefficient of ag with respect to this basis
element. We know that in each summand of a, we have the
same number of the basis vectors in the places ik and jk
and that over exactly one of them there is a star. So it
is clear, recalling condition (1) for o, that our coeffi-
cient equals 0 unless ik = ap and jk = bk for all k, and

that in this case our coefficient equals *1. Hence the

independence of the elements (1) is proved.

Remark 4.4 We can push the permutations to the right of

the T's to obtain a basis consisting of the elements

(2) T, - vee T: - O

. . . . . . -1,. -1
for distinct ig5..03g5 1y < .. < i, © (11) < ... < 0O

. . -1,. -1,.
and i < 3> o0 (1k) < 0o (jk) for all k.

Remark 4.5 The algebra Am is very similar to the Brauer -
Weyl algebra defined in [De Concini - Procesil]. The only

difference is that the relation a) here is replaced by

Tij = nTij’ n being the dimension of the module in question.

This difference turns out to be significant because our al-

gebra is not semisimple.

Definition 4.6 We define an ideal Js in Am, s > 0, to be

the two-sided ideal generated by all elements T oooeeTs o
134 tgd
for distinct indices i1""js' Moreover we put J_ = A .

]

Definition 4.7 Let

_ em ®m
Wy = de /T 341@ for d > 0 .
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An R[Xm]—module structure on Wow comes from the embedding

R[Xm] = Am' We define the symplectic Schur complex A.¢ to

be

Homz (SI, Wow)
m
where SI denotes here the Specht module corresponding to I

(see e.g. [Nielsen] for a definition of the Specht module).

It follows directly from the definition that Wom de-

composes as an R[Z_]-module:

wow = b SI ® AIw
IT1=m
Remark 4.8 AIm can be treated in a convenient way as a co-
kernel. We have an exact sequence of Zm—modules
p @, . . - © > W ¢ - 0
(i, 3 ( ) o
where the module on the left is the module induced from
®(m=-2)

22 X -module 82 ® ¢

m=2 over I . Applying Homy (SI,—)

m
to this sequence we get the exact sequence

nr
SI/,Z&D[']] - SILp - AILp - 0 .

The formula (2.10) is also valid for Schur complexes,

[Nielsen], hence S @ = £ S_.@ where we sum over all J
I/2 J J

contained in I such that I/J has two squares and I/J has

at most one square in each column. The map nIlsJ is the

composition SJw[1] 1qfr SJw ® Szw - SIw, where the second

map comes from the Pieri formula (2.9) which is also valid

for Schur complexes.
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Examples 4.9

a) If I = (1™) then the corresponding J's do not exist
and we get A n.@ = Amw.

(1)
b) If I = (m) then there is just one corresponding

J = m-2 and we have the exact sequence
Sp-o@l1] » S @ » A 0 > 0
Its i-th component, i > 0, looks like

Mi-1

ATTE* 6 S E 5 AE* e S _E~ (A®; >0

m-i-1

The map n;_, is given by the trace. By duality AE = AP IE=

so we conclude using the Pieri formula that

(Amw)i = 8 E

(m+1-1,1™"177)

c) If T = (2,2) then we get the exact sequence
So@[11 =+ Sy 20 = Ay 20 = 0

The components of this sequence look like

*
S2,2E
2 {
* *
ATE - S2,1E @ E
$ 4 2
SzE* @ A°E
Ef¢ E - &
20
. A“E* @ SZE
{
*
82E - E* @ 82,1E
1
SZ,ZE

and the horizontal maps come from the trace map. If dim E=n,
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then in terms of E the components of A 2@ are:
bl

2

S

n-2 1n—3E > n-2

3,2 )1 34,2

One could make the degrees of the representations the same
in each component by multiplying each representation by a
suitable power of the determinant. Then the map in the
complex A2’2¢ would have degree 2 with respect to E. Observe
that the kernel of the map Szw[1] - Sz’zw is just a copy of

R so we get an exact sequence:

0 - R[2] - S2w[1] - S ® > A @ » 0

2,2 2,2

Definition 4.10 We define the dual complexesto=Sfpﬂ n mﬂ’Tij.
i,]

It is obvious that (BI¢)* = A _¢@ because we have
T
* =
(SIw) SINw.
Now we intend to show how the Schur complexes can be
filtered in such a way that the associated graded object
consists of the AI's (BI'S). Unfortunately this can be done

only under the additional assumption that n = dim E > m = |I|.

We define a complex of complexes:

K, (m): ... ] T ?imgzi) (i3 - S ) ?gmgg) - %"
(i1j1) 117" " *7s~s (i 3)
(1838)
where we label wa(m-?s) by the indices (i,j,)...(i 3 ) with
all numbers different, satisfying i1 < i2 < L.l < iS and
ik < jk for all k. A map 8§ on the corresponding summand is
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equal to

®(m-2s) - we(m723+2) ~
s (1131)...(1835) (1131)...(1tjt)...(lsjs)
which is defined to be the trace on the indicated copies
of ¢@. On the other summands the map § is defined to be
zero. It is easy to check that tr, . oetr; . o=-te; o ety s
t-t uwlu ulu It
so that we have really a complex.

Lemma 4.11 The complex K _(m) is acyclic with HO(K.(m)) =W 0

provided dim E = n > m.

Proof We will show that the complex K (m) is acyclic even
over the ring 2(2) the localisation of Z with respect to
the ideal (2). We proceed by induction on m. We have an

exact sequence of complexes

a B M -1
(3) 0 »¢9® K (m=1) > K (m) > £ K (m-2) >0
j=2
®(m-2s)

where a is an injection onto all such that

O, . ..
£l1j1)...(lsjs)
1 € {i1"”js}' The j-th copy of K.1(m-2) corresponds to all
w@(m—2s—2)
1 ])(1131)...(1838)
long homology sequence we obtain

and B is just the projection. From the

m
0 -+ H (K, (m) » I W (m-2)Y%oe W (m=1) W (m) >0
. j:2 o) [o] o

where Wo(j) stands for wow determined by ©®J. It suffices
to show that the map y is injective. However we can dualize
the complexes, and taking the cohomology groups we obtain
the sequence

0 -~ Vo(m) - P @ Vo(m-1) -

V_(m-2)
j o

uMs

2
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where

V(m) = N Ker T.. .
° i,3 +

We must show that the last map is surjective. The map from

m m

@o® V (m-1) to £ V (m-2) is in fact given by I T,. .
© j=2 ° j=2 13

prove the surjectivity of this map it is enough to do it

To

over'E(2)/ZZ(2) = Z2/2Z. Vo(m—1), Vo(m—2) commute with this
change of rings because they are free 2%2)—modules by in-
duction hypothesis. However in characteristic 2 a permu-

tation ¢ acts on ¢®7 just by c(x1 ® ... ® xm) = X ® ..

o Ty

.. X 5 hence it acts as a usual permutation on the

-1
moduge émz E ® E*¥ with the antisymmetric form {(,) described
above. Therefore we can use the characteristic - free re-

sults from [De Concini - Strickland]. Step 1 of their proof
of Theorem 2.1 (p. 122), which is independent of the theory

of symplectic standard tableaux, shows the surjectivity of

our map. At this point we use that n > m.

Corollary 4.12 TFor m < n = dim E we have

de - 5 . . L. w@(m—Qd)/J1w®(m—2d)

(1131)""’(ld3d)
Proof The only thing to prove is that the sum is direct.
Using the sequence (3) we compare the dimensions of o®™

and the sum of the dimensions of W. obtained from the right

d

side of the formula. The desired equality 1is

oo

1
em™ = = =~ dim W, (m-21) =
izo (m-2i)!2%i!
o o 1] - - .- . - . 1
S - m! . (-1 (2my™ 2i-2j (m-23i)!
izo j=o (m-2i)!2%i! (m-2i-23) 1235
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We treat both sides as the polynomials in 2n. To compute

the coefficient of (2n)m_28 on the right we note that for
s = 0 it is 1 and for s > 0 it is
5 (_1)j m! (m-2i)! -
L e 1ol N
i+j=s (m-2i)!127i! (m-2i-23)!12°3!
A 3 \
:m—S b (—1)31—87-:—'-.
(m-25)!2%s! i+j=s *de
Since
_1yJdan :
>3 (—lﬂ-,ﬂ)—,i:z(—nJ ($) =0
i+j=s *rI° j J

our coefficient is zero and the corollary is proved.
Now we want to analyse the structure of wd as an
Zm-module. For this purpose we introduce the following

definition.

Definition 4.13 Let I be a partition of m-2s. We define

the Am-module A; to be equal to

s T g e(I)/Js

S s

I A e
1e( ) n mTp1q1 Tpsqse(I)

A T
m p1q1 +

where e(I) is the Young idempotent in R[Zm—ZS] associated

to I and Zm acts on the numbers complementary to PyseeesQge

-2s

From Corollary 4.12 it follows immediately

Proposition 4.14 If R is Q-algebra and m < n = dim E then

W.p = z A

® A.p
d |Jl=m-2d4 Y J

as a complex of Am—modules.
We want to compute the decomposition (up to filtration)

of the complexes Slw into AJw. To do this we need
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Proposition 4.15 Let J be a partition of m-2s. Treating

Ay as an ¥ -module via the canonical embedding R[Zm] = A

we have the following decomposition of Zm—modules:

AJ = % (I,J;L) SL

where (I,J;L) is the coefficient occuring in the Little-
wood - Richardson rule (2.8) and the sum ranges over all
partitions I of weight 2s of the form GH+1,.“,afH]a1,.“,ar)

(compare (2.6)).

Proof Let us look at the Zm-module AJ. It is induced from

the representation P e SJ of the subgroup = x X

2s m-2s

(2s places correspond to the 1's, the others to the parti-

tion J). Here P is a representation with generators

{Ti1j1'"Tisjsl{l1""]s} = {1,...2s8}} satisfying the re-
lations (l,])Tij = Tij, (l,k)(j,l)Tikal TTi5Tka and
Tikal = Tleij. One could construct P by taking a 2s-dimen-

sional free R-module F, and considering the elements in
AS(SZF) of weight (1,1,...1) with respect to the maximal

torus in GL(F) with the obvious action of T on it. The

2s

plethysm formulas (2.6) show that P = X SI where I ranges
I

over all partitions of weight 2s of the form (a1+1,..

..ar+1|a1,...ar). Now the proposition follows from the

Littlewood - Richardsen rule.

We know (compare [Nielsenl) that

0] = 2_ SI ® SIw as a Zm—module .
ITl=m

Let us define the complexes S?m by the formula

- d
wdm = Z_ SI ® SIw
ITl=m
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It is clear that there is a filtration on SIw with the

associated graded object equal to X Sgw. In this situ-
d>o
ation we get
Theorem 4.16 For m < n = dim E
|Jl=m-24 I
where the inner summation runs over all I = (a1+1,..

..ar+1|a1,...ar) of weight 2d.

Proof The conclusion of the theorem follows directly from

Propositions 4.14 and 4.15.

The main application of the theorem just proved is

the following

Theorem 4.17 Let ¢ : E¥* > E, ¢y : F*¥ » F be two anti-

symmetric maps, I a partition of m and m < n = dim E. Then
A_(p + P) = T A.p ® S Y
I JeI J I/J

up to filtration.

Proof By Remark 4.8 and the linearity formula for skew

partitions we have the following diagram
%/%m+wﬂ1]»Sﬂw+w)»Aﬂ¢+w)*0
I

z Sgs2 ® Spygvltl - z Sg@ @ Sy, g¥

Moreover, the map tr ¢ acts from SJ/2¢ ® SI/Jw to SJw ® SI/Jw
and the map tr ¢ increases the number of squares in the par-

titions belonging to ¢ by two.
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Let us order the partitions J « I by saying that

J, < J, if and only if |J,| > |J,| or |J |J,| and J

1 2 2| 1l = 19,1 1
is earlier than J2 lexicographically. Let us define the
filtration {FJ} on AI(¢-+w) by letting FJ be the image of

bX SLw ® SI/Lw' We claim that F,/ £ F, is a factor of

L<J I e b

A3¢ ® SI/Jw‘ Indeed, let us consider the relation coming
from SJ/2¢ ® SI/Jw' It goes by tr ¢ to SJw ® SI/Jw and by
tr Y to the earlier piece of filtration. Therefore
Remark 4.8 shows our claim.

To prove the equality it suffices now to compare the
dimensions on both sides of the formula. Observe that the

following equalities hold up to filtration

§ SJ<,0 ® SI/Jq; = SI(cp+w) = JZL (L,J;I) AI(cp+¢v)

where the second sum ranges over all L =(a1+1v..afﬂ|a1,”.ar)
of weight 2d. By induction we know the decompositions of
AJ(w-+w) for J F I. Using them we obtain the desired
equality of dimensions.

A serious restriction of the theorems just proved is
the assumption m < n. Without this assumption the theorems
are not true (see the example below) but there should exist
a decomposition which differs from the given one only by a

few exceptional terms. The key step in the proof is the

understanding of the homology of K_(m) in the general case.

Example 4.18 The decompositions mentioned above show that
Smw = Amw + Am_zw up to filtration. If they were true in

general the following sequence would have to be exact

tr tr

cee > S, 0 > Srw - Sr+2w > ...
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If n = dim E the n-th component of this complex
looks like

n+1

0 » APE* 5 A E* ® E » ...

Since An+1

E* = 0 we get the homology A"E*. It is easy to
show that in this case it is the only homology of the
whole complex, so there is only one deviation from the
decomposition established above.

We continue now with some remarks on the category
of Am—modules. Recall, (4.13), that we defined the family
of A _-modules A; for |I] = m-2s.

The modules AI are not irreducible. We will show

however that the irreducibles are in 1-1 correspondence

with the partitions I of m-2s, s = 0,1,...[m/2].

Proposition 4.19 Let us assume that R is a field and

Cr = {x € A;|J_x = 0}. Then the modules A;/C |I] = m-2s,

I,

s = 0,1,...[m/2], form a complete set of irreducible Am—

modules.

Proof First we show that AI/CI are irreducible. Let

0 # x € AI/CI; we will prove that x generates AI/CI' We

have Jsx + 0 because otherwise we get sz = 0 in AI and

since Jg = JS we would have x € CI’ which is a contradic-

tion. We infer that there exist T 3 seeenTy 3 such that

171 s-s

Y = T:. - +..T. - X determines a non-zero element in A_./C..
1434 sds I

By Proposition 4.1 d) and e) we see that y is an element

of the form T, . ...T., . z with z € R[=_]. It is easy to

1934 tsds m
see that the vectors of this form in AI form in fact the
Specht module S

over R[x ] the other permutations

I

acting on the left change the indices i1""js' Now acting

m—-2s
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on the left by Zm we can generate all of SI’ This proves

-2s

that the element T. *....T. .
1 tsds

generated by y (and hence x) showing that x generates all

e(I) belongs to the submodule

of AI/CI°

To prove that AI/CI form a complete set of the ir-
reducible Am—modules we have to show that Am has a compo-
sition series with factors AI/CI' We show by induction
that JS/JS+1 has such a series. For s = 0 we get simply
the known result for the symmetric group. Let us assume
that we have the result for the numbers smaller than s.
We know that JS/J = bX t - A_ where to is the multi-

s*1 |Ij=zm-2s T 1

plicity of S, in the composition series of R[Z Now

I m—ZS]'
it suffices to decompose Cq in terms of AJ/CJ. But we know
that CI'S are in fact Am/JS—modules, so we get our claim
by the induction hypothesis.

The last thing to prove is that all the AI/CI are
different. We note that if |I| = m-2s, J_(A[/C{) = A[/C;
and Js+1(AI/CI) = 0 so we can distinguish all the levels s.

For a fixed s we see that the modules AI/CI are not iso-

morphic when restricted to Zm This completes the proof

-2s°
of the proposition.

Now we proceed to outline the analogous theory for
the symmetric map ¢ : E* -» E. The symmetry of ¢ allows

us to define two maps:

tr' ¢ R[11 » 0’0 » 0 & ©
defined by
_ * *
tr'(1) = z e; ® e; pX et @ e;
i L

and the dual map
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ev' : 82w - R[1].

. ev'! _ tr'
Now we can consider the operator T : ¢ @ ¢ - R > ¢ & @

and we define the algebra Aé to be generated by the per-

mutations o € Zm and the traces T acting on ©®™. The

J
analogue of 4.1 and 4.3 is

Proposition 4.20 The algebra A'm is a quotient of a free

R-algebra generated by the symbols corresponding to o, Tij,

by the ideal determined by the following relations:

a') Tij =0 ,

b") Tig © "Tyi 0

c') OTij = To(i)c(j)o )

da') (i,j)'tij = TTi5 0

e') Ti3Tik = Tij(j,k) = (j,k)Tik for different i,j,k ,

£') T53Tk1 © Tk1Tij for different i,j,k,1 ,
' 19seedigndqse-dg 3

g') ( ) Ti1j1 ..Tlst=51gn(1Ti1 1-'.Tisjs

SRR S, PP P

Aé is a free R-module of finite rank. All the elements

1934 1sds
where i1”"’is’j1""’js are different, ik < jk and
c(ik) < c(jk) for all k,i1 < ... < is’ o(i1) < ... < c(is),
and s = 0,1,...,[m/2)], form a basis of Aé over R.

The only difference with 4.1 is the relation d4d').
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One can define the ideals Jé in A% as the two-sided

ideals generated by all elements T. . ...T. . (i.,,...3
1134 1gds 1

s
different). Now we define the complexes
Al = Hom (s

I z I°
m

1
wle)
where

v _ ®m,;, @M
Wow = @ /J1 [0) .

We also define the dual complexes (Biw)* = A'INw. Here
are the main results on these complexes.

Aiw can be treated as a cokernel

S ©[1] » S.o » Alp » 0
1/¢(1%) I T

One gets the analogues of Theorems 4.16 and 4.17. Let

1 - 1 @M ' @M [ _ .
wdw = de /J a+1® - Let us decompose wdw as a Zm module:

1 - Vd
wdm = Z_ SI ® SI (0]
ITl=m

Theorem 4.21 For dim E n > m we have

spde = T I (I,J3K) Ale
1Jl=m-24 I
where the sum ranges over all I = (a1,...ar|a1+1,...ar+1)

of weight 2d.

Theorem 4.22 Let ¢ : E* > E, ¢ : F*¥ » F be two symmetric

maps, I a partition of m and m < n = dim E. Then

1 - 1
AI(w-rw) = JZ AJw ® SI/Jw
c

I

up to filtration.

The only difference between 4.21 and 4.16 is that in

4.21 we sum over all (a1,...,ar|a1+1,...,ar+1) while in
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4.16 we summed over all (a1+1,...,ar+1|a1,...,ar).
This is a consequence of the different relation d')

which changes the module P mentioned in the proof of 4.15.

5. EXPLICIT DESCRIPTION OF MINIMAL FREE RESOLUTIONS

IN LOW CODIMENSION

In this section we give an explicit construction of
minimal free resolutions of determinantal ideals of low
codimension associated with antisymmetric and symmetric
matrices. We present a uniform approach to this problem,
reproving in a simple way already known cases. This
method suggests a general construction (for all deter-
minantal ideals). However technical difficulties have
been until now the main obstacle to giving precise proofs.

In this approach one uses both E and E* to describe
components and this makes it easier to define differen-
tials. Of course, these components are isomorphic to the
ones described in section 3.

Our main tools in proving the exactness of the com-
pPlexes in question are two lemmas. We keep notation in-
troduced in the previous sections with one exception. We
write R instead of OX to denote S_(A2U) or S.(SzU) where
U is a vector space over K of dimension n. In particular
E=1U ®y R and ¢ : E* » E is a generic antisymmetric

(symmetric) map. The field K is always assumed to be of

characteristic zero.
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Lemma 5.1 Consider X = A2U* as a representation of

G = GL(U*). Let R = S.(A2U) be the coordinate ring of X
and F_ : ... > F2 - F1 - FO a free G-complex over R with
HO(F.) = R/Pf2p+2(w). If the length of F_ is (n-2p-1)(n-2p)/2
then F, is acyclic if and only if F-w = F, o Rw is.acyclic

for w = W

*
is a basis of U ).

AW, + ol W AW € X (where Woyse e W

2p+1 2p+2

Proof One can assume that K is algebraically closed, i.e.
the set of maximal ideals Max(X) of R is in 1-1 correspon-
dence with the closed points of X. It suffices to prove
that Z = Max(X) N Supp F, is empty. Observe that Supp F,

is G-invariant and closed, and X is a finite union of orbits
so that Z (if non-empty) must be a closure of an orbit.
Indeed, if closed points of X are considered as antisym-
metric n xn matrices all orbits are determined by a rank
condition and the closure of an orbit of matrices of rank r
consists of all matrices of rank < r . Suppose that Z is
non-empty. It follows from the acyclicity lemma [Peskine-
Szpirol]l that there exists a prime P € Supp F, such that
depth P < length F, . Since length F, = (n-2p-1)(n-2p)/2 =

= depth Pf (¢) by hypothesis and by [Jdzefiak-Pragaczl,

2p+2
we infer that there exists z € Z corresponding to a matrix
of rank > 2p+2. However in the closure of the orbit of
that matrix there lies a matrix corresponding to w 2w, AW+
+ ...+ W

AW and w € Z by hypothesis, so that we

2p+1 2p+2

get the required contradiction.

Using similar arguments we also obtain
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Lemma 5.2 Consider X = SzU* as a representation of
G = GL(U*). Let R = S.(SZU) be the coordinate ring of X

and F, : ... - F2 - P1 - FO a free G-complex over R with

H (F ) = R/I (). If the length of F_, is (n-r)(n-r+1)/2

r+1

then F_ is acyclic if and only if F__ is acyclic for

w

W:W$+...+W2

1 € X (w1,...,w

n being a basis of U¥*).

First we treat the case of an antisymmetric map
¢ : E* » E determined by a generic antisymmetric matrix

T

(Tij). It will be convenient to write Pf(i,j,k,...)

for the pfaffian of the matrix obtained from T by omitting

rows and columns with indices i,j,ks... . If e ,,...,e_ 1is
1 n
a basis of E and we denote by e(i,j,k,...) the element
e; A ej Al A L. in the exterior algebra of E then the
equality
e(i,j,kyeea) A e(1,2,...,1,...,3,...,k,...,n) =
= v(i,j,ky.e.) e, A .- A el
defines v(i,j,k,...) which takes values *1. Observe that

v is an alternating function of its arguments so that
Pf'(i,j,ky-0.) = v(i,j,k,...) Pf(i,jsk,...) defines a map
from a suitable exterior power of E into R. These func-
tions appear frequently in considerations with pfaffians.
We quote for example the following Laplace type expansion

for future reference

0 for s # i
1) T PE'(i,3) Tsj =
J Pf(T) for s = 1i .
where T = (Tij) is an alternating matrix of even order.
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Theorem 5.3 [Buchsbaum-Eisenbud] If 2p+2 = n-1 then

o*

(2) RE e*% g 8

R

is a minimal free resolution of R/Pf2p+2(w) where

a(ei) = Pf'(i).

Proof From (1) it follows that X Pf'(J) Tsj = 0 so that
(2) is a complex. To check the exactness we use Lemma 5.1.
0o 1 0 1
For ® = (0) o ( ) & ... ® ( )
-1 0 -1 0

Ker a = {ez,...,en} = Im ¢ 3 by duality Im a* = Ker ¢

Now suppose that 2p+2 = n-2 . We are going to construct

a double complex with 4 rows W(O), W(1), W(2), W(S)

W3
$
w(2) N w(2) S w2
3 d2 d’l
(3) 24 13
w§1) o w§1) N w(’I)
o
1
w(o)
o
by putting w(°) = R, w(1) = 3(1 1)@, w(2) - A2¢[1]’ w(3)=
b
= R[3]. Recall (see section 4) that Biq 4y = Ker(Aapgy R[1DD
2
*
and A2w = Coker(R[1]tE Szw). Observe that w(1) = w(Z). The
map w(1) - w(°) is determined by A2E - R which sends e Aej
to Pf'(i,j). From (1) it follows that the above map defines
the map of complexes w(1) - W(o). By dualizing we get a map
of complexes W(S) - w(2). To describe a map w(2) - w(1) re-

call that Szw is a sub-complex of a differential graded

algebra A(E*) ® S(E) which is endowed with the structure of
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a differential Hopf algebra. Comultiplication in A(E*) @ S(E)
determines a map of complexes Szw - @ ® 9. Similarly the
algebra structure in S(E*) @ AE determines a map of com-

plexes ¢ @ ® - Azw. Using them we define a map of complexes

/‘\

Szw[1] PP ®S,0>0e PV O Azw ® Azw
~__—

where R[1] - S,® is the trace map described at the beginning
of section 4. One can easily check that it induces a map

Azw[1] - B(1’1)w ® B(1’1)w. Taking compositions with

(B(1 1He = R) = (W(1) - W(o)) we get the required map of
3

w2 L (1)

complexes d Explicitly

(4)  d,(ij) = T PE'(jp) i ® p* + I PF'(ip) j & p*

P P
where k stands for ey (for short);
(5 d2(i ® j*) = £ Pf'(ip) j*p* .
P

Observe that the total complex W(yw) associated with the

double complex (3) is self-dual.

Theorem 5.4 [J6zefiak-Pragacz] W(@) is a minimal free

resolution of R/Pf2P+2(w) where 2p+2 = n-2.

Proof By Lemma 5.1 it suffices to check the exactness of

(3) for the matrix

p:1
Suppose that Y is an isomorphism and 6 is arbitrary. It
is easy to see that B(1,1)(e + yP) is an extension of
6 @ ¢ + B(1,1)(6) by Azw. Since 8 @ Yy and Azw are exact

(because Yy is exact) H(B(1’1)(e + P)) = H(B(1,1)(9)) and
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the isomorphism is induced by the natural injection.

Applying this remark to

0 © o0 1 0 1
0 = (O 0) s Y = (_1 O) ® ... @ (_1 0) s, ® = 0 & Y ,

1)

we infer that HO(W (p)) is of rank 1 and is generated

1)

by 1 A 2, H1(W (@)) is of rank 3 with a basis 1 ® 2%,

1)

2 @ 1*, 1 @ 1* - 2 @ 2*, and H2(W (@)) is of rank 3

with a basis 1*1%, 1%2%, 2%2%_ Similarly H(W'2’

(2) (2)

(p)) =
= H(W (8)) so that H1(w

(2)

(@)) is of rank 3 with a

(@p)) is of rank 3 with a basis
(2)

basis 11, 12, 22, H2(W
1 ® 2%, 2 ® 1*, 1 ® 1*, and H3(W (@)) is of rank 1

with a basis element 1* A 2*. By the formula (4) d, sends

11 to 2(1 ® 2%)
12 to 2 @ 2% - 1 & 1%

22 to =2(2 ® 1*) ,

and therefore establishes an isomorphism H1(W(2)(w))
o H1(w(1)(w)). Similarly, by the formula (5) d2 sends
1 ® 2* to 2%2%
2 @ 1% to -1%1%

1 ® 1% to 1*2%

29y & 1w 0.

and hence H2(w
Since moreover HO(W(1)(w)) is killed because 1 A 2

is sent to 1 we infer that W(y) is exact.

Remark The double complexes (2) and (3) should be compared
with examples given in 3.5. A characteristic free version

of Theorem 5.4 is discussed in [Pragacz].
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Now we are going to treat the case 2p+2 = n-3 and
construct a complex W(y9) of length 10 which is the total

complex of a double complex:

w(H)

6
i
(3) (3 (3) (3
wl® ww® s w® o
3 l 3
(2) (2) (2) (2) (2)
(6) wl? - wi? o { W
b dye A
D) “ D 1
w( - wS . wl s
3
(o)
wO
we define w(® = R, W™ - R[8]. To describe W’'? ana w(?’
3

recall that the complex A9 is a subcomplex of a differ-

ential Hopf algebra S(E*) ® A(E). The comultiplication of
this algebra induces a map of complexes A3w - A2w ® 9. We

define a map Asw - Azw @ ¢ » ¢o[1] by taking the composition

(D]

with the evaluation map Azw -» R[1] and put W = &ﬂ%A%p#(ﬂ1]L

Observe that w(1) equals B 3 ¢ as defined in 4.10.

In a similar way we define W(3)

(3)* _ (1)

to be Coker(ewl1] - S3¢)

= Aam . Observe that W
(2)

since ¢ is antisymmetric.
To define W consider a map of complexes S3w e 0 3 Szw ® 82w
which is the composition S;p @ 9> S,pe o - Szw ® 82w
induced by the comultiplication and the multiplication in
A(E*) ® S(E), respectively. It is straightforward to check
that Coker a is isomorphic to the Schur complex 822w (see

section 2). Recall, (2.13), that Szzw has the following com-

ponents
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2 *
A°E @ S,E

E* > ) - S,,E ® E*¥* > S__E

(75 5, 21 22

E¥ > E @ 82

2 1

S,E o A2E*

and the maps in (7) are induced by o.

We use a uniform notation for generators of various
z t
Xy
xy ® zt € Szm ® Szw in 822¢ (so that x,y,z,t may belong

a*b*
to E or E*). For example, x v €S

components in (7) by writing for the image of

*
JE @ APEx, Y Plen’E o 5,E

for x,y € E, a*, b¥* € E . We apply the same convention to

2

other Schur complexes. For instance, a typical generator of

z z
a component of A3m has the form y meaning that y € A3E if
x x

z
X,y,2 € E, y € S3E* if x,y,z € E*, etc.
X

Using our standard trace map R[1] - Szw we get a map
S,0l11 - S,0 ® S, » S,,0. On the other hand we have a map

o ) )
Szw ® Szw > P ® P ® P ® Y > AN &« AT
\_/

which induces Szﬁw - Azw ® A2w. The composition with the
evaluation map Azm - R[1] gives us a map Sy = Azw[1]. It

turns out that the composition Szw[1] - 822w - Azw[1] is

w2

zero and we define as the homology complex of this

(25

sequence shifted by 1. Observe that W is self-dual be-

cause Szzm is so (since ¢ is antisymmetric).

We should still define maps between rows of (6).

(1) <

W is determined by a map A3E - R sending i AjaAak

to Pf'(i,j,k). It follows from (1) that this really de-
(&) (o)

fines a map of complexes W - W By duality we get a
map w(u) N W(3).

To describe w(Z) - W(1) let us consider the map of
complexes
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/,,—-\\\ ; ;
(8) Szzm[1]-»A2w ® Azw ® Szw-+A2w ® A2w @ Y@ P >A"P @ Ao
~__~
z t
The map (8) sends Xy to
p p* p p* p p* p p*
Yy zet + X tez + X zet + X tez +
P X y P vy X P vy X p X y
P* P p* p P* P p* P
¥y zet + X tez + X zet + I t e z
P X y P vy X P Yy X P X y

Denote by {(x,y? the image of x @ y € E @ E* under the
evaluation map and extend the inner product by putting

(x,y9 = 0 if x,y € E or x,y € E*. Look at the map

A3m ® Aaw - A3w ® ©[1] induced by the evaluation map

2 p p*

A9 » R[1]. It sends X z e t to
P X y
P P
(9) £ zofp*,t2y - £ z o (p*,y»t + = 2z & (y,t)p*
P X p X Pp X
which is equal to
t y
z z
(10) Xxe®ey - xot if y,t € E

In this case (i.e. in the zero component) the composition

(11) S,,001] » 2130 @ 03¢ » 130 @ 1]

is zero since various summands of type (10) cancel. In the

other components this is not so; however the elements from

Ker (Sz2w[1] - A2w[2]) are sent by (11) to zero since the

sum of various summands of type X g @ (y,t)p* in (9) is
X

zero by assumption. This shows that we have a well-defined

map of complexes

179



T. JOSEFIAK, P. PRAGACZ, J. WEYMAN

Ker (S,,0l1] - £or21) » W) o wM
and hence
(12) Ker (S,,0[1] » A%e[21) - w'")
by using w(1) - W(O). This map is zero on Im(82®[2]-+822w[1]).

Indeed, a typical element of this image is of the form

*
r PP | 1t is sent by (12) into

p *7
q* q*
z (Z Pf'(x,p,q) p* + ¥ Pf'(y,p,q) p*) .
P 'q y q X
q* p*
This is zero because Pf'(x,p,q) p* + Pf'(x,gq,p) q* = 0
y y
for fixed p,q. In fact Pf' is an alternating function of
q*  p*
its arguments and p¥* = g*.
y y

The above discussion shows that (12) induces a map of

w2 L w1

complexes d We specify this map on some

components for future application. Observe that WEQ) = 822E
and
k1 k 1
(13) d1(i j) = ¥ Pf'(i,j,p) i ® p* + T Pf'(i,k,p) J ® p* +
P P
k 1
+ X PE'(i,1,p) j ® p*¥ + £ Pf'(j,k,p) i ® p*
P P
2) . * 2
W2 is the homology module of the sequence S?ﬂ» STﬁ]@ E*->A"E
and
k 1*, _ v . . ' . .1 %
(14) dz(i 3 ) =X Pf'(i,k,p) J @ p*1* + £ Pf'(Jj,k,p) i @ p*1l
P P
We define w(3) - w(2) as the dual map to W(Z) - W(1) More

explicitly it is induced by the map of complexes
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S§p® S3w - Sép@ P ® Szw ® @ - Szzw[1]

W) (3)

and W - W

Theorem 5.5 The total complex W(yw) of the double complex
(6) is a minimal free resolution of R/Pf2P+2(w) where
2p+2 = n-3.

Proof By Lemma 5.1 it suffices to check the exactness of

(6) for the matrix ¢ = 6 @ Y where Yy = (_3 g) & ... @ (_? g),
000 P+
6 = (O 0 O) . We will do it by checking that for such a matrix

00O
@ the maps between rows of (6) induce exact sequences of the
homology of rows. By standard spectral sequence arguments
this implies the exactness of W(y).

The idea of our proof is the same as that of Theorem

5.4, i.e. we need to know that
Lemma 5.6 HW ™) () ~ HW ) (8)) for i = 0,...,u.

Proof of the lemma For i = 0,4 this is trivial, and for

i = 1,3 it is a simple calculation using arguments similar
to those given in the course of the proof of Theorem 5.4.
We will concentrate our efforts on the case i = 2.

Look at the sequence of complexes

(15)  R[2] = S,(0 +¥)[1] > S,,(0 +¥) — A%(o +y)[1] » R[2] .

We compare its middle homology complex W(z)

w(2)

(6 + Y) with
(6). By the linearity formula (2.2), which is valid

also for Schur complexes, we have

- 2 2
822(6 +y) = S,00 + 8216 ® P + sze ® Szw + A0 ANY +0 @ 821w + Spob .

181



T. JOSEFIAK, P. PRAGACZ, J. WEYMAN

There is a direct summand of (15) of the form

Pt e~

(16) 6 @ Yl11 + 8 @ Y[1]

TT—= 06 e S —

21V

whose homology in the middle is an exact complex because
all the complexes involved in (16) are exact. Indeed, ¥
and 821w dPe exact since Y is an isomorphism, see [Akin-
Buchsbaum-Weyman]. Therefore we can restrict ourselves to
the remaining part of (15).

Using the decomposition 82(9 + Y) = 826 + 0 @ Y + 82w

and an analoguous one for A2(6 + ¥) we can write (15) as

follows (except the part thrown out):

Spo¥

/ +\

S,wl1] S,0 ® S, U Azw[1]

/'
(17) RI[2] / / R[2]
~a

S 6l1] A 64®A Y —> A 6l1]

\/

Write B for the complex of complexes (17) which is exact
except possibly in the middle. There exists a subcomplex
A of B

S,6 @ S2w

2

/' 2
A : 826[1] + AT6[1]— RI[2]
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with a factor complex

SpoV
c : R(2]—> S,p[1] — + I A2yl
71%6 o A%y

The exact sequence of the double complexes 0 +-A-B->C->0
induces the exact sequence of complexes 0 ->H(A) -»H(B) -H(C) -»0
where H(D) means the homology complex in the middle of D.
Moreover by a simple inspection we infer that there exist

exact sequences of complexes

(2)

0 > 5,0 @ Szw/R[2] - H(A) » W () - 0

and
0 » w2 (p) > H(C) -» Ker (A28 & A2y - R[2]) - O

By direct computation one shows that the only non-vanishing
homology of H(C) is of rank 1 and appears in degree 4. More-
over the homology of H(A) is that of W(2)(9) except for one
place in degree 3 where they differ by a module of rank 1.
These two homology modules of rank 1 are sent isomorphically
by the connecting homomorphism of the long exact homology
sequence associated with the sequence of complexes

0 -» H(A) -» H(B) -» H(C) - 0, thus establishing an isomorphism

(2)(9) and that of H(B). However

between homology of W
w(2)(e + y) differs from H(B) by an exact complex (according

to our previous discussion) so we are done.

Proof of Theorem 5.5 (Continuation) Coming back to (6) we

are going to show that the maps between rows induce iso-

morphisms on the homology of rows for ¢ = 6 @ y. Note that
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Pf (1,2,3) = 1 and all other pfaffians vanish for such a
¢@. Moreover by Lemma 5.6 H,] (W(z)(cp)) o 822 R3 is of rank 6
(see (2.12)) and H, (WM (0)) ~ 1, w ")) = 12rR%) » (R¥)*
is also of rank 6. By (13) one can check that the follow-
ing elements (which form bases of the corresponding homo-

(2)

logy modules) are sent to each other under H, (W (9)) -

S U ARI IR
22 (2 )
11— y Uq3x
33 (3 )
11— -y U=

33 (3 )
22 — b t21%*

23 ['I 1 )
11 —— 2 22*% - 33%*
23 2 2

12 —_— 11%* - 33%
33 (3 3 ]
12 — 2 11%* - 22%/7

thus establishing the required isomorphism.

Hy(w (03> ~ H,(w?’(e)) is of rank 15 as is

Hz(w(1)(£o)) o HQ(W(1)(6)). The following list specifies

bases of both modules showing pairs of the corresponding

elements under H2(W(2)(£D)) - H2(W(1)(tp)) (see the formula
(14)).

32%

11— =2 (1 & 2%*2%)

22%

11 — 2 (1 ® 2%3%*)

23%*

11 —_— 2 (1 ® 3%3%*)
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31%*
22 — 2 (2 ® 1*%1%)

33%*
22 — 2 (2 ® 1*%3%)

23%

12 2 ® 3%3%

31%

23 — 3 @ 1¥%1%*

32%

23 — 3 ® 1%2%

32%

13 — - 3 ® 2%2%

22%

13 — 3 ® 3*¥2*% - 1 @ 1*2%
33%

12 —_— 1 ® 1*%¥3% - 2 @ 2%3%
11%

23 —_— 2 ® 2%1* - 3 @ 3%1%
31*

21 — 1 ® 1*¥1*% - 2 @ 2%1%
23%

13 Lo 3 ® 3*%3% - 1 ® 1*3%
12%

32 — 2 ® 2*%2*% - 3 @ 3%2%

(2)

Using Lemma 5.6 once more, one computes that rank H3(W ()

20 and rank H3(W(1)(w)) = rank H3(w(3)(w)) = 10. An analysis

similar to the previous one proves the exactness of the

(3) (2)

sequence 0 - H3(W (©)) - H3(W (@) - H3(W(1)(w)) - 0.

Finally Ho(w(1)(w)) o~ A3(R3) and because 1 A 2 A 3 b

(1)

Pf(1,2,3) = 1 the map HO(W (p)) » R is an isomorphism, too.

Since (6) is self-dual we are done.
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From now on the map ¢ : E* -» E is supposed to be
symmetric and determined by the n xn matrix of inde-
terminates T. The symmetry of ¢ is equivalent to the
statement that the evaluation map Szw - R[1] is a map
of complexes; we have also the dual trace map R[1] - A2w
(see section 4).

Let us write W(O) = R, w(1) = Ker (Szw - R[1i]1) =

(UDIN w(o)

B(1 1)@ and define a map W which is determined
3

by the map S,E -» R sending i]j to (-1)**3 M(i;j). Here

2
M(i;3j) is the minor of T obtained from T by leaving out the
i-th row and the j-th column. From the Laplace expansion it

follows that this is really a map of complexes.

Theorem 5.7 [Goto-Tachibanal, [J&zefiakl] If r+1 = n-1,
1) (o)

then the complex W - W is a minimal free resolution

of R/I ().

r+1

Proof By Lemma 5.2 it suffices to check the exactness for

the matrix ¢ = 6 Y where 6 = (0), v = (1) & ... & (1) .
o 2

r+1
(p)) = H(W(1)(6)) this implies that

1)

Since again H(W(1)

H1(W(1)(w)) = Hy (W (p)) = 0. In a similar way as before
we also infer that HO(W(1)(®)) (which is of rank 1) is
killed by the map W(1) - W(O).

Finally we treat the case r+1 = n-2, which leads to
a resolution of length 6.

Consider the map of complexes A3m ® @ 3 Azw ® Azw
which is the composition Asw ® @9 - Azw ® Y ® @ - A2w ® A2w

and observe that A = Coker o. The situation is similar

229
to that discussed in the course of the construction of the

length 10 complex in the antisymmetric case. Once again we
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have a complex of complexes
A2%0l1] » A0 - S el1]
22 2

coming from maps R[1] - Azw and Szw - R[1] and we define

W(1) as the homology of this complex. Observe that it is

(o) . (2)

self-dual. Moreover we put W R, W R[5]. A map

(1), (o

of complexes W is determined by the map of

modules A22E -+ R which sends a typical basis element
j 1
ik
out the i,j-th rows and the k,l1-th columns. One checks

(DN W(O).

to a minor *M(i,j3;k,1l) obtained from T by leaving

that this really leads to a map of complexes W
(2) 1)

By duality we also get a map W - W .
Theorem 5.8 If r+1 = n-2, then the complex W(y) is a

minimal free resolution of R/I ().

r+1
Proof Again by Lemma 5.2 we check the exactness of W(g)

for ¢ = 6 @ Y where 6 = (8 8), P = (1) @ ... ®» (1).
———

r+1

Since, as in Lemma 5.6, H(W(1)(w)) o H(W(1)(6)) we infer
that H1 = H2 = H3 = 0. Moreover the one-dimensional
Hy (W12 (0)) is killed by w1’ 5 w(°). puality implies

the exactness of W(®).
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