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WEIERSTRASS POINTS ON CURVES

Dan Laksov

Introduction.

In the following article we give a definition of Weierstrass
points of complete linear systems on non-singular curves
which has three main features. Firstly, it is a natural defi-
nition in the sense that it interprets Weierstrass points in
terms of rank conditions on maps between vector bundles on
the curve and brings out the often overlooked connection be-
tween Weierstrass points and properties of associated curves.
Secondly, the definition takes into account the multiplicities
of the Weierstrass points. To associate multiplicities to the
Weierstrass points we construct a global wronskian determinant
associated to the linear system. This construction is the
central part in the global study of Weierstrass points and
leads to a formula for the total weight of the Weierstrass
points and to a generalization of the Brill-Segre formula for
(r +1)-tuple points of the linear system. The existence of a
formula for the total weight of the Weierstrass points is
rather surprising as it is well known that there are curves
of arbitrary high genus with only one Weierstrass point (see
e.g. Example 3, § 6). Thirdly, our treatment is independent
of the characteristic and shows how the classical formulas
carry over to the case of non-classical gap sequences. The

most surprising part of this article is that there exists a
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formula, mentioned above, for the total weight of the Weier-
strass points whereas there is no natural generalization of

the classical formula for the local weight (Remark § 6).

When the characteristic of the ground field is zero our
definition gives the traditional Weierstrass points with

their multiplicities. However, even in this case our point

of view that puts the Weierstrass points and the associates
curves on an equal footing, contributes to the understanding

of the geometry of the curve. We shall not, however, exploit
this connection below. In arbitrary characteristic Weier-
strass points have been defined previously by F.K. Schmidt [10]
for the canonical linear system and by K.R. Mount and O.E. Villa-
mayor [7] for arbitrary linear systems and also for higher dimen-
sional varieties. Our definition specializes to give the same
point set and the same gap sequences as those given by Schmidt.
He was however mainly interested in the Weierstrass points as

a point set and in spite of using a wronskian determinant his
treatment is completely different from ours. On the other hand,
although the Weierstrass points as we define them differ from
those of Mount and Villamayor even as point sets, our treatment
is in spirit much closer to their approach. They try to inter-
pret the Weierstrass points as singularities of mappings of
bundles and it was the attempt to understand the difference of
their point sets with those of Schmidt that was the starting

point of the work presented below.

Section by section the contents of this article is as follows:

§ 1. We recall the main properties of the bundle of principal

parts and define the wronskian bundles.
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§ 2. Weierstrass points are defined and interpreted in terms

of the rank of the wronskian bundles.

§ 3. The wronskian of a linear system is constructed and the
global enumerative formulas and the Brill-Segre formula for

(r +1)-tuple points of the linear system is discussed.

§ 4. We give relations between the local invariants of the

linear system and express the maps of principal parts locally.

§ 5. When the characteristic is zero or greater than the
degree of the linear system we show that we obtain the classi-

cal formulas for Weierstrass points.

§ 6. We present three examples that illustrate the pathologies

discussed in the article.

I would like to thank S.L. Kleiman for a very careful reading

of the manuscript and for his valuable comments.

§ 1. The bundle of principal parts.

Let C be a non-singular curve of genus g and D a positive

divisor of degree 4 and (projective) dimension r.

Denote by I the ideal defining the diagonal in C x C and by

C(m) the subscheme of C x C defined by Im+1. We have

1)om - Im/Im+1

(QC

(See e.g. [2] (17.12.4). In [2] (16.3.1) this relation for
m = 1 is used to define the K&hler differentials.) Denote by

p and g the projections of C x C onto the first and second
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factor. The exact sequence

0 - Im+1 50

-

cxC Oc(m) = ©

tensored by gq*0(D) gives, after passing to cohomology, a long
exact sequence

m+1

(1) 0 - p, (I ® g*0(D)) - p,g*0(D) - p,(g*0(D)|C(m)) -

1 m+1

> R'p, (I ® g*0(D)) » R'p,q*0(D) » 0 .

Here we have zero to the right because p|C(m) is affine.

The bundle P™(D) of m'th order principal parts of D is defined
by

P™(D) = p,(g*0(D) |C(m)) .

Via p the principal parts have a natural structure as Oc—modules

and p°(D) = 0(D).
From the exact sequence

0 - Im/Im+1 -0 N

C (m+1) -0

oc(m)

we obtain an exact sequence

(20 0 (@)®™ e 0(D) » P™"(®) - P" (D) > 0 .

We see that P™(D) is a locally free Oc-module of rank (m + 1).

By flat base change we have R%aq*O(D) = Hi(c, D) ® OC(D). Let
m

v B%(c, D), » P(D)

be the map defined by the sequence (1) and let Bm(D) and V(D)
be the image and cokernel of v™. since Pm(D) is locally free

we have that B™(D) is also a locally free Oc—module.
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From the map P™(D) - P™ V(D) of sequence (2) we obtain a
natural commutative diagram,

0o- B™D) - P™D) - VD) -0
(3) v v v

0-8""m) - ™ D) » vV (D) > o0

with surjective vertical maps. Moreover, we obtain from the
sequence (1) an exact sequence

m+1 o g*0(D)) > H'(C, D). > 0 .

(4) 0 - v™(p) » rR'p, (1 c

By the principle of exchange we have for all points x € C an

isomorphism R1p*(Im+1

® gq*0(D)) (x) = H'(C, D - (m + 1)x).
Consequently we obtain from the sequence (4) a natural com-
mutative diagram of vector spaces

0- v™x) - H'(C, D- (m+ 1)x) » H'(C, D) » 0
(5) v \Z I

0 - Vm—1(x) - H1(c, D - mx) - H1(C, D) » 0 .

Here the horizontal sequences are exact because H1(C, D)c is

free.
Proposition 1. There are integers 0 = bo < b1 < ... < br <d< br+1 = o
such that rank BJ(D) = (m+1) for bm <3 < bm+1 and m=0, ..., r.

Proof. It follows from the Riemann-Roch theorem that
h'(C, D- (m+ 1)x) =g -d + m when m > d. Consequently, when

m > d, we see from the sequence (4) that Vm(D) is locally free

of rank g - d + m - h1(C, D) =m - r. Hence rank B™(D) = (m + 1)
- (m-1r) =r + 1 when m > d. The bundle B° (D) is of rank 1.
Indeed it is a subbundle of P°(D) = 0(D) and is nontrivial

because D is positive. It follows that the rank of B™(D) lies

between 1 and (r + 1). Moreover we see from diagram (3) that
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(rank B™(D) - rank Bm_1(D)) < 1. Hence, in the chain
B°(D) ¢ 8" (D) S ... c B4 (D) of 0.-modules, there are exactly
r jumps in the ranks, each jump increasing the rank by 1. The

integers b1, ceay br are the indices where the jumps appear.

Definition. For each m = 0, 1, ..., r we denote the bundle

b,
v (D) by W"(D) and call it the m'th Weierstrass-module of D.

§ 2. Weierstrass points.

Proposition 2. Fix an integer m » 0 and a point x € C.

The following three assertions are equivalent;

(i) The canonical surjection H1(C, D - (m+1)x) - H1(C, D - mx)

of diagram (5) is an isomorphism.

(idi) The canonical surjection Vm(x) - Vm—1(x) of diagram (5)

is an isomorphism.

(iii) The kernel (9(1:)'”“‘(x) of the map P™(x) - P™ ' (x) of dia-

gram (3) is contained in the image of vm(x).

Proof. The equivalence of (i) and (ii) is immediate by diagram
(5) and the equivalence of (ii) and (iii) follows after an
easy chase in the diagram obtained from diagram (3) at the

point x.

Definition. An integer (m + 1) > 1 satisfying the three equiv-

alent conditions of Proposition 3 is called a gap of D at x.

Remark. When m > d it follows from the Riemann-Roch theorem
that h1(C, D- (m+ 1)x) =g -d + m. Hence if (m + 1) is a
gap, then 1 £ (m + 1) £ (d + 1). On the other hand h1KLD)= g-d+r,

so there are exactly d + 1 - (g - (g - d +r)) =r + 1 gaps

226



WEIERSTRASS POINTS ON CURVES

of D at x that we denote by

1 < g1(x) < gz(x) < ... < gr+1(x) < (a+ 1) .

Definition. If g,

l+1(x) = bi + 1 for i =0, 1, ..., ¥ we call x

an ordinary point of D. A point which is not ordinary is called

a Weierstrass point of D.

Proposition 3. With the above notation the following assertions

hold,

(i) We have gi+1(x) > (bi + 1) for i =0, 1, ..., r and
for all points x of C.

(ii) We have gi+1(x) = (bi + 1) for i =0, 1, ..., r for

all but a finite number of points x of C. In other
words, there are only a finite number of Weierstrass

points of D.
(iii) A point x of C is a Weierstrass point of D if and only if

dim Wm(x) > bm - m for some m=0, ..., r .

Proof. (i) Assume that b £ m < b,. Then rank B"(D) = s

s-1
and we have an inequality dim Vm(x) >m+1-s with equality for
all but a finite number of points x of C. Fix a point x € C

and let g(m) = zi{gi(x)lgi(x) <m + 1}, that is g(m) is the
number j such that g1(X), cees gj(x) < (m + 1) but ng(X)>(m+1)'
Then by the definition of Weierstrass points, we have that

dim V(x) = m + 1 - g(m) . This equality together with the above

inequality show that s > g(m) and in particular that s§<g(bs—1).

Hence, gs+1(x) > bs.

(ii) In the proof of part (i) we observed that dim V™ (x)=m+1-s
for nearly all points x of C. It follows, by the definition of

Weierstrass points, that the only value of m in the interval
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bs—1 <m < bs for which m + 1 is a gap is m = bs_1. The gap

values are therefore bo + 1, b1 + 1, oo, br + 1 for nearly

all points of C.

(iii) In the proof of part (i) we observed that dim Wm(x)

b, +1 - g(b). If dim w(x) > b - m, then we obtain that

m > g(bm) and consequently that gm+1(x) > bm + 1. That is,

X is a Weierstrass point.

Conversely, if x is a Weierstrass point of D, then gh+1bd > gn+1
for some m and consequently g(bm) < m + 1. Hence we obtain the

inequality

dim WM (x) = b, +1-g()>b -m.

Remark. Mount and Villamayor ([7] Definition 2.7 p. 353) called

a point x of C a Weierstrass point of the divisor D if the single
condition dim W' (x) > br - r is fulfilled. In section 5 (Example 1)
below we show that even in the traditional case, that is when D

is a canonical divisor, there may be points x of C that are
Weierstrass points of D in the above sense, but with dim Wr(x)

= br - r. After having computed a large number of examples we

are however amazed of how often the condition dim wr(x) > br-—r

is necessary for a point to be Weierstrass even when the gap

sequence is non-classical, that is when bi = i do not hold
for all i. In the case that bi = i for i=1, .., ¥ + 1 the
condition dim WY (x) > br - r is clearly necessary for a point

to be Weierstrass. We shall show in § 5 (Theorem 11 (i)) that
when char k = 0 or char k > d then the gap sequence is always

classical.

The definition given above of a Weierstrass point of a divisor

D on a curve C is equivalent to the definition given by
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F.K. Schmidt [10] in the case when D is a member of the canoni-
cal linear system. Indeed in [10] (p. 77) a point x of C is
defined to be a Weierstrass point of C (or of the canonical
system) if there are at most a finite number of points that
have the same gap sequence as x and by Proposition 3 (ii) this

happens if and only if gi+1(x) + bi + 1 for some i.

It is remarkable that Schmidt only observed ([10] p. 78) that
the first non-zero integer in the sequence 9100— b0—1, gzbﬂ —bf4, ..

ey

r+1ud - br-1 is positive. The fact that they are all non-
negative, which follows naturally from our approach (Proposi-

tion 3 (i)) was first proved by H.B. Matzat ([6] p. 17).

§ 3. The wronskian.

Theorem 4. Let ¢, < cC

€ < ... < Cg be integers satisfying

t+1

c; 2 i fori=¢t, t+1, ..., s and let Ql for i=ct,ct+ 1,...,cs
be vector bundles on C with rank Ql = i + 1. Moreover, let V
be a vector space of dimension n + 1 and v(i): VC - Qi be maps
such that rank v(i) g m + 1 when Cn 2 i< Crn+1 * Finally we let
qg(i): ot - Ql_1 be surjective maps such that q(i)vi = Vi for
i=c, + 1, ooy Cq and we denote the kernel of g(i) by ot.
Then there exists a unique map
s+1 t+1 ¢ c c
+

w(ct, ceny cs): A VC - (AN Q t) ® Q t+1 ® ... ® Q °
satisfying the following two properties;
(i) For all points x of C we have that

w(ct, ceey cs)(x) = 0 e= rank v(cm)(x) <m + 1

for some m = t, t +1, ..., s .

229



D. LAKSOV

s
at a

c

(ii) Choose a basis e(0), e(1), ..., e(cs) of Q
point x of C in such a way that g(i + 1)g(i + 2) ..

Ce427 -7 Cg-

Moreover, choose a basis £(0), ..., f£(n) of V and

.. q(cs)e(i) generates 9t at x for i =

denote by d(i , ..., 1 y +++r J.) the vector
o v
v+1l ¢

e(io, ceey iv) = e(io) A eee A e(iv) of A Q

vi jo
S multi-
plied by the determinant of the (v+1) x (v+1)-matrix
formed from the rows io + 1, .., iv + 1 and columns

i, + 1, .., iy + 1 of the (cS + 1) x (n+ 1)-matrix
obtained by expressing v(cs) in the above choice of

bases'.

Then locally at x we have

w(ctr ce ey CS)(f(JO) A e Af(JS))

= T d(io, cees it’ Ciyqr +=+r Cg ;jo, ceey js).

i <...<i_<c
o t="t

Proof. The unicity of the map w(ct, ceey cs) follows from asser-
tion (ii) so it suffices to show the existence of the map. When
s = t we choose w(cs) = SX1 v(cs). Then all the assertions of
the theorem are fulfilled. We shall first, proceeding by induc-
tion with respect to s - t, simultaneously show the existence

of w(ct, ceey cs) and prove assertion (ii).

C (o]

Let Qt = Q £+ ® ... ® @ °. Assume that we have defined a map
s+1 2 Ceiq Cfos
w(ct+1, ceey cs) : A VC - AN Q ® Qt+1 satisfying property
(ii) of the theorem. Then the image of w(ct+ y «es, C_) is con-
1 s
1 cpyqt Ct+1
tained in the kernel A Q ® ® Qt+1 of the map
t+2 t+2 ¢ t+2 ¢ -1
C oL t+1 t+1
hoalegyq) @ id: (a0 ) @ Qeyq > (1 Q ) @ 94,
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Indeed, since rank V(ct+1 1) < t + 1, the elements

t+2 .
(A alcg,q) @ 1d) wleg,qr =-er ) (£(3 ) A .o A £(3Q))

ceer Cgidgr eeer 3g)

= z duo""'ltﬂ’ctﬂ’ s’ o

oo e o<1 4141

are zero for all choices of jO < ... < js. It follows that we

can define w(ct, ..., c_) canonically as the composite of the

s+1 t+1 © -1 c .
map A Ve A Q £ @ Q £ ® Qt+1' induced by

w(Ci qr =--r Cg), With the map
£+1
(A alegyq = M alegyq = 2) ... aleg + 1)) o id:

t+1 ¢ -1 t+1 ¢
c(h e Y ea s (00

® Qt .

©)
Then the following equalities hold:

w(ct, ceey cs)(f(jo) A eee A f(js))

41
= (A a(ceyq -~ 1) @ .. @ glc, +1) @ id)

z eeey i .5 :
i <.._<it<ct+1 d(iol ’ lt' Ct+1l Ct+2’ ceey Cs ’JO' ceeys Js)
o
I T T L R
o """t TTt="t

the first equality being a consequence of the equalities

d(io, ceny it+1' Ciypr *++r Cg ;jo, ceey js) = 0 for all

indices jO < .. < js that we observed above.

It remains to prove the first assertion of the theorem. Assume
that rank v(cm)(x) <m+ 1 for some m = t, ..., s. Then

d(io, ceey im’ Chn41’ *c-r Cg ;jo, coey js) = 0 whenever

iO < ... < im < Cq- Hence w(cm, cesy cs) is zero by part (ii)
of the theorem. However, if the mapping w(cm, v ey cs) is zero,

231



D. LAKSOV

then certainly the mapping w(ct, ey cs) is zero, being the

composite of the former with other mappings.

Conversely, assume that w(ct, ceey cs) is zero at x € C. We
shall prove that rank v(cm)(x) <m+ 1 for some m = t, ..., s
by induction with respect to s - t. Assume that the assertion

(i) holds for s - t + 1. Then if w(c ceey cs)(x) = 0 we

t+1'

have that rank V(cm)(x) =0 for some m = t + 1, ..., s and we

have finished. Hence we may assume that w(c cs)(x)

t+17 "t

is non-zero and consequently that rank v(cm)(x) =m + 1 for

m=+t + 1, ..., s. The problem is to show that rank v(ct)bﬂ <t+1.

Note that we have that rank v(i) (x) = m + 1 for Sy < i< Cm+1
and all m =t + 1, ..., s. Write K" = ker(g(i+1)g(i+2) ... q(cs) (x))
. Sn cm+1
and M = im v(cs)(x). Then dim M = s + 1 and M n K = M N K
Cm+1-1
= ... =MDNK form =t +1, ..., s. Moreover we have that
[o]
dim (M N K m) =s - m form =t + 1, ..., s and that
c
dim (M N K t) > s - t. We can consequently choose a basis
c
e(0), ..., e(cs) of Q S at x and a basis £(0), ..., £(n) of V

as in part (ii) of the theorem and satisfying the additional

c__ c
requirements that e(cm) € (M N K m 1) ~ (M N K m) form =t + 1, ..

.., s and that v(cs)(f(rl— i)) = e(c ) for i =0, ..., s=-t-1.

s—i
With this choice of basis we have that

d(io, cees iS ; jo' cees jt' n-s-t+1, ...,n) =20
whenever io < c.. < is and jO < ... < jt < n-s -t + 1 unless
it+1 = Cpryqr e is = cg4 and that

d(io, ceey it’ Ceyqr =+=r Cg ¥ jo, ceey jt,n -s-t+1, ...n

is the determinant formed from the rows io, cees it and columns

jo, ceey jt of the matrix v(ct)(x). Moreover, we have that the

232



WEIERSTRASS POINTS ON CURVES

last s - t columns of v(c 1) (x) are zero. Consequently

t+1
the above determinants give all the (t+1) x (t +1)-minors of

v( 1) (x) . These are however all zero, because by

Ce+1

assumption w(c ceey cs)(x) = 0 such that the determinants

t'
d(iol LAY 4 itl ct+1l AR 4 cs ; jo’ LA 4 js)
are zero for all indices jO < s.. < js by part (ii) of the

theorem. We conclude that v(c - 1), and consequently v(ct),

t+1
is of rank strictly less than t + 1 at x.

Corollary 5. With the notation of the previous sections there
exists a canonical map

r+1 1 0(b0+..+br)

w: A m(C, D) ~ (al) r+1

® 0(D)

such that w(x) = 0 if and only if dim wtx) > bm - m for some
m=20, ..., r, that is, if and only if x is a Weierstrass point

of D.

Fix a point x of C and a uniformizing parameter t at x. Choose
c .
a basis of P r(D) whose elements maps to the generators (dt)l
1,81

of (Qc) for i =0, ..., c. and fix any basis for HO(C, D).

Then the determinant of the (r+1) x (r +1)-matrix taken from

b [o]
rows bo + 1, b1 + 1, ..., br + 1 of the mapping v T: HO(C,D)C»P r(D)
expressed in the above bases, vanishes to the same order as w,

at x.

Proof. The corollary is a direct translation of Theorem 4 in

the case when t = 0, cy = bi for i = 0, ..., r and when

v(i) = vt : H° (C, D)c -+ P (D) for i 0, ..., b_. Proposition 1

r
states that the mappings v(i) and the integers cy then satisfy

the conditions of the theorem.
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The assertions of the corollary are then seen to be exactly

the same as those of the theorem once we observe that

°m
dim v "(x) <m + 1 if and only if dim W'(x) > b_+ 1 - (m+1).
Definition. The canonical map w of the line bundle
1o(bo+...+br) 1
(QC) ® 0(D) described in Corollary 5 is called the

wronskian of the divisor D. The order to which w vanishes at
a point x is called the weight of x with respect to D and the
sum of the weights of all points of C is called the total weight

of the Weierstrass points of D.

Theorem 6. The total weight of the Weierstrass points of D is

(2g - 2)

I MR

bi + (r + 1)d .

Proof. By definition the total weight of the Weierstrass points
of D is the weighted sum of the zeroes of the section w. It
follows from Proposition 3 (ii) and the description of the

zeroes of w in Corollary 5 that w is not identically zero.
Consequently the total weight is the degree (2g - 2) .§ bi-+(r+1)d

@(bo+...+b i=o

of the line bundle (Qé) r+1.

)
s 0(D)

Remark. The formula of Theorem 6 is an immediate consequence

of the existence of the wronskian and may therefore appear to
be merely a matter of definition. Its content is however well
illustrated by the class of hyperelliptic curves of Example 3,
(§ 6) below. This class contains curves of arbitrarily high
genus with classical gap sequence and with only one Weierstrass

point. The formula then give the multiplicity of this point.

The wronskian determinant, considered as a section of a line

bundle, was constructed in characteristic zero by G. Galbura [1]
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(proof of Teorema p. 351) by patching locally defined deter-
minants and he observed (§ 4 p. 355) that the patching argu-
ment could be performed with suitable modifications over a
field of positive characteristics. In the characteristic zero
case we shall prove later (Theorem 11 (iv)) that the wronskian
is simply the determinant of the mapping vF so that in this
case the existence and the properties of the wronskian do not
require any particular construction. However, it was Galbura's
observation about wronskians in positive characteristic that

was the point of departure of the construction of Theorem 4.

Galbura used the wronskian to interpret a classical result of
Brill and C. Segre (see [11] § 11 n. 44 p. 89) about (r +1)-
tuple points of the linear system H® (C, D), in terms of sec-
tions of line bundles. We shall show how these results can be

treated in arbitrary characteristic.

A point x of C is called an (m+ 1)-tuple point of the linear
system HO(C, D) if there is a member of the linear system that
vanishes to the order at least (m + 1) at x. It follows from
the definition of principal parts that if we let R denote the
local ring of C at x and M its maximal ideal, then E@ﬂ»(x)zRﬂfﬁ1
and that if a section s € HO(C, D) is represented at x by a
function £ € R, then v (x) (s) is the class of f in R/Mm+1. In
particular s has an (m+ 1)-tuple zero at x if and only if the
class of f is zero. We see that the space of sections of multi-
plicity at least m + 1 is r + 1 - j dimensional if and only if
dim (im Vm(x)) < J. In particular, there is an (r +1 -m)-dimen-

sional space of sections of multiplicity at least bm + 1 if

and only if dim Wt (x) > bm + 1 - m. We shall in analogy with
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the classical case call a point x a strictly (r +1)-tuple
point of the linear system if the space of divisors that
vanish to order at least bm + 1 is of dimension at least

(r + 1 - m) for some m = 0, ..., r. When bi =3i for i = 0,..., ¢
we have that a point x is strictly (r +1)-tuple if and only if
there is a section of the linear system that vanishes to order
at least r + 1 at x. Indeed, in this case if there is an

(r + 1 - j)-dimensional space of sections that wvanish, at a
point x, to order at least j + 1 for some j, then there is

at least an (r - j)-dimensional space of sections that wvanish
to order at least j + 2 at x. We shall prove in § 5 (Theorem 11
(i)) that the equalities bi =4i for i = 0, ..., r hold when
char k = 0 or char k > d. Hence in these cases our definition
of strictly (r +1)-tuple points coincides with the traditional

one of (r +1)-tuple points.

By the above discussion it is clear that a strictly (r +1)-
tuple point is nothing but a Weierstrass point and we can give
these points the weight given by the order of vanishing of the
wronskian section. Theorem 6 can then be reformulated in the

following way:

Theorem 7 (Brill-Segre). With the above definitions, the
number of strictly (r +1)-tuple points of the linear system

HO(C, D) (counted with multiplicity) is given by the expression

(2g - 2) b, + (r + 1)d .

1

I MK

i=o
Severi ([12]) expressed the number of (r +1)-tuple points in
terms of a functional equation in a canonical divisor K and a

hyperplane section H. In arbitrary characteristic we obtain

r
> biK + (r + 1)H .
i=o
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This equation is immediate from the form of the line bundle

that has w as a section.

§ 4. Local computations.

Fix a point x of C and a local parameter of C at x. Let R be
the local ring of C at x and let I be the kernel of the multi-

plication map R ® R » R. Then we have that Pm(D)qu@R/Im+1

and that under the identification (Qé)om = Im/Im+1

the generator
(at)™ maps to (te® 1 - 1 @ t)m. The R-module structure on Pm(D)X
corresponding to the projection p makes Pm(D)X into a left
R-module and as such it is free with basis 1, dt, ..., (dt)™.

Denote by dg t:R >R @ R/Im+1

the map induced by the other pro-
jection g, that is dgf is the class of the element 1 ® f£. For
each element £ € R we denote by dif the coefficient of (dt)i
in the expression of dg:f in the above basis. We consider

Pm(D)x as an R-module via the first factor and write simply f£f

instead of £ ® 1. We then have dllgt= t + dt and since

dm1J1= (a t)h we obtain the formula
R R
m  h h oy h-i i
(6) dR t = I (i)t (at) .
i=o

In particular we have that ateh o (lil)th_i

.

h h+1

Lemma 8. Let £ € R and suppose that £ = at” (mod t ) with
a in the ground field. Then dlf = a( "™ (moa £"™1*1).

h+1

Proof. Write £ = ath + bt with b € R. Since d? is linear

it follows from the formula (6) that it is sufficient to prove

that dl(bth+1) = th+1_lc for some element c¢c € R. However, since
i PR .
@ mpt"™) = a%.a " we have that al ™) = £ @I @)
. . j=o
and by formula (6) djth+1 = 0 (mod th+1 J') for j=0,1, ..., i.
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The equality of the lemma is therefore a consequence of

formula (6).

Lemma 9. Let Xor Xqo eees X be variables. Let M be the
%2
(r+1) x (r +1)-matrix with entry (ij) in the i'th row and

j'th column. Then we have that

I 3R

(i!) (det M) = I (xi - xX.) .

o og<j<icgr J

Proof. (See e.g. [8], § 327 p. 324.) The determinant of the

(r+1) x (r +1)-matrix of the lemma is clearly an alternating

function in the variables Xor eeer Xoo Hence the determinant

is divisible by the polynomial m (xi - X.). The two poly-
ogj<igr J

nomials are homogenous of the same degree. Hence the expression

of the lemma follows by equating the coefficients of a par-

r _r-1

ticular monomial, e.g. X, X cee Xy in the two polynomials.

Choose a basis Vor seer Vo of HO(C, D). At a point x of C this
basis determines functions fo, ceey fr in the local ring R of
C at x. We can clearly choose the basis in such a way that the
order of vanishing of the functions fi at x form a sequence
orderxfO < c.. < orderxfr. The integers hi = orderXfi will be

called the Hermite invariants of D at x. (That they are local

invariants is easily verified and moreover follows from Theorem

10 below.)

With respect to the latter choice of basis of H° (C, D) and the

basis 1, (dt), ..., (at)™ of 1>m(1>)x the map

m

v s H°(C, D) ® R » PI(D)
is expressed by the (m+1) x (r +1)-matrix with coordinate dlfj
in row i and column j. Writing only the lowest order terms in
t it follows from Lemma 7 that this matrix takes the form,
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h, h h_ h
1 r
a (It + e, ahe e, o aDeT e
h h-1 h, h,-1 h_ h -
a ((E° 4., a Gt o+, L., a et o+
(7) .
h h -m h, h,-m h_ h -m
1
ao(nf)t i+, a1(nﬁ)t S ar(mr)t oLl
h

1}
o
s

where the a,'s are non-zero elements of k and fi
h;+1

(mod t © ) for i = 0, ..., r.

Remark. The above local computations are well known. Slightly
less detailed accounts can be found in articles by A. Kato
([4]) Lemma (2.3) and proof of Theorem (2.4)) and R. Piene ([9]
(§ 2 and § 6)). Piene claims that (7), with a suitable change
of basis, can be brought into a normal form whose entries in
the (i +1)'st row and column is (?i) for i =0, 1, ..., m and
and all the other entries are zero and she uses this (proof of
Theorem (3.2) p. 481) to show that the lowest order of the

m
determinants of the (m+1) x (m+ 1)-submatrices of (7) is Z:(hfi)

i=o
when the characteristic of the ground field is zero or does
h
not divide the (ii) for i = 0, ..., m. It is however not always

possible to obtain such normal forms when hi + i for some i.
In such cases Theorem 10 (i) below, which is an immediate
consequence of Lemma 9, shows that the lowest order of the
determinants is indeed ? (hi - i) under appropriate restric-

i=o
tions on the characteristic of the ground field.
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Theorem 10. With the above notation the following four asser-

tions hold:

r r
(i) ( m i!)det v; = T a; il (hi— h.)th (mod th+1)
i=o i=o ogj<igr J
r
where h = = (hi - i).
i=o
(i1)  dim (im v"(x)) = i for hy_, sm <h; and i=0, ..., r+1.

(i1i) ker (P™(x) » P™ 1(x)) < im v™(x)

if and only if m = hi for some i = 0, ... , r.
(iv) gi+1(x) = hi + 1 for i =0, ..., r .
Proof. From expression (7) we see that modulo th+1 it is only

the lowest order terms of the coordinates that contribute to
the determinant of vi . Assertion (i) consequently follows

from Lemma 9.

At the point t = 0 the expression (7) shows that if hi— sm< hi

1
then the columns i + 1, i + 2, ..., r + 1 of the matrix re-
presenting vm(x) are zero. Since (2?) = 1 in all characteristics
the (hj + 1, j + 1)-entry is nonzero and the expression (7)
shows that the first hj entries of column (j + 1) is zero, it

follows that the first i columns are linearly independent. In

other words, assertion (ii) of the theorem holds.

More precisely, the above argument shows that im vm(x) is gen-

hO m J
erated by elements (dt) + b b L(dt)?, c.. -

(at) i1 r b @3 o
t + z . . (dt .
j=h, ,+1 < 1,3 with bi,j € k. We see the

i-1
element (dt)™ which generates the kernel of the map Pm(x)*EFP1(x)

is in im v™(x) if and only if m = hi-1' Hence assertion (iii)
holds.
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Finally, assertion (iii) of Proposition 2 states that the
integer (m + 1) is a gap if and only if ker (F™(x) - Pm-"l (x)) = V(x) .

Consequently assertion (iv) follows from assertion (iii).

§ 5. Characteristic (k) = p with p =0 or p > 4.

Theorem 11. Let p = char (k) and assume that p = 0 or p > d.

Then the following assertions hold;

(i) We have bi =3i for i=0, ..., xr.

i
-

(ii) For a general point x of C we have gi(x)

for i =1, ..., r + 1.

(iii) A point x of C is a Weierstrass point of D if and only if

dim Wrf(x) > 0 .

(iv) The wronskian determinant is the composite of the canonical

r+1 r r+1 o r+1 r
map A v : A H (C,D)C - A P (D) with the canonical
r+l r 1,@i
isomorphism A P™ (D) ® (Qc) ® 0(D) obtained from
i=o
the sequences (2) of § 1.
(v) (C. Ssegre [11] § 11 n. 43 p. 86, see also C. Galbura [1]
Teorema 2 p. 352). The weight of a point x of C is
r
z (g, (x) -1 -1).
i=o i+1

(vi) The total weight of D is ((g = 1)r + d)(r + 1).

Proof. (i). We observed in the definition of gaps in § 2 that

for all points x of C we have gi(x) < (d+1) fori=1, ..., r+1.
Consequently it follows from Theorem 10 (iv) that hi < 4 for

i=0, ..., r. Moreover, it follows from the Riemann-Roch

theorem that r < d. Hence we see from the formula of Theorem 10 (i)
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that det Vi is not identically zero. It follows that vl is

generically surjective and consequently that rank B (D) = r.
(ii) . This assertion follows from (i) and Proposition 3 (ii).

(iii) . It follows from (i) and Proposition 3 (iii) that a
point x of C is Weierstrass if and only if dim Wm(x) > 0 for
some m = 0, ..., r. The latter assertion is however equivalent
to the assertion that dim Wr(x) > 0 because of the surjections

Wm(D) - Wm_1(D) of diagram (3) of § 1.

(iv) . This assertion is an easy consequence of property (ii)

of Theorem 4.

(v) . The order of vanishing of the wronskian w at x is by (iv)
equal to the order of vanishing of det vl at x. It follows
from Theorem 10 (i) and (iv) that this order is equal to

r r
> (hi - i) = E (gi+1(x) -i-1).

i=o i=o

(vi) . This assertion follows from Proposition 6 and assertion

(i) above.

Remark. Curves having property (i) of Theorem 11 are said to

have a classical gap sequence. Several classes of such curves

are known (see e.g. [6] and [10]). For curves with a non-classi-
cal gap sequence the properties (i) - (vi) all fail. However,

as we have seen in the previous sections, the properties

(i) - (iv) and (vi) all generalize naturally to this case.

The most unfortunate feature of the non-classical case is that
property (v), which is very important for the computation of
multiplicities of Weierstrass points, do not generalize to

state that the local multiplicity is .g (gi+1(x) - bi - 1)

(see example 2 of § 6 below). This ma;;: it the more surprising

that the global formula (property (vi)) globalizes (Theorem 6).
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§ 6. Examples.

1. The following example was discussed by K. Komiya ([5] § 4

p. 390) who showed that the curves x> + y3 + z3 + XA = 0 with

k2 + A are the only curves of genus 4 in characteristic 2 with
non-classical gap sequences. We shall prove that they give
examples of curves having a Weierstrass point x (or more
precisely having a point x such that dim wz(x) > b2 - 2) with
the property that dim wi(x) = dim W3(x) = by - 3. That is x is

not a Weierstrass point in the sense of Mount and Villamayor.

Assume that char k = 2. Let C 52P3 be the complete intersection
_ 3 3 3 3
of the two hypersurfaces XXy = XX, and x] + %X, + x3 + Axo

where Xz *#+ A. Then C is non-singular of degree 6 and genus 4
and consequently is canonically embedded ([3] Chapter 4, § 5

Example 5.2.2). We choose D to be a canonical divisor.

Map the curve C intoIlP2 by the projection ofilP3 toiPz with

center at the point (0; 0; 0; 1). We obtain a plane model of

. . 3.3 3.3 3.3 6 .
C with equation X x5 + Xo%q + X Xy + Axo. The plane model is

non-singular in the affine piece X, #* 0. At the point (1; a; c)
of the plane model x3y3 + x3 + y3 + A we can choose x - a = t

as local parameter. Write y - c = '§1 cit
stitute the expressions for x and ;_into the equation of the

+ (mod t5) and sub-

plane model. Comparing coefficients of the powers of t we

obtain when b # 0 the following equations

(3 + 1)a? Ca(ed + 1) A% v
€1 = 73 2’ ©2 775, 3 2 ' ©3° 3,3 and
(a” + 1)c c(a” + 1) c (1 + av)
2, 3
Cy = Egigg—i—llz (A + a3c3 + a606) .
c (a” + 1)
. . 3.3 3 3
At a point (1; a; c; ac) with a> ¢ + a> + ¢ + A =0 and c + 0
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the embedding C 52P3 is given by the functions

_ _ _ z i _ > i+1

e, = 1, e, = a+ t, e, =c¢ + .E cit and ey = ct + 'E cit
i=1 i=1

or after a change of basis

- _ _ 2 3 _ 2 3
fo =1, f1 = t, f2 = czt + c3t + ... and f3 = c1t + c2t + ..
From the above formulas we obtain the two equations c% = cqc3

3 2
and C3C, — C4C, = i%§—i§ll—é—§ (A3 - a3c3(A + a3c3 + a606)).
c (a” + 1)

Using the relation (c3 + 1)a3 = c3 + A it is easily checked

that the latter equation is non-zero for most choices of c.
Consequently the Hermite invariants at a general point of C

are 0, 1, 2 and 4. Again it follows from Theorem 10 (iv) and

Proposition 3 (ii) that bO = 0, b1 =1, b2 = 2 and b3 = 4.
The point (1; 0; d) with d> + A = ¢ is on C. At this point
3
c, = ¢, =¢, =0 and c, = a + 1 + 0 and the Hermite invariants
1 2 4 3 d2

are 0, 1, 3 and 4. Consequently (1; 0; d) is a Weierstrass

point of the canonical divisor d.

On the other hand the matrix expressing v4 at the point (1; 0; c)

is
1 0o o0 o0
0o 1 0
0 o 0
0 0 oy O
o 0 0 g .
We see that rank v-(1; 0; c) = 4 so that dim W>(1; 0; ¢) =5-4=b,-3.

2. The purpose of the following example is to show that the
weight of a Weierstrass point x is not necessarily equal to

r
g, (x) - b, - 1.
i=0 i+1 i
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Assume that char k = 3 and let C be the elliptic plane curve
given by the equation y = x3 + xy2. Then
(x) = (0; 0; 1) + (0; 1; 0) - (i; 1; 0) - (-i; 1; 0) and
(y) = 3(0; 0; 1) - (0; 1; 0) = (i; 1; 0) - (-i; 1; 0).
We let D be the hyperplane section (0; 1; 0) + (i; 1; 0) + (=i; 1; 0).
Then deg D = 3, dim HO(C, D) = 3 and HO(C, D) is spanned by
1, x and y. At a point (a; c) of the curve we choose a local

2

parameter t = x - a and we let y = ¢c + c1t + czt cee o

Substitution of x and y into the equations of the curve allows

us to determine c,, c,, ... . We obtain c; = 21 - 2ac)_1,
c, = ¢y (ac1 + 2c¢c) (1 - 2ac)_1 and cy = 1 + 2ac1c2 + cf + 2cc2) (1 - 2ac).
Hence bO =0, b1 = 1 and b2 = 2, and at the point (0; 0) we
have ho =0, h1 = 1 and h2 = 3.
r
At (0, 0) we have that = gi+1(0, 0) - bi - 1 = 1. However the

i=o
wronskian matrix is of the form

1 a+t €3+¢/+2e" ...

0 1 €+ 104 ...

0 0 2¢2 +...| .

Consequently the multiplicity of the wronskian is 9. It is
easily checked that the point (0; 0) is the only Weierstrass
point in the affine piece z = 1 and considering the equation
z2 = x3 + x of the curve in the affine piece y = 1 one sees
that there are no Weierstrass points in the latter affine

space. Hence the curve has only one Weierstrass point and

this point has multiplicity 9.
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3. It is well known (see e.g. F.K. Schmidt [10]) that the
hyperelliptic curves furnish examples of curves of arbitrary
high genus and with classical general gap sequences, but
with only one Weierstrass point. We shall give a treatment

of a class of such curves suited to our purposes.

Assume that char k = 2. Let m be an odd integer and let C be

m - 1 m

2
as a plane model. The map (x, y) - x of the plane model onto

the hyperelliptic curve of genus having y2 +y = x
A1 induces a map C - P! which is unramified of degree 2
over A' and has a single ramification point P_ over the
point at infinity. At all points (a, b) of Al we can take

(x + a) as a local parameter. We find that (x) = (0,0) + (0,1) -2P_
and (y) = m(0, 0) - mP_. Hence if t is a local parameter at

2

P_ then at this point x = ut” “ and y = ve ™

with u and v units.
The function y + b is a local parameter at all points (a, b)

of A1 except at (0, 0) and (1, 0) where it has multiplicity m.

We obtain that (dy) = (m-1)(0, 1) + (m=-1)(0, 0) = (m+1)P_
and that K = (x ™ dy) = m - 3. Moreover, we see that

m-3
1, x, xz, eeey X 2 is a basis for H°(C, K). Since the func-

tion x + a = tisédlocal parameter at all points (a, b) of A1

m-3

and the functions 1, (a + t), (a + t)z, ceey (a + t) 2 are

linearly independent for all a € k we have that bi = hi =i
for i = 0, 1, ..., r. Hence P_ is the only Weierstrass point
and by Proposition 6 it has weight (g + 1)g(g - 1)

. - 2—
=37 (m 3m m + 3).
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