
Astérisque

ARMIN LEUTBECHER

JACQUES MARTINET
Lenstra’s constant and euclidean number fields

Astérisque, tome 94 (1982), p. 87-131
<http://www.numdam.org/item?id=AST_1982__94__87_0>

© Société mathématique de France, 1982, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1982__94__87_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


LENSTRA'S CONSTANT AND EUCLIDEAN NUMBER FIELDS 

by 

Armin LEUTBECHER and Jacques MARTINET 

1. - Introduction 

A. Hurwitz([8]) puts at the very beginning of his "Theorie der algebraischen 

Zahlen" a variation of the Euclidean theorem on division of integers : "Bezeichnet 

x eine beliebige Zahl des Korpers K , so lassen sich die ganzen Zahlen 

X- > X~ , X 0 > . . . X desselben Korpers so bestimmen, dass von den Normen der 1 L 3 m 
Zahlen 

x-X i , 2x-\ , 3x-X , . . . , m x - X 
1 2 3 m 

mindestens eine absolut genommen kleiner als 1 ist. Dabei bedeutet m eine po­

sitive ganze Zahl, die ausschliesslich v o n dem Korper K abhangt". 

At the end of his life, he returns to this Hilfssatz ( C 9 3 ) , remarking that one 

gets an upper bound for m from Minkowski's theorem on linear forms, for 

instance m < J \ dJ , if K is of degree n > 1 , where d = d^ is the discriminant 

of K . The main property of the set of factors for x (i. e. 1, 2, 3, , . , , m 

in this case) , used in proving the Hilfssatz, is that, up to the sign, the difference 

of any two is again in that set. This gives also an easy proof of the fact that the 

ring o C l / m ! ] of quotients of the ring o of integers of K , is Euclidean with 

respect to its norm (a special case of a theorem of O'Meara, Cl8] ) . 

Now, H. W. Lenstra substitutes, when possible, the factors for x by numbers 

OUH f UUo » •• • * UU £ 0 whose mutual differences w.-uu. are units. One then concludes 1 2 m I j 

that o = itself is Euclidean with respect to the usual norm. If I is a nontrivial 

ideal of 1L (with minimal norm L = L(K)) , then all the UJ.'S project on dif-
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ferent cosets in Z _ _ / l . Therefore one has the upper bounds 

m < L < 2n . 

For K , we define the constant of Lenstra M = M(K) to be the maximal 

length m of sequences ou., > UU~» • •• > UU in Z T , , for which the mutual differences 
1 2 m K 

Ci)̂ -CUj ( i / j ) are units. This constant was introduced in [ l O ] . Using packing ar­

guments, Lenstra actually gives there constants g (where r resp. s is the 

number of real resp. complex imbeddings of K ) with the following property : 

the inequality 
M > a p i > | d K l * 

implies that K is Euclidean with respect to the norm. By this method, Lenstra 

raised the number of known Euclidean fields from 189 to 311. He first gave 

examples in degree n= 6, 7 , 8 . 

After Lenstra1 s paper, seven new Euclidean fields were discovered ; the two 
i i 

fields G((-2)4) , <Q((-7)4) by Cioffari ([2]) , the field <Q(/3" , , JS) by 

Lenstra himself ( [ l l ] ) , and four fields by Mestre (C 15J ) . Mestre found lower 

bounds for M(K) using elliptic curves, and he got a first example with signature 

n= 8 , r= 2 . 

In this paper, we prove the existence of 114 new Euclidean fields, including 

examples of signatures (7, 3) , (7, 5) , (9, 1) , (10, 0) . All these fields are seen to 

be Euclidean by explicit construction of sequences , . . . » u>m • They can be found 

in table 3 at the end of the paper. 

In [103, Lenstra asks for a better upper bound of M than 2n . Fields with 

unit rank r + s - l < l are easily dealt with (seeClO], 3 . 9 - 3 . 1 1 ) . We give non-

trivial upper bounds of M for fields with unit rank 2 ; in particular, for cubic 

fields one has M < 3 except for the two fields with discriminant -23 , 49 respec­

tively. Moreover, there are interesting connections for cubic fields between 

Lenstra's constant and class numbers in the ordinary and in the narrow sense. 

Lenstra's constant even is linked with fields of small discriminants : it is an 
1 /n 

experimental fact that fields K of root discriminant (d^l close to the lower 

bound given by Odlyzko under GRH have rather large M . Conversely, a 

search for fields with long sequences ou- , 0Uo , . . . , uu often reveals fields with 
l L m 

small discriminants. We give such examples for n = 7 , 8 , 9 > 10 , despite the 
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lower bound for M does not allow the conclusion that all these fields are Eucli­

dean. So, small discriminants show that Lenstra's constant has an interest inde­

pendently of its application to Euclidean fields. 

In section 2, general properties of Lenstra's constant are discussed. Section 3 

is devoted to lower bounds of M , whereas sections 4 , 5 , 6 deal with fields of 

degree n < 6 . For some fields, we need a particular study of M (section 7) . 

Section 8 concerns the questions of small discriminants, and a ninth section at 

the end of this paper contains tables. The last one is an update of Lenstra's table 

11 of [ lo ] giving the number of known Euclidean fields K according to n and 

r + s . 

Some more results can be found in "Seminaire de Theorie des Nombres, 

Bordeaux, 1981-1982", to appear. 

We acknowledge the assistance of H. J. Toussaint at Technical University of 

Munich in computing discriminants. 

Those who know the number fields "individually" will have some pleasure in 

reading this paper ; they too will find several unsolved problems to deal with. 

2. - Exceptional sequences 

2 .1 . - Notation . - Throughout this paper, the fields we consider are number 

fields, which are subfields of an algebraic closure of (Q chosen once for all. 

Given a number field K , we denote by n^ , r^ , s^ , , E ^ , Cl^ , Cl^ the 

degree of K , the number of real places of K , the number of complex places 

of K , its discriminant, its group of units and its class groups in the ordinary 

and in the narrow sense. As usual, the orders of Cl and Cl* are denoted by 
+ 

h^ , and h^ . We write for the ring of integers of K . For the notation 

L(K), G, H , E^. , U(f), see below. We shall very often suppress the subscript 

K when there is no risk of confusion, and write simply M or L instead of 

M(K) or L(K). 

2. 2. - Exceptional units. - Let K be a number field and let m be an integer 

such that there exists a sequence oui, ou , . . . , ou of elements of K in which all 
1 2 m 

differences ou.-UK ( l < i < j < m ) are units. We assume m > 2 ; this is possible : 
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take a)- = 0 and ou = 1 . Replacing ou. by (uu.-uu )/({ju1-tl) )» we rnay assume that 
1 2 l l o 1 o 

one has a)̂ = 0 and uu^ = 1 • The cu.'s are then integers, and have distinct images 

modulo any non trivial ideal Q of Z . Thus, one has the inequality 

m < N ^ ^ ( o ) for every ideal of K ; this proves the existence of M(K) . Following 

Lenstra, we define L(K) to be the lower bound of the norms of the ideals of K 

other than (0) and 2£ . Clearly, L(K) is a prime power, and the following 

inequalities hold : 
2 < M ( K ) < L ( K ) < 2 = N K / D ( 2 Z K ) . 

The inequality M(K) > 3 is equivalent to the existence of a unit x of K 

such that 1-x is also a unit. Such units were called exceptional by Nagell (Cl6j) . 

We call E the set of exceptional units of K ; it is a finite set. 

Let G be the group of order 6 , isomorphic to the symmetric group S^ , gene­

rated by the nomographic transformations x«—• l / x and x»—• 1-x . This group 

acts on E , and it is easily verified that this action is faithfull, unless there is 

in K a primitive 6-th root of unity x , which has an orbit under the action of G 

containing only two elements. We thus have card E = 2 (resp. 0 ) mod. 6 if 

y -3 £ K (resp. 

Let x be an exceptional unit of K . Then, N ^ y ^ x ) anc* ^ K / < Q ^ " X ^ TA -̂E 

values in [-1 , +1} . Hence, exceptional units in fields of degree n are defined 

by 4 families of polynomials depending linearly on (n-2) parameters, namely 

their characteristic polynomials. We denote by (resp. P̂  , P̂  , P )̂ the poly­

nomials for which the system (NJ£/Q(X) » ^ K / ( Q ^ ~ X ^ takes tne value 

((- l )n, (-l)n) (resp. (1, -1) , (-1, 1) , ((-l)n+1, (-l)n+1) . We say that x is of the 

first kind if some element of G x is a root of a polynomial P̂  , of the second 

kind otherwise. If x is of the first kind, then all the units of the orbit Gx are 

roots of a polynomial P^ . If x is of the second kind, then the elements of Gx 

are by pairs roots of polynomials P̂  , P̂  and P̂  . 

2 . 3 . - Exceptional sequences 

2 . 3 . 1 . - DEFINITION. - Let K be a number field, and let ( ^ , . . . , ( 1^0*1^2) be 

a sequence of elements of K . We say that this sequence is an exceptional sequence 

if 0 )1=0, ou2= 1 and all the differences uu . -d^ ( l < i < j < m ) are units. 
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The sequence 0 , 1 , ou is exceptional if and only if ou is an exceptional unit ; 

thus, the notion of an exceptional sequence is a generalization of that of an excep­

tional unit. 

Clearly, 0 , 1 , oj^, . . . , ou^ is an exceptional sequence if and only if the following 

two conditions are fullfilled 

(i) For 3 < i < m , OU-6 ^ • 

(ii) For 3 < i < j < m , OUVGU.. 6 EK • 

The group G acts on exceptional sequences : if 0 , 1 , ou , . . . , ou is excep-
3 m 

tional, so is 0 , 1 , s ou ~, . . . , s cu for any s c G . 3 m 

2. 3. 2. - DEFINITION. - Let 0 , 1 , m , . . . , ou and 0 , 1 , uu' , . . . , U)F be two 
3 m 3 m 

exceptional sequences of a field K with the same length m . We say that they 

are equivalent if the second one can be obtained from the first one by successive 

transformations of one of the following forms : 
(i) to replace all the UJ. 'S for i > 3 by their images under the action of an 

element s £ G ; 

(ii) to change the order of the ou/s for i > 3 ; 

(iii) to replace the sequence 0 , 1 , w , . . . , OU by the sequence 
3 m 

0 , 1 , 1/GU„ > OU /̂OU^ , ... , OU / U U . 

2.4 . - Some upper bounds of M . - W e give in this subsection some upper bounds 

of M which are obtained by a study of the unit group E modulo its subgroups 
2 2 EK and ± EK . 

2 . 4 . 1 . - PROPOSITION. - Let K be a field of degree n with r real places 

and s complex places (r + 2s = n), and let 0 , 1 , o u 0 » " « > ou be an exceptional 
3 m 

sequence of length m in K . 

(i) If none of the (m-1) (m-2) / 2 units ou. ( 3 < i < m ) , ou./ou. (3 < i < j < m ) 
r+s 1 J 1 

is a square, then m < 1 + 2 

(ii) If none of the units above is a square nor the opposite of a square> and 

if £4^K , then m < l + 2 r + S " 1 . 
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(iii) If no exceptional unit of K is a square, and if K has at least one real 
r+s -1 

place, then m < l + 2 

/ 2 r+s 
Proof. - (i) The group E / E has exactly 2 elements. If the length m of 

K K 
r+s 

the sequence were greater than 1+2 , then 2 units ou. , ou. would have the 
/ 2 , 1 J 

same image in E / E , and the ratio ou./ou. would then be a square. 
K K i i 

2 2 (ii) Use the same argument with E / ± E instead of E / E . 

(iii) Let v be a real place of K . The argument used to prove (i) will 

actually prove the inequality obtained under condition (ii) if we can show that there 

exists an exceptional sequence equivalent to the given one in which all the units 

are positive at v . This is a consequence of the following lemma : 

2 .4 . 2. - LEMMA. - Let K be a number field together with a real place v , 

and let 0 , 1 , OÛ  , . . . , ou^ be an exceptional sequence ; then, there exists an ex­

ceptional sequence 0 , 1 , oû  , . . . , ou' equivalent to the given one such that the  

units ou'̂  ( i > 3 ) satisfy at the place v the inequalities 0<ou',<l . 

Proof. - There is nothing to prove if m = 2 . Let m be > 3 . Replacing if neces ­

sary the given sequence by the equivalent sequence 0 , 1 , 1 -tD̂  > . . . , 1 » we rnay 

assume that ou^ is positive at v . Replacing then if necessary the sequence 

0 , 1 , ou0 , . . . , OU by the sequence 0 , 1 , l /ou~ , . . . , l /ou > we obtain the required 3 m 3 m 

inequality for ou^ . Now let m1 be the greatest integer for which there exists a 

sequence 0 , 1 , tu'̂  » » U>m equivalent to the given one such that the units ouV 

for 3 S i < m ' satisfy the inequality 0 < o u ' . < l at v . By the argument above, 

one has m':>3 . We show now that m' = m . Otherwise, consider the unit 

x = ou' l+j • One has x > 1 or x < 0 at v . If x is > 1 , then we replace the 

sequence 0 , 1 , ou'o » ••• » OU1 by the sequence 0 , 1 , l / x , 0Uo/x , . . . , ou' , / x » 3 m y m ' ' 
OU* . , ~ / x , . . . , ou' / x ; if x < 0 , we replace the sequence 0 , 1 , ou' , . . . , ou' by 
m'+2 m 3 m 

the sequence 0 , 1 , » ••• » l~(JUm » an(* aPP*v once again the argument above. 

3 . - Lower bounds for M 

3 .0 . - The trivial estimate M > 2 allows to conclude Z „ to be Euclidean for 

9 quadratic fields (d = -11 , - 8 , -7 , -4 , -3 , 5 , 8 , 12, 13) , for 4 cubic 

fields (d= -23 , - 31, - 4 4 , 49) and for seven quartic fields (d= 117, 125, 144 , 
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189 , 225 , 229 , -275) . Yet only the last two Euclidean fields were detected by 

Lenstra's method. 

M(K) = M > 3 is the same as to say that contains an exceptional unit. In 
i l i 2 ± 1 

degree two one has exactly 8 exceptional units, namely , 0 , ± Q , the 

zeros of X 2 - X + l , X 2 - 3 X + 1 , X 2 - X - l , X 2 + X - l . Therefore M(Q(v/:3))= 3 , 

M(Q(s/r5)) = 4 and M = 2 for all other quadratic fields. The exceptional sequence 
0 , 1 , £/ gives seven further Euclidean fields (four in degree 4 and three in 

o 

degree 6 ) whereas 0 , 1 , 0 , 0 + 1 proves 2£ Euclidean for seven further 

quartic fields. 

3 . 1 . - The last two exceptional sequences are special cases of a proposition of 

Lenstra. 

3. 1. 1. - DEFINITION. - Let f be a polynomial with coefficients in Z , and 

let x be an algebraic number. We say that x is a unit for f if f(x) is a unit 

in Q(x) . Notation : x£ U(f) . 

3. 1. 2. - PROPOSITION (Lenstra C 10 ] , prop. 2 . 4 ) . - Let x be an algebraic  

integer with minimal polynomial f , and let K be an extension of {Q (x) . Then : 

I - M(K) > 3 if 0, 1 £ U(f) 

II - M(K) > 4 if 0, 1, -1 £U(f) 

III - M(K) > 5 if 0, 1, C6 € u(f) 

IV - M(K) £ 5 if 0, 1, - 1 , 9 € u(f) 

V - M ( K ) > 6 if 0, 1, - 1 , £4 , £ €U(f) 

VI - M(K) >6 if 0, 1, -1 , 0 , -0 € U(f) (0 , C4 , £3 are defined in 

table 1 below) . 

To prove these inequalities, Lenstra uses the following sequences : 

0 , 1 , x ; 0 , 1 , x, x+1 ; 0 , 1 , x , 1/(1-x) , (x-1) /x ; 0 , 1 , x , x+1 , x ; 

0 , 1 , x , x2 , x^ , x^ and 0 , 1 , x , x+1 , x , x2+x , together with the following 

remarkable lemma ( C l O ] , lemma 2.5) 

3 . 1 . 3 . - LEMMA. - Let f, g £ ZLXJ be monic polynomials, irreducible over 

(Q , with respective roots x , y in some extension of {Q . Then, xg U(g) y ^U(f). 
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3 . 1 . 4 . - Remark. - The inequality M > 6 of V can be improved to M > 7 by 

using the following sequence : 

V* 0 , 1 , x , x+1 , -x2 , -1 /x , x / (x+l ) . 

Table 1 

symbol definining equation d L M reference 

0 02- 0 - 1 = 0 5 4 4 II 

a a3-a - 1 = 0 - 23 5 5 IV 

Y y3+ y - 1 = 0 - 31 3 3 I 

3 2 
K H + H - H + 1 = 0 - 4 4 2 2 

3 2 2 
T] n + T ) - 2 r | - l = 0 49 7 7 A o r B , x + x 

p 34-33_p2+ g + 1 = 0 117 7 6 B 

v V4- v + 1 = 0 229 3 3 I 

? §4 -2§3+ §2 + 1 = 0 272 4 3 I 

p p4-2p3+p - 1 = 0 - 275 9 9 A2 

6 64- 6 - 1 = 0 - 283 7 7 Bx or V* 

e e4- 2e2+ 3e - 1 = 0 - 331 5 5 III 

a a4+a3-3a2-a+l = 0 725 11 >10 C , - l / ( x 2 - x - l ) 

Table 1 gives twelve symbols for certain algebraic integers s . The number 

d is the discriminant of the ring z C s ] , which, in these cases, is the maximal 

order 2£ of the field K = (D(s) ; L = L(K) denotes the least non-trivial ideal 

norm and M = M(K) the Lenstra constant of that field. In line 5» sequence A 

refers to the minimal polynomial of - r j instead of r\ ; the symbol denotes 

a primitive m*'*1 root of unity. 

3. 2. - New sequences. - Here, x is a zero of a monic irreducible polynomial 

f € ^ C x ] . 
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A 0 , 1 , x , x+1 , x , x / ( x - l ) , l / (2 -x) is an exceptional sequence 

under the conditions 0 , ± 1 , 2 t 0£U(f) . 

Example. - The polynomial X ? + X 6 - 6 X 5 - 5 X 4 + 8 X 3 + 5 X 2 - 2 X - 1 defines 

the field with n = r = 7 which is known to have the minimum discriminant, namely 

20 134 393 = 71.283 583 ( [20 ] ) . For this field, M = L = 7 . 

2 
B 0 , 1 , x , x+1 , x , (x+1) /x is an exceptional under the conditions 

0 , ± 1 , 0 ,a € U(f) . 

Example.- The polynomial X ? - X 6 - X 5 + X 4 - X 3 - X 2 + 2X + 1 , with n = 7 , r = l , 
3 

s = 3 and discriminant - 71 defines a subfield of the Hilbert class field of 

(Q(/v/-71), and is obtained from Weber's polynomial by the transformation 

f(X) }—> -X f ( - l / X ) ( [21 ] , p. 723) ; the inequality M^: 6 proves that the field 

defined by a zero of f is Euclidean. 
2 2 

B^ 0 , l , x , x + l , x , ( x + l ) / x , -x / (x - x - 1 ) is exceptional under the 

conditions of B together with r\ £ U(f) . 

Example. - The equality M = L = 7 for the field (D(6) can be proved by applying 
4 

Bj to the polynomial X - X - 1 (cf. table 1 ) . 

Note that B 1 is an enlargement of B ; other possible enlargements are B , 
2 2 2 x +x (resp. B , x /(x -1) provided one has -0^U(f) (resp. v^2€U(f)). 

One can combine these conditions and obtain the very fruitful sequence : 

2 2 2 2 2 C 0 , 1 , x , x+1 , x , (x+1) /x , -x/(x - x - 1 ) , x /(x - 1 ) , x + x , 

which is exceptional of lengh 9 without any extra condition ; 20 new Euclidean 

fields were discovered by this sequence or some enlargements by one more term ; 
2 

for instance, the enlargement by - l / ( x - x - 1 ) proves the inequality M > 1 0 

for Q(a) (cf. table 1 and § 5 . 3 . 3 ) . Trying (x+l ) /x of sequence B as an 

enlargement of sequence A gave the sequence A^ = A , (x+l) /x , which is excep­

tional under the conditions 0 , ± 1 , 0 , a > 2 , ,/2^U(f) . 

3 . 3 . - Some more enlargements of sequences A , B , C 

Let f ( X ) = X - 5 X + 7 X + 2X - 9X +2X + 1 , the norm from <Q(0) to <Q 

of f (X) = X 3 - ( 0 + 2 ) X 2 + 2 0 X + 1 £ 'ZL 0 , X ] , of discriminant 
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3 - 144 875 = -5 . 19. 61 , which appears in table 3 , ns 6 , r = 4 , s = l . Sequence 
A shows the inequality M >7 , and a search among the exceptional units of (D(0) 

2 2 
gave the enlargement of A by 0 . Expressing 0 by a function of x and using 
the invariance of A under the transformation x«—* 1 -x , one finds the exceptional 

2 2 
sequence A , (x -1) / (x -x-1), under the additional conditions 

-1 -2 
-t), - f] ,6 £ U(f) . Now, let T be the transformation given by x*—• (1 -x) fol­
lowed by ou •—•X/(1-UJ) ; then s = t ° t : uu x(ou -1) /((ju -x) is a projective 
transformation of Q(x) of order 2 . We remark that A together with infinity is 

2 2 2 3 2 the union of 2 orbits under T . Because s ((x - l ) / (x -x- l ) )= -x /(x - 2x -x+1), 
we have the new exceptional sequence 

A = A , (x2-l) /(x2-x-1) , -x2/(x3-2x2-x+l) 
-1 -2 

under the conditions O , ± l , 0 , 2 , - r | , - t ] > & 6 U(f) and 
5 4 3 2 

"x -x -3.x + 2x +x-l is a unit". Despite its complication, many new euclidean 
fields were found by making use of A^ • We now give some other enlargements of sequences A , B and C . 

2 2 
B2 : B1 , x / (x -1) ; conditions : 0 , ± 1 , 0 , a , >/2 » t) £ U(f) . 

(note that B. and B invariant under s ) . 

B'2 : B , x2/(x2-l), -l/(x2-x-l) ; conditions : 0, ± 1 , 0 , a , v72 > -l/6€u(f)-

B3 B2 ' "1/(x2-x-1) conditions : 0 , ± 1, 0 , a , JZ , r\ , -1 /& £ U(f) . 
3 3 2 B' : B! , (x -x)/(x -x-1) ; conditions: 0 , ± 1, 0 , a , *J1, -1 /& , l /y ,6gU(f) 

5 4 3 2 and "x -x -x + x - 1 is a unit". 
2 2 2 B : B~ , x/(x - l ) , (x -x-l) /(x -2) ; conditions : those of B plus 
2 4 3 2 M2x -x-2 and x -2x - 2x + 3x+1 are units". 

2 /, 2 
The next sequence is obtained from C by subtituting for x /(x -1) an orbit 
under s : 

C* : 0 , 1 , x, x+1 , x2 , (x+l)/x , -x/(x2-x-l), (x3+x2-x - 1)/x , 
(x4+x3-2x2-x)/(x3-x - 1) , x2+x ; conditions : 0, i l , ± 0 , 
a, Jt, TI , (l-e)/eeU(f) and "x5-3x3+2x+l is a unit". 

Remark. - Further enlargements of the sequences above can be found in table 3 ; 
some of them were found by making use of other homographic transformations, 
e.g. ou i—• (x + x) / uu or ouf—• x/(x+l -ou) . 
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3 . 4 . - Complements. - So far, all the sequences we considered made use of 

the conditions 0 , ± 1 , 0 ^ U(f) ; looking for sequences which avoid the conditions 

- 1 ^U(f) gives the following sequence 

2 

D 0 , 1 , x , 1 / ( 1 - x ) , ( x - l ) / x , x-x , which is exceptional under the 
2 

conditions 0 , 1 , Q , Q^, a £ U(f) ; note that it is an enlargement 

of Lenstra's sequence III (cf. prop. 3 . 1 . 2 . ) . 

3 . 4 . 1 . - Remark. - All the sequences described above make use of one of the 

conditions 0 , 1 , - l^U(f) or 0 , 1 , C ^ 6 ^ ( f ) . Proposition 3 . 4 . 2 . below gives a 

reason for this. Recall that a sequence 0 , 1 , x , y is exceptional if and only if 

x , y and y/x are exceptional units. But, under these conditions, ( l - y ) / ( l - x ) 

and ( 1 - 1 / y ) / ( 1 - 1 / x ) are also exceptional units, so that we may expect to find 

5 orbits under the action of G (cf. § 2 . 2 ) . 

3 . 4 . 2 . - PROPOSITION. - If the five orbits of x , y , y/x , ( 1 -y) / ( l -x) and 

( 1 - l / y ) / ( 1 - l / x ) are not distinct for an exceptional sequence 0 , 1 , x , y , then 
2 

the sequence is equivalent to a sequence 0 , 1 , z , t with t = z + 1 , z o_r 
2 2 

1 / ( 1 -z) . (There are at most 3 orbits if t = z + 1 or t = z , those of z , -z , z 
2 2 2 

and at most 4 orbits if t = 1 / ( 1 -z) , those of z , z - z , - ( 1 - z ) / z , ( z - l ) / z . ) 

Since we do not use anywhere this proposition, we leave its proof to the reader. 

Note that there exist fields with M ^ 4 without any exceptional sequence invol­

ving the conditions 0 , 1 , - 1 £ U(f) or 0 , 1 , Q, ^U(f) 
6 

Example (see theorem 6 . 1 . 1 . below). - The two polynomials (see [ l o ] , table 6 ) 

X 6 - X 5 + 4 X 4 - 5 X 3 + 4 X 2 - 3 X + 1 = N , W N ( X 3 + X 2 + ( 1 - C J X - 1 ) and 
6 5 4 3 2 W I U J / W £ \ 2 

X - X + 2 X - 3 X + 2 X - X + 1 = N Q ( K J / Q ( X + K X + 1 ) , H J + H - H + 1 = 0 , 

of discriminants - 2 1 1 6 8 and - 2 1 2 9 6 respectively both have 0 , 1 , i , y c U(f) . 
2 

Therefore, 0 , 1 , x, l / (x + 1 ) is an exceptional sequence, and M = L = 4 . 

We now give some of the constants a refered to in the introduction 
6 r, s 

(a field K is Euclidean provided one has M(K) > g *J \ d^| ) . 
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n = 6 r = 2 , s = 2 : 2. 404 10*2 ; r = 4 , s = 1 : 1. 965 10"2 ; r = 6 , s = 0 : 1. 544 10"2 

n = 7 r = 1 , s = 3 and r = 3 , s= 2 : 9. 848 lo"3 ; r = 5 , s = 1 : 7. 793 lo"3 

n = 8 r = 0 , s = 4 and r = 2 , s = 3 : 3.955 lo"3 ; r = 4 , s = 2 : 3. 897 lo"3 

n = 9 r = 1 , s = 4 and r = 3 , s = 3 : 1. 563 10~3 

n = 10 r = 0 , s = 5 and r = 2 , s = 4 : 6.097 10~4. 

4. - Cubic fields 

We discuss in this section the properties of cubic fields which are related to 

Lenstra's constant. 

4 . 1 . - An upper bound for M . - Proposition 2. 4. 1, (iii), gives a quick proof 

of the inequality 5 for K / Q ( r ] ) . But we can prove a sharper result, namely : 

4 . 1 . 1 . - THEOREM. - Let K be a cubic field. Then, M(K) = 7 if = +49 , 

M(K)= 5 if dK = -23 , and M(K) = 2 or 3 otherwise. 

Proof. - There exist exactly 8 monic polynomials f£ z [ x ] of degree 3 with 

0 , ± l ^ U ( f ) ; they are the minimal polynomials of ± a ^ ^ and ± r f * . Thus, if 

some exceptional unit is a square, d^ = +49 or -23, and then M(K) can be found 

in § 3, table 1. Similarily, if -x2 is exceptional for some x £ K , then 

d^ = -23 or -31, and one has M = L = 3 if d̂ . = -31 . We may now assume that K 

does not possess any exceptional unit belonging to ± E2 . Theorem 4. 1 .1 . is then 

a consequence of the following proposition (the group G is defined in 2 .2 ; the 

orbit under G of an exceptional unit x is the set 

[x , 1-x, 1 /x , 1/(1-x) , (x - l ) /x , x / ( x - l ) } ) : 

4 . 1 . 2 . - PROPOSITION. - Let K be a number field of unit rank at most 2 , 

which contains an exceptional sequence 0 , 1 , u , v of length 4 . Then, some  

unit belonging to the orbit (under the action of G ) of one of the exceptional units 

u, v, v/u , ( l - v ) / ( l -u ) or ( 1 - l / v ) / ( l - l / u ) is the square or the opposite of a  

square, except possibly if [K : {Q] = 6 and K . 

Proof of 4 . 1 . 2. - Fields of degree < 4 containing are easily dealt with 

( [ 1 0 ] , § 3 ) . Assume that QA^K, and let E = E__ /±E2 . As a vector space 
4 is. K. 
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over IF , it has dimension < 2 , and this dimension is indeed 2 unless some 
L 2 

exceptional unit of K belongs to ± E , for the images of u, 1-u, (u- l ) /u are 
2 

not distinct if dim E < 1 . If none of the units u , v , v/u belongs to ± E , then the 
u 1 2 2 

images of u, v are a basis of E ; if 1-u and —— (g± E , one has v = ±X (1-u) or 
2 u rv 

v = ± \ (u-l)/u for some \ $ E . Replacing if necessary 0 , 1 , u, v by 
2 

0 , 1 , u , u/v , we may assume that the equality v = ± \ (1-u) holds. Now, if none 2 2 
of the exceptional units 1-v and ( l -v ) / ( l -u ) is in ± E , one has 1-v = ± (j. u 

2 2 
or 1-v = ±p. (u- l ) /u for some fi£ E . If ( l - v ) / u = ± | j , then 

2 2 
( 1 - l / v ) / ( l - 1 / u ) £ ± E . Thus, we may assume that the equality l - v = ±N ( U - 1 ) / U 

2 
holds. Consider now the unit 1-u/v ; if it does not belong to ± E , it satisfies 

2 2 2 one of the equalities 1 -u/v = ± v u , 1 -u/v = ± V (1 -u) , 1 -u/v = ± v (u-1) /u 
2 2 

for some V £ E If l - u / v = ± V u , then (1 -u/V)/(l- l /v) = 1 -(1 -u) / ( I -v )£ ± E ; 

if 1-u/v = ± \ T ( l - u ) , then ( l - u / v ) / ( l - u ) = l - ( l - l / v ) / ( l - l / u ) € ± E". ; if 
2 2 

1-u/v = ± v (u- l ) /u , then (u/v-1)/(u/v) g ± E „ , q. e. d. 

4 . 2 . - Cubic polynomials and exceptional units. - Let K be a cubic field which 

possesses an exceptional unit x , with trace a . With the notation of 2. 2, x is 

a root of one of the following four polynomials : 

P ( X ) = X 3 - a X 2 + (a-3) X + 1 

P ( X ) = X 3 - a X 2 + (a+1) X - 1 

P ( X ) = X 3 - a X2 + (a-1) X - 1 

P4(X) = X 3 - a X 2 + (a-1) X + 1 . 

The discriminants of these polynomials are ([16]) 

d (a)= (a2-3a+9)2 , d (a) = (a2- 3a - 1 f - 32 , d (a )=d (a-1) 
1 2 3 F2 

and d (a)= d (2-a) . 
4 2 

These polynomials were used by Nagell ([16]) to show that infinitely many 

abelian and non abelian cubic fields contain exceptional units, so that 

Theorem 4. 1. 1. is the best possible. The discriminant of P̂  is negative for 

- l < a < 4 , and then d^ = -23 or -31 , and positive otherwise ; moreover, one 

easily sees that dp is a square if and only if a = -2 or +5 , and then d^ = +49 

(i.e. K = O(T))). 2 

If P^(x)= 0 , then K = (D(x) is an abelian cubic field, and conversely, all ex­

ceptional units of abelian cubic fields are zeros of some polynomial P̂  except 
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for 18 units of Q(r\) . Polynomials P̂  were considered by M.-N. Gras ([7]) 

in connection with integral power bases in abelian cubic fields. She proved the ine­

quality M(K) < 3 for K abelian other than Q(r)) by the following argument : if 

0 , 1 , u , v is an exceptional sequence in K , then at least one of the units 

u , v, u/v has norm + 1 ; thus, K contains a unit of the second kind, and hence 

K = (Q(r)) . Note that all abelian cubic fields with M > 3 do have units of the first 

kind ; hence, for such a field, the ratio hK/hK is odd. 

4. 3. - Totally real non abelian cubic fields. - Let K be a cubic field, and let 

x be an exceptional unit of K . We suppose that K is not abelian. Hence 

(see 2.2) exactly 2 units of the orbit of x are defined by a polynomial P̂  . If 

u is one of them, the other is 1-u ; so exactly one unit of the orbit of x is a 

zero of a polynomial P̂  and is of positive trace. We denote by T this trace ; 

it is an invariant of the orbit of x , and we shall assume now that x is precisely 

this unit ; one has T > 6 by 4. 2. 

4. 3. 1. - THEOREM.- Let K be a totally real non abelian cubic field ; let x be 

an exceptional unit of K , with trace T > 6 and which is a zero of a polynomial 
3 2 

P2 : x - T x + ( T + l ) x - l = 0 . Then, the following properties hold for K and T : 

(i) The discriminant d^ of K is congruent to 1 mochilo 8 . 

(ii) Every prime divisor p of d^ has a prime factor of degree 1 in the  

quartic field of discriminant -448 ; in particular, such a p is congruent to +1 

or -1 modulo 8 . 

("i) h £ / h K = 2 • 

(iv) If T ^ l modulo 4 , then the exact sequence 

0 , (±1) > ciR—> C1R • 1 

splits ; if T = 1 modulo 4 , then h is even. 

(v) Let k be the quadratic field contained in the Galois closure N of 

K / C . Then, either = , or d̂ . = 72 and T = -2 mo dub 7 . 

2 2 2 Proof. - (i) One has dp = (T - 3 T - 1 ) - 32 = m for some m£ Z . Since 

dp takes only values = 1 mod. 8, so does d^ . The root of the equations 
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d (a)= 0 are 3* (3+eV^) J-l+*eJL (£ _ _x or This shows that the field 
P2 d 6 with minimal polynomial d^ is the quartic field of discriminant -448= - 2 . 7 , 

which prooves (ii) . 

(iii) The polynomial P̂  takes for X= 0, 1 , 2 the values -1 , +1 , 9-2T<0 ; 
thus, x is totally positive ; since it is not a square (§ 4,1), *s even. 
Since ±(l-x) are not totally positive, ^ / ^ = ^ • 

(iv) To prove (iv) , we construct extensions which are unramified at finite 
3 2 

places. Let y be a zero of the polynomial X -aX + (a+1) X-1 ; then, z = l/y 
is a zero of X3-(a+1) X2+a X-1 = X(X-1) (X-a) - 1 . Now, for a = 1 mod 4 , the 

2 2 
polynomial Z - (z-(a+1)/2) Z +[(a-l)/4] has coefficients in ZR and discrimi­
nant (z-a) ( z - l ) = l / z = y , a unit. Taking y = x if T = 1 mod 4 (resp. y = 1-x 
if T = 2 mod 4) , we see that the extension K(/3e)/K (resp. K(JQ7*j/K) IS un­
ramified (resp. ramifies exactly at two infinite places) . This proves (iv) if 
T = l or T = 2 mod 4 . Similarily, for a = 0 mod 4, we consider the polynomial 

2 2 

Z -(z-a/2) Z+(a/4) ; its discriminant is z(z-a)= l / ( z - l ) = y / ( l -y ) . We 
now take y = x if T = 0 mod 4 and y = l-x if T= -1 mod 4 ; the extension 
K(^/x(l -x)) /K ramifies exactly at two infinite places, q. e. d. 

2 
(v) Write d^ = d̂  f , so that f is the relative discriminant of N/k . Then, 

f divides the discriminant A of x , ax , a^x , where a generates Gal(N/k) ; 
2 2 2 

an easy calculation shows that A = T (T -3T-3) . Let p be a prime divisor of / 2 f . Then p is totally ramified in K/(D , and p divides T or T - 3T - 3 . If p 
, 2 2 

divides T , then p divides (T -3T-1) -32= -31 mod p ; hence, p = 31 ; 3 3 but one has P_(X) = X + X-1 mod p ; since X +X-1 has 2 distinct roots / 2 mod 31 , p cannot be totally ramified in K/Q . Hence, p divides T - 3T - 3 ; 
2 2 

then, (T - 3T - 1) - 32 =-28 mod p , thus p divides 28 , and p= 7 since d^ 
is odd by (i) ; the congruence T = -2 mod 7 is then obvious, and theorem 4. 3. 1 
is now completely proved. 

4.3.2.- Remark. - To non abelian cubic fields with h^ even (resp. with h^ 
odd and hĵ /ĥ r even), there correspond by class field theory quartic fields 
of type Ŝ  with the same discriminant which are totally real (resp. totally 
complex). By [4] , the first 2 discriminants of totally real Ŝ  fields are 
1 957 = -3 mod 8 and 2 777, which corresponds to T = 9 . Hence, the smallest 
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discriminant of a totally real non abelian cubic field with even class number and 
M = 3 is 2 777 . By [5] , the re are only 2 discriminants of totally complex 
quartic fields which are less than 761 and congruent to ±1 mod 8 , namely 257 
and 697 = 17.41 ; they correspond to T = 6 and T = 7 respectively ; hence, the 
smallest two discriminants of non abelian cubic fields, totally real, with M = 3 , 
are 257 and 697. 

4. 3. 3. - Remark. - For T = 9 , 13 and 17, we have verified that the sequence 

o — , (±i, — , o £ — > ciK — 0 

does not split. 

4. 4. - The field with discriminant d = 257 . - As we saw in the proof of 
theorem 4. 3. 1, the unramified extension K' of the cubic field K with discrimi­
nant d^ = 257 is generated over K by a root x of the polynomial 
f(T) = T2- y1 t + 1 where y is a zero of the polynomial X3+X2-4X-3 ; the 

6 5 4 3 2 
norm of f(T) is the reciprocal polynomial g(T) = T +T -T -T -T + T+1 , 

2 
with discriminant +257 . One has M(K') >7 by the sequence 

2 
0 , 1 , x, x+1 , x , l /x , x/(x+l) which is exceptional under the conditions 
0 , ± 1 , ± 0 , C3€u(g) > tnis proves that K' is Euclidean ; it has L = 8 ; the 
exact value of M (7 or 8) is not known. 

5. - Quartic and quintic fields 

We prove in this section upper bounds of M for fields with n = 4 , r <2 and 
n=5 , r=l , using proposition 2.4.1, (iii). We also discuss the value of M 
for the other fields with n = 4 or 5 . 

5.1.- Non totally real quartic fields 

5.1.1.- THEOREM. - Let K be a non totally real quartic field. Then, 
M(K) <5 except if K is one of the fields (Q(0) , Q(p) or (Q(6) of table 1, § 3, 
with respective discriminants +117 , -275 and -283. 
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Proof. - The result for totally complex fields is stated in [10] (§ 3. 11) , and 

can be proved directly by making use of remark 5. 1. 2. below together with pro­

position 4. 1. 2. For fields with r= 2 , we apply proposition 2 .4 . 1 (iii) , and de­

termine all the exceptional sequences 0 , 1 , u , v for which u is a square, say 

2 
u = x . 

Suppose first that K = Q(x) . Then x is a zero of a polynomial f with 

0 , ± 1 £ U(f) . Taking into account the action of the group 

H = [x>—> x , X}—> l / x , xi—> -x , x'—• - l / x } , 

we are reduced to study five families of polynomials depending linearly on an in­

tegral parameter a > 0 . We give the polynomials and their discriminants : 

P (X) = X 4 - aX3- X2 + a X + 1 d = (a2-4)2 (4a2+ 9) a xr 

Q (X) = X 4 - aX3- 2 X 2 + ( a - l ) X + 1 d ^ = 4(a2-a)3+16 (a2-a)2- 72(a2-a) - 283 a Qa 

R (X) = X 4 - aX3- 3 X 2 + a X + 1 d = (a2+4)2 (4a2+25) 

S (X) = X4 - aX3+ X 2 + a X - 1 do = 4a6 - 47 a4 + 112 a2- 400 
a a 

T (X) = X 4 - aX3+(a+l) X - 1 & = 4(a2+a)3- 48(a2+ a)2+ 84(a2+a) - 283 . 
a T 

a 

These discriminants are non zero, except dp for a = 2 or -2 . An easy ve­

rification shows that these five polynomials have 4 reals roots to within the fol­

lowing 12 exceptions : Pq (d .̂ = + 144) , (d^ = +117) , Q q , (6^= -283) , 

Q 2 ( d R = - 3 3 1 ) , S Q ( d K = - 4 0 0 ) , S 1 ( d K = - 3 3 1 ) , S2 (d .̂ = -448) , S3 (d^* 283) , 

To (dK= ~283)' Tl (dK= ~275) and T2 (dK= -643) ' 

Suppose now that C(Q(x) : Q ] < 4 . Then, x£ <Q(0) (0 - 0 - 1 = 0 ) ; replacing 

the sequence 0 , 1 , u , v by an equivalent one, we see that there is in K an 

exceptional sequence 0 , 1 , 0 , v . If M(K) > 5 , there exists such a sequence 

with v^(D(0), for <Q(0) has M = 4 . Let g ( X ) = X + a X + b be the minimal poly­

nomial of v over <Q(0) ; then, g(0) , g ( l ) , g(0) are units of <Q(0). We are 

thus lead to the following diophantine system, in which p' , q' , r'£ 7L and 

k, t , m £ [-1 , + 1 ] : 

(i) b = k 0P ; (ii) l + a + b = £0q ; (iii) 0 2 + a 0 + b = m 0 r ' . 

By making use of the linear combination 0 *(i) - 0 (ii) + (iii) , we obtain an 
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equation which takes one of the following forms : 

p a r 
(a) e +0 +e = i ; 

(b) 0 P + 0 q = 0 r + l , with p, q, ?$.7L 

It is easy to prove that the solutions of equation (a) are, up to a permutation of 

(p , q, r ) , the triplets ( -2 , - 2 , -3) and (-1 , - 3 , -4) ; equation (b) has infinitly 

many solutions (put p = 0 , q= r o r p = r , q = 0 ) , and, besides these solutions, 

only the solutions (2 , 2 , 3 ) , ( 1 , -2 , 0 ) , ( -2 , 1 , 0 ) and (-1 , -1 , -3) ; one 

verifies that the two infinite families of solutions of equation (b) yield only finitely 

many fields which are not totally real. The proof, though somewhat tedious, is 

not difficult, and we leave it to the reader. The result is that an exceptional se­

quence 0 , 1 , 0 , v , v^(D(0) , occurs if and only if v belongs to one of the four 

fields whose discriminants are +125 , -275 , -400 and -475 . 

Using now proposition 2. 4. 1 for r = 2 and proposition 4 . 4 . 2 (orLlOJ) for 

r = 0 , one obtains immediately the inequality M(K) < 5 except possibly when d^ 

belongs to the following list : +117 , +125 , +144 , -275 , -283 , -331 , -400 , 

-448 , -475 , -643 . Tables of L 6] show that to each of the 10 discriminants 

above, there corresponds, up to isomorphism, only one field, and that, moreover, 

the L constants of these fields are < 5 except if d^ = + 117 , -275 or -283 , 

q. e. d. 

5 . 1 . 2 . - Remark. - The field with discriminant -643 has L = 5 , and the exact 

value of M ( 4 or 5) is not known. The other 14 fields K with n = 4 , r = 2 

and 1^1 ^900 are easily seen to have M = L»£ { 2 , 3 , 4 , 5 , 7 , 9 } . Proposition 

4 . 1 . 2 can be used to prove that a field K with n = 4 , r = 2 and | d ^ | > 643 can­

not have an exceptional sequence 0 , 1 , u , v with Q(u, v) = K unless it satisfies 

the condition h - j ^ A 1 ^ = 2 . This proves the inequality M < 3 for a lot of fields. 

For instance, there is one such field with 900 < JCLJ < 1 000 ; it is generated by 
4 3 2 

a root of the polynomial f(X) = X - 2X + 3X - 1 , and has discriminant 

6^= -976= -24. 61 . Since f ( 0 ) = - l , h^ = , hence M ( K ) < 3 , and thus 

M(K)= 3 since f(l)= 1 , whereas L(K)= 4 . 
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5. 2. - Quintic fields with one real place 

5. 2. 1. - THEOREM. - Let K be a field of degree five with one real place. 

Then M ( K ) < 5 except if K is one of the fields with discriminant 1 609, 1 649 

or 1 777 and possibly the field with discriminant 9137 (see below for a definition  

of these fields) . 

Proof. - We apply proposition 2 .4 . 1, (iii). Thus we have to list the fields which 

possess a unit x such that x , x-1 , x+1 are units (i.e. x is an exceptional 

unit) . Let f be the minimal polynomial of x . Then, f is a monic polynomial of 

degree five such that f(0) , f ( - l ) , f ( + l ) £ { - l , +1} . Moreover, since f has only 

one real zero, one has f(- l ) < f ( 0 ) ^ f ( + l ) . Among the units x , -x , l / x , - l / x , 

exactly one satisfies the conditions f(-l) = f(0) = f(l)= -1 • Finally, exactly 23 

polynomials arise (one finds a short list of polynomials by using the conditions 

f(y) < 0 for y = ± 1/2 or -2). We give now the list of the fields we found, their 

discriminant,the number of polynomials f with f(- l) = f(0) = f(l) = -1 defining 

them and one of these polynomials for each field (let f. be the polynomial 

corresponding to ) . 

K1 1 609, prime 3 X* - 3X* + 2X - 1 

K2 1 649 = 17.97 3 X 5 - X 4 + X 2 - X - l 

K3 1 777, prime 3 X5+ X 4 - 2 X 3 - X2+ X - 1 

K 2 209 = 472 2 X5+ X 4 + X 3 - X 2 - 2 X - 1 4 
K5 2 297, prime 2 X 5 - X 4 - 3X3+X2 + 2X - 1 

K62 617, prime 1 X 5 - X4- 2X3 + X2+X - 1 
K? 2 665 = 5. 13.41 1 X5+X - 2 X - 1 

Kft 2 869 = 19.151 2 X - X - 1 

Kft 3 017 = 7.431 1 5 3 X 3 - X - 1 

Kio 4 549, Prime 1 

K11 4 897 = 59,83 1 

K125 501, prime 1 

K135 653, prime 1 

Kj 9 137, prime 1 

5 4 3 2 
X - 2X - 2X + 2X + X - 1 

5 4 3 2 
X + X - X - X - 1 

X5+2X4- 2X2- X - 1 

X5+ 2X4+ 2X3- 2X2- 3X - 1 

X 5 + 3 X 4 + 2 X 3 - 3 X 2 - 3 X - 1 . 

One verifies easily that these fields have L < 5 except the fields K1 , K2 , K3, 

K14. For K14, L = 7 ; the exact value of M(4 , 5 , 6 or 7) is not known ; 
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probably, M = 4 . For the fields , , , one has M > 5 : the field 

has L = 11 , and sequence C applied to the polynomial -f^(-X) shows the ine­

quality M > 9 ; the field K? has L = 9 , and sequence B applied to the polyno-

5 3 2 
mial X - 3 X - X + 3X+ 1 shows the inequality M > 8 ; finally, the field K has 

2 2 

M = L = 7 (apply B , x /(x -1) to the polynomial -f^(-X) ; conditions are 

0 , ± 1 , 0 , a , 7 2 €U( f ) ) . 
5. 2. 2. - Remark. - Exactly 2 fields with n= 5 and r = 1 which do not belong 

to the list above can be defined by a polynomial f with 0 , 1 , U(f) ; they are 

the fields _ and Kn . with respective discrimiants 3 889 and 4 417 of [ l 0 ] , 15 lb 

table 3. For both of them, M = 5 . This shows that the inequality M < l + 2 

of proposition 2. 4. 1, (iii) cannot be improved for ( r , s ) = ( l , 2 ) . 

5. 3. - Quintic fields with r > 3 , - Whereas only finitely many fields with 

n = 5 , r = 1 are known to have M > 3 , it is easy to construct infinitely many field* 

with n = 5 and r = 3 (resp. r = 5) and M > 5 by using polynomials f (resp. g) 

with 0 , 1 , Q , £U(f) (resp. 0 , ± 1 , 0 £ U(g)) . Only finitely many quintic fields 
6 

are known to have M > 6 . Here as some examples : 

- The field with discriminant - 4 511 generated by a zero x of the poly­

nomial f(X) = X 5 + X 4 - 3X3-2X2 + X + 1 has L = 13 ; the sequence C , 
3 3 3 2 

(x - x) / (x -x-1) , - l / ( x -x -x) shows the inequality M > 1 1 . 

- The field with discriminant -4 903 generated by a zero x of the poly­

nomial f(X)= X 5 - X 4 - 3X3+ X2+ 2X+ 1 has M = L = 9 (use the sequence A , 

- x / ( x 2 - x - 1 ) ) . 

- The field with discriminant -5 519 generated by a zero x of the poly-
5 4 3 2 

nomial f(X) = X - 2 X - X + X + X + 1 has M = L = 7 (apply the sequence A ) . 

- Finally, the field 0 ( 2 cos 2n / l l ) has M = L = 11 ; this is proved by 

applying the sequence A , (x+l ) /x , -x/(x -x-1) to the polynomial 
5 4 3 2 - 1 - 2 

X - X - 4 X + 3X + 3 X - 1 ; conditions are 0 , ± 1 , ±0., 2 ,. ±T] -rf , a , 6 eU(f) 
5 4 3 2 

and moreover "x - x - 3x + 2x + x - l is a unit". The polynomial above has the 

zero - ( C J J + C ^ ) -
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5 . 4 . - Euclidean quadratic extensions. - Let K be a number field. The abelian  a Q 

extensions of K q which can be proved to be Euclidean by the inequality 

M ( K ) > M ( K q ) are easily described by class field theory. All the fields which can 

be dealt with by this method for [ Kq : <Q] < 4 can be found in [ 1 0 ] except 4 of 

them (for K q , see table 1 , § 3 ) . 

5 . 4 . 1 . - The field K Q with n = 4 , r = 2 and d̂ . = - 2 7 5 has M = 9 ; 3 qua­

dratic extensions can be handled, whose relative discriminants have respective 

norms 2 5 , 2 9 and 5 9 . The first one appears in [ l o ] , table 9 ; the other two 
4 2 4 2 

fields whose respective discriminants are 5 . 1 1 . 29 = 2 1 9 3 1 2 5 and - 5 . 1 1 . 5 9 = 

= - 4 4 6 1 8 7 5 are new Euclidean fields. 

5 . 4 . 2 . - The field Kq with n = 4 , r = 2 and dR = - 2 8 3 has M = 7 ; 2 qua-
o 

dratic extensions can be handled, whose relative discriminants have respective 
norms 1 7 and 3 7 ; the first one appears in [ l o ] , table 9 ; the second one, with 

2 
discriminant 3 7 . 2 8 3 = 2 9 6 3 2 9 3 is a new Euclidean field. 

5 . 4 . 3 . - The field Kq with n = r = 4 and d̂ . = 7 2 5 has M = 1 0 or 1 1 ; the 

inequality M > 1 0 is enough to handle the quadratic extension of K q whose re­

lative discriminant has norm 1 1 ; we find a new Euclidean field, with discrimi-

4 2 

nant - 5 . 1 1 . 2 9 = - 5 7 8 1 8 7 5 ; no new Euclidean field would be found by the ine­

quality M ( K Q ) > 1 1 . 

5 . 4 . 4 . - The known lower bounds of M ( K q ) for fields K q of degree 5 are 

not sharp enough to handle extensions of by the inequality M ( K ) > M ( K Q ) . 

However, two fields could eventually be dealt with by an improvement of the 

previous results. For the first one, we take as field K q the field considered 

in § 5 . 2 whose discriminant is 1 6 0 9 ; it has L = 1 1 , and is defined by the 
5 3 

polynomial f ( X ) = X - 3 X + 2 X - 1 ; let x be a root of f ; then, by class field 

theory, K q possesses a quadratic extension K with relative discriminant 

( 1 0 7 , x - 3 6 ) ; the field K has discriminant d̂ . = - 2 7 7 0 1 0 2 6 7 , and could be 

proved Euclidean via the inequality M ( K ^ ) > 1 1 ; it can be defined by the polyno­

mial Y 2 + ( l / x - l ) Y+l . For the second one, let K be the field with discriminant 
o 

- 4 5 1 1 of § 5 . 3 , defined by a zero x of the polynomial 
f ( X ) = X 5 + X 4 - 3 X 3 - 2 X 2 + X + 1 ; the quadratic extension K of K q defined by 
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2 2 2 
the polynomial Y - x Y + 1 has discriminant -13 .19 .347 = - 3 8 6 633 299 ; it 

could be proved Euclidean via the inequality M ( K q ) > 1 2 , but we only know the 

inequality M > 1 1 (see § 5 . 3 ) . 

6. - Sextic fields 

6. 1. - Fields with unit rank 2 . - We obtain upper bounds of M for fields with 

n = 6 , r = 0 by making use of proposition 2. 4. 1 (i) . 

6. 1. 1. - THEOREM. - Let K be a totally complex sextic field of degree 6 . 

Then M(K) < 9 with at most two exceptions : the field , which is the ray  

class field over <Q(CQ) with conductor a prime lying above 19 , and the field K , 

which is the ray class field over (Q(a) with conductor a prime above 19 . 

2 

Proof. - We first study the existence of exceptional sequences 0 , 1 , x , u with x 

primitive in K . Then, x is a root of a polynomial 

f(X)= X 6 - a X 5 + b X 4 - c X 3 - ( b + l ) X 2 + (a+c) X+ 1 £ Z [ X ] , since 0 , ± 1 £ U(f) . 

Replacing if necessary x by -x , l / x or - l / x , we may assume that a and b 

are > 0 , and also that c is > 0 if a = 0 . Bounds for a, b , c are obtained 

from the inequalities f(t) > 0 for t = ± l / 2 and t = ± 2 . An explicit computation 

shows that exactly 19 polynomials occur, which define (up to isomorphism) 

17 fields ; 12 of them can be found in [ l o ] , table 5 : they are the fields with 

discriminants -9 747 , -10 051 , -10 571, -10 816 , -11 691 , -14 731, -16 551 , 

-23 031 , -24 003 , -27 971 and -33 856 (the two fields Q(^a) and ( Q ( £ 4 , a)). 

The remaining 5 fields are the field Q ( £ 4 > Y) » and the following 4 fields defined 

by one of the polynomials 
X - X 3 - X 2 + X + 1 (d = -32 911), 

X6- 3X5 + X4 + 5X3 - 2X2- 2X+ 1 (d = -41 823) , 

X 6 - X 5 + X4+ 2X3- 2 X 2 - X + 1 (d = -54 691) 

and X 6 - 2X5 + 4X3- X 2 - 2X+ 1 (d = -60 9 9 2 ) . 

The inequality L < 9 holds for all these fields except for the first two TKhich are 

Kx and K2 . 
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2 

We must now look at the sequences 0 , 1 , x , u with C(Q(x) : | Q ] < 6 ; then 

(D(x) = Q ( r ] ) or <Q(a) by theorem 4 . 1 . 1 . The case when K contains k = (D(r)) 

easily dealt with : K is a C. M. field, and, since h^ = 1 , the "Hasse index" 

[ E ^ : U^r ̂ 3 is equal to 1 ; we leave to the reader the proof of the equality 
M(K) = M(k) (= 7) . If K = Q (a , w) is totally imaginary of degree 2 over {Q(oc) 

2 
and if 0 , 1 , a , w is exceptional, then w is a zero of 

f(X) = X 2 - (u+l-v) X+u 

, 2 -& 
where u , v, f (a )£a . Now, the Diophantine equation in non negative integers 

p, q, r 
P - 9L R 

a + 1 = a + a 

has the solutions p = q arbitrary, r = 0 and (provided q > r ) only four extra 

solutions : 

(p q r) = ( 4 3 2) , (6 5 3) , (7 5 5) , (9 8 5 ) . 

2 

Together with the inequality (u+l-v) - 4u < 0 , one finds exactly nine fields, 

with relative discriminants of norm 19, 23, 27, 35, 43, 55, 59, 64, 64. All of 

them appear in table 5 of [10] , and, except for 19, their L. constant is less 

than 9 . 

Theorem 6. 1. 1. is now an easy consequence of proposition 2 .4 , (i) . 

6 .1 . 2. - The field has L = 13 ; the inequality M > 9 is a consequence of 

Bf3 applied to the polynomial X6- X 5 - 2X4 + X3 + X2+ 1 . 

6. 1. 3. - The field K has L = 11 . The equality M = 11 is proved by applying. 
3 2 3 2 2 A2 , (x - x - x ) / ( x - l ) , (x - x - 2 x + l ) / ( x -2x) to the polynomial 

6 5 3 2 
X - 3X + 5X - X - 2 X + 1 ; hence, is an exception to theorem 6. 1. 1. 

6. 1.4. - Totally complex quadratic extensions K of totally real cubic fields k 

can be studied by the method used to prove theorem 6. 1. 1. for extensions of 

(Q(r)) ; one finds that either M(K)= M(k), or K = k(£ ) , M(K) = 3 and M(k) = 2 . 

6. 1. 5. - One can apply proposition 2 .4 . 1, (ii) for cubic extension K of Q(Q) 

after having classified the finitely many extensions K which contain an exceptional 

unit which is a square or the opposite of a square. One then proves the inequality 
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M(K) < 5 for these fields, except if K is one of the fields C(C^ » T\) , 0(C^ > a ) , 

the ray class field K1 over whose conductor is a prime above 13 

(d^, = -10 816) and possibly the field Q(£ 4 . Y ) • The field K' has L = 8 , and 

one shows the equality M = 8 by applying the sequence B , 

(x+l) /x2 , ( x 2 + x + l ) / ( x + l ) to the polynomial X 6 - X 4 - 2 X 3 + 2X + 1 . 

6. 1. 6. - Let k an imaginary quadratic field with d^ < - 4 , and let K be a 

cubic cyclic extension of k . The method of M.-N. Gras (see § 4 .1) can be used 

to show the inequality M(K) < 3 for the fields K which do not possess exceptional 

units of the second kind. One sees that the inequality M < 3 holds for K except 

if K = k(r)) or if K is the Galois closure of one of the three cubic fields of dis­

criminant -23 , -31 or -44. 

6. 1. 7. - CONJECTURE. - Let K be a field with unit rank at most 2 . Then, 

up to finitely many exceptions, one has M(K) = 7 if Kz>{Q(r|), M(K) = 5 if 

K=>{Q(ct), M(K)= 4 if KO <Q(e) and M(K) ̂  3 otherwise. 

We saw in § 4, that the conjecture above is true for fields of degree n < 3 . 

For fields of degree n = 4 (and hence r < 2 ) , the only exceptions are probably the 

9 fields considered in § 5. 1, whose discriminants are +144, +125, +117, -275, 

-283, -331, -448, -475, -643 ; similarly it is possible that for n = 5 (and hence 

r= 1) , the only exceptions are the 16 fields which occur in & . 5. 2. Many excep­

tions can be found for n = 6, r = 0, and it would be difficult to state a precise 

conjecture. 

6. 2. - Non totally complex sextic fields. - We establish in this subsection some 

lower bounds of M for the three smallest known discriminants in each of the 

situations r = 2 , r = 4 and r = 6 . 

6. 2. 1. - The field with r = 2 and d = 28 037 = 232. 53 (a quadratic extension 

of 0 (a) ) , defined by the polynomial X 6 - 3 X 5 + X 4 + 4 X 3 - 3 X 2 - 2 X + 1 , has L = 1 7 
3 2 

and M > 1 0 by the sequence , (x -x) / (x - x - 1 ) . 

6. 2. 2. - The field with r = 2 and d = 29 077 (a prime) defined by the polyno­

mial X 6 - X 5 - X 4 - X 2 + 2X+ 1 has L = 13 and M > 9 by the sequence B3 . 
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2 
6. 2. 3. - The field with r = 2 and d = 29 189 = 17 . 101 , defined by the poly-

6 4 2 

nomial X - 3X + X + X + 1 has L = 13 and M >10 by the sequence C , 

(x2 -x - l ) / (x2 -2 ) . 

6. 2 .4 . - The field with r = 4 and d = -92 779 (a prime) , defined by the poly-
6 5 4 3 2 nomial X - X - 4X + 2X + 4X - 1 , has L. = 17 and M > 12 by the sequence 

2 2 
A2 , (x+l ) /x , -x/(x -x -1 ) , x + x . 

6. 2. 5. - The field with r = 4 and d = -94 363--197.479 of table 3 has also 

L = 17 and M > 1 2 by the sequence above. 

6. 2. 6. - The field with r = 4 and d = -10 3 243 = -74 . 43 (a quadratic exten­

sion of (D(r])), defined by the polynomial X + X 5 - 3 X 4 - 4 X 3 + X 2 + 4 X + 1 has 

L = 13 , and M >10 by the sequence C* . 

6. 2. 7. - The field <D(0 , r)), with r = 6 and d = 300 125 = 53. 74 has L = 29 

and M > 18 ([15] , § 1) . 

6 .2 .8 . - The field Q f C ^ + C ^ ) with r = 6 and d = 371 293 = 135 has L = .13 

and M >11 ([10] , § 3. 3) . 

4 
6. 2. 9. - The field with r = 6 and d = 434 581 = 7 .181, a quadratic extension 

of {Q(r]) , has L = 13 and M > 11 by the sequence 
2 2 3 2 3 2 

C, (x - x - l ) / ( x - 2 ) , (x +x ) / (x -x +1) applied to the polynomial 

X 6 - 2 X 5 - 4 X 4 + 5 X 3 + 4 X 2 - 2 X - 1 , the norm of X2+ TJ"1 X-1 ; it is a new Euclidean 

field. 

7. - Special fields 

In this section, we discuss fields which are of particular interest, and prove 

some lower bounds of M for fields of table 3 which need a special treatment. 

We make no particular comments for fields with n < 6 , since these cases 

are discussed in § 4, 5, 6. 
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Some discriminants appeared many times with various polynomials. We have 

not tried to prove that the different polynomials define the same fields (which is 

probably true) , and have written only once each discriminant. 

7. 1. - Fields with n = 7 , r = l , s = 3 . - The smallest three known discrimi­

nants are -184 607, -193 327 , -193 607 appearing for the polynomials 

X ? - X 6 - X 5 + X3 + X 2 - X - 1 , X 7 - 2 X 4 - 3 X 3 + X 2 + 3 X + 1 , 

X? + X 6 - 4 X 5 - 4 X 4 + 5X3 + 4 X 2 - X - 1 respectively (Euclidean fields with these 

discriminants can be found in [ l o ] , table 8) ; the inequality M >10 ; M > 8 ; 
3 2 3 2 M > 9 , resp. is proved by the sequence B^ , x -x + 1 , x ; B^ , (x+1) / x ; 

C respectively. 

3 

The field K with discriminant -357 911 = -71 is a subfield of the Hilbert 

class field H of the field k = Q(*J - 71) ; actually, the polynomial 

f(X)= X ? - X 6 - X 5 + X 4 - X 3 - X 2 + 2X+ 1 has the factorisation 

f(X) s (X-6)2(X+22)2 (X-24)2 (X+15) mod 71 , which shows that Kk is an un-

ramified extension of k ; if K were not a subfield of H , k would have an ex-
1 /9 8 1 /2 

tension k1 of absolute degree 98 with |d f̂ | = |d^| , in contradiction 

with the known lower bounds of discriminants ( [ 3 ] , C17]) . Another polynomial 

with discriminant -713 is g(X) = X ? - 2 X 6 + 4X5- 4X4 + 5X3 - 4X2 + 2X - 1 , and the 

method above shows that g again defines subfields of H . Sequence D shows the 

inequality M > 6 with g . Note that L(K) = 7 , and M(K) = 7 by applied to f. 
7 .2 . - Fields with n = 7 , r = 3 , s = 2 . - The first three known discriminants, 

namely 612 233, 612 569 and 640 681 are quoted in table 3 ; one has M > 1 1 
3 3 ^ 3 2 3 

(resp. 10, 11) by the sequence C , (x -x) / (x - x - 1 ) , (x +x - 2x -x) / (x -x-1) 

(resp. A j , x 2 / ( x 2 - l ) , - l / ( X 2 - x - l ) ; Bg) . 

The field with discriminant 674 057 of table 3 has M > 9 by the sequence A , 
2 2 2 (x -x) / (x - x - 1 ) , l / (2x-x ) , which is invariant under s . 

7. 3. - Fields with n = 7 , r = 5 , s = 1 . - Two fields appear in table 3. The 

second one, with discriminant -2 369 207, has M > 1 2 by the sequence B^ , 

(x2-x- l ) / (x3-2x) . The first one, with discriminant -2 306 599 , has M > 1 2 by 
2 2 2 3 

the sequence G , - l / ( x - x - 1 ) , (x - x - l ) / ( x - 2 ) , x . 
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The field with discriminant -2 616 839 = -61.42 899 , defined by the polynomial 

X ? - 4 X 6 + 2 X5 + 4X4- X 3 - 2 X - 1 has L = 1 3 , and M > 1 1 by the sequence B5 . 

The inequality M > 1 3 is needed to prove that this field is Euclidean. 

7. 4. - Fields with n = 8 , r = 0 , s = 4 . - The field with the smallest known dis-
8 3 

criminant (1 257 728 = 2 . 17 , cf. [ l o ] , table 9) can be defined by the polyno-
4 3 2 

mial X -(2+£4)X + (1+£4)X - ( 1 + ^ ) X + . It has L = 16 , and the sequence D 

shows M > 6 ; the better inequality M > 8 is proved in [15 ] . 

The cyclotomic field © ( £ . . ) can be defined by the polynomial 
8 7 5 4 3 

X - X + X - X + X - X + 1 ; the sequence 

0 , l , x , ( x - l ) / x , 1 / ( 1 - x ) , x 2 , - l / x 2 , ( x 2 - l ) / x 2 , 1 / ( 1 - x ) 

shows the inequality M > 9 ; conditions are 0 , ± 1 , f , Q,,-QL QQ , £, ~€ U(f) ; 
4 6 ot " x 2 

the sequence is invariant under the transformation •> l /o j ( l /x ) . 

Table 3 contains 17 new Euclidean fields with n= 8 , r = 0 ; among them, 

7 contain a non trivial subfield. 

7-5- ' Fields with n = 8 , r = 2 , s = 3 . - Table 3 contains 30 fields ; 29 of 

them are new Euclidean fields, and one of them was found by Mestre. Among 

these 30 fields, only 3 contain a non trivial subfield, and these can be obtained 

by a tower of quadratic extensions of (Q(0) . For two of them, the required ine­

quality for M already holds for a quartic subfield. The third one is the field 

U(JS-4/e ) , with discriminant 4 960 000 = 28. 54. 31 ; the inequality M > 9 is 
2 2 3 2 proved by the sequence A , (x - l ) / ( x -x -1 ) , (x -x -x) / (x-1) . 

7. 6. - Fields with n = 8 , r = 4 , s = 2 . - The smallest known discriminant cor­
responds to the field KQ of § 8 ; it is the ray class field modulo a prime 

o , 4 
above 29 in (D(0) . As a quadratic extension of (Q(a) , K is defined by the po-

2 2 2 
lynomial X -(1+6 a ) X + ( l + 0 a ) , whose norm is 

X 8 - 5 X 7 + 6 X 6 + 3 X 5 - 1 5 X 4 + 19X3-11X2 + 4 X - 1 , of discriminant 
4 3 4 4 

5 . 29 . 7 = 7 dU ( KQ . has discriminant 15 243 125). The best known ine-
K8 ,4 8'4 

quality for M is M > 1 0 , a consequence of the same inequality for { Q ( C T ) . The 
2 

second discriminant we found is 15 297 613 = 37. 643 ; the corresponding field 

is defined by the polynomial 
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X 8 - 2X? - 3X6 + 6X5 + 2X4- 5X3 + X2 + 2X - 1 = 

= (X2- (1+ S*) X+ 62) (X6-(l -C^1) X5+ (262- 562- 2&2) X4 + 

+ (7-262-762 -262) X3+ (-5-562+ 10&* + 463) X2+ (-3+262+ 62) X - 6"1), 

4 3 
where 6 + 36 - 26 -1 = 0 . The inequality M > 1 4 is proved by the sequence 

2 ? 3 3 2 2 3 
A2 , x + x , (x + x - l ) / x , (x - x + l ) / x , (x + x -x) / (x -1) , x -x+1 . The inequa­
lity M > 1 6 would suffice to prove that this field is Euclidean. Other fields ap­
peared for which the inequality M > 1 6 would suffice ; one of them is defined 
by the polynomial X 8 - X ? - 4 X 6 + X5 + 6X4 + 2 X 3 - 4 X 2 - X+ 1 with discriminant 
15 908 237 = 43.369 959 ; the inequality M ^ 1 2 is shown by the sequence A , 

2 2 
x +x , (x + x - l ) / x , (x+l ) /x . 

7 . 7 . - Fields of degree 9 . - Euclidean fields are known only for r = 1 ; 

10 fields can be found in table 3 ; they do not contain cubic fields. The field with 

discriminant 33 626 161 is defined by the polynomial 
Q Q y / C 3 2 

X - X - 3X + 2 X + 2 X + 2X - X - 2X - 1 ; the inequality M > 1 0 comes using 
2 2 3 3 2 3 the sequence B , x /(x - 1 ) , (x -x) / (x -x -1 ) , l / (x -x) , (x - x - 1 ) / ( x - 1 ) . The 

field with discriminant 36 155 633 is defined by the simple polynomial 

X9 + X7 + X^- X 3 - X 2 - X - 1 ; the inequality M > 1 0 is proved via the sequence 

III , - l / x , - l / x 2 , x2+l , - (x+l ) /x2 , x3+x+l . 

For n = 9 , r > 3 , one probably needs the difficult inequality M > 1 7 to find 

Euclidean fields by Lenstra's method. This is the inequality one needs to handle 
3 2 

the field with n = 9 , r= 3 and discriminant -110 852 311 = -31 .61 , which is 

the ray class field over (D(y) modulo the prime ideal of degree 1 above 61 . 

This field was discovered as the field defined by a root of the polynomial 

X9 + 2X8- 2X?- 7X6- 3X5+ 8X4+ 9X3- 3X2- 5X - 1 , which is the norm of the 
3 2 2 4 * 

polynomial X - y X - X - y ; one has M > 10 by C . Here are two more 
examples with n= 9 , r = 3 : the field with prime discriminant -112 992 391 , 

defined by the polynomial X 9 - 4 X ? + X 6 + 5 X 5 - 2 X 4 - 3 X 3 + 2 X + 1 , has M > 1 1 by 
3 2 2 3 

the sequence C , (x +x ) / (x +x-l) , -x +2x+l , and the field with discriminant 

- 113 511 599 = -193. 727. 809 , defined by the polynomial 

X 9 + X 8 - 4 X ? - 3 X 6 + 5X5 + 3 X 4 - 2 X 3 - 2 X 2 + X + 1 has M > 1 1 by C* , ( x 2 + x - l ) / x . 
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7 . 8 . - Fields of degree 10 . - Three fields appear in table 3 ; one of them 

(a cyclic extension of was found by Mestre. The other two, which do not 

contain any non trivial subfields since their discriminants are prime numbers, 

are new Euclidean fields. The last one was found by the sequence C . The first 

one has M >10 by the sequence 
2 2 3 3 3 5 3 Z 

B , x /(x - 1 ) , (x -x) / (x - x - 1 ) , (x -x-1) / (x-1) , -x +2x + x ; conditions are 
2 

0 , 1 , -1 , 0 , a, //"Z" , l / y » 6 £ U(f) and, moreover, that the five following ele-
. 4^ 3 «> 2 o 1 6 * 4 3, o 2, ^ i 5 O 3 2 , 1 

ments should be units : x + x -2x - 2x-l , x -3x - x + 2x + x+ 1 , x - 2 x - x + 1 , 
6 5 9 4_L9 2_L<> 1 6 5 9 4,_9 3_L 2 1 

x - x - Zx + 2x + 2x - 1 , x - x -2x + 2 x + x - x - 1 . 

8. - Small discriminants 

It is an experimental fact that, for low degrees, the fields whose root discri­

minants are very small when compared with Odlyzko's lower bounds under GRH 

have a rather large M constant. We cannot state any precise conjecture ; 

large means at least greater than the degree of the field. This phenomenon ap­

pears clearly in S 4 to 6 , where explicit upper bounds of M are given. 

Examples of large values of M for fields of degree > 7 can be found in § 7. 

This remark can be used in the other direction to find fields with small dis­

criminants : one constructs polynomials which satisfy some of the conditions 

given in § 3, and choose among these polynomials those with not too large coef­

ficients. It was in this way that the field with n = 7 , r = 5 and discriminant 

-2 306 599 (cf. table 4) was discovered and quoted in [14] before it was proved 

Euclidean. Fields with email discriminants were found when testing exceptional 

sequences. We give a brief account of the results, and list in table 4 for pairs 

(n, r) with n < 8 , n < 9 and r < 9 and n = l 0 , r < 6 the smallest value we 

found for the root discriminant | d̂ . | of a field with the corresponding values 

for n and r . We denote by K such a field (warning : the notation is not 
3 n, r ° 

that of [ 14] ) . For n = 7 and for n = 8 , r / 2 , these fields are those of [ 14] , § 4. 

For n < 6 and n = r= 7 , they are known to be those with the smallest value of 

(d^l ([19] , [20] ) . For n < 6 and for (n, r ) = ( 7 , l ) and (8,0) , they are quoted 

in [ lO] ; they are Euclidean, and so are the fields K for 
n, r 

(n, r ) = ( 7 , 3 ) , (7 ,5 ) , (8 ,2 ) , (9,1) and (10,0) (see table 3 ) . 
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The field Kg ^ is the ray class field over ( D ( C ^ ) with conductor (we 

keep the notation of [ 13 ] : $ denotes a prime ideal of degree 1 above the 

prime number p ) ; its discriminant is minimal among the fields which contain a 

quartic subfield. The same result holds for the field of conductor over 

^ » which was used in [14 ] ; but 7 fields with a smaller value of Jd^l 

were discovered after [14] was written ; so, we take for KQ the field with 
o , 2 

discriminant -4 296 311 = -199.21 589 of table 3 . The field KQ . is the ray 
o , 4 

class field of conductor over (Q(0) . The field Kg ^ is the ray class field 
of conductor IV over K A and the field Kn n is the ray class field of con-

T.31 4 ,4 8, 8 7 
ductor p over Q(/T) . 

We now discuss examples of degree 9 . The field K is the field with dis-

criminant 30 451 401 = 31.982 271 of table 3 . The field K^ 3 is the ray class 

field of conductor £ over <Q(y) (see § 7. 7) . The field K is defined by 
Q o 1 A C A "2. *y /» ^ 

the polynomial XV+ 2X - 6X - 7X + 9X +9X - 3X - 5X + 1 ; its discriminant is 

485 533 729 = 4 283. 113 363 . Another interesting example with n = 9 , r = 5 

is provided by the polynomial X 9 - X 8 - 4X? + 4X6+ 4X5- 4X4-2X3+ 2X2+ 2X - 1 

with discriminant 489 385 129 , a prime. The field K^ ^ is defined by the 

polynomial X9+ X 8 - 4 X ? - 5 X 6 + 3X5 + 9X4+ 2 X 3 - 6 X 2 - X + 1 ; its discriminant is 

-2 385 869 687 = -7 121. 335 047 . 
We finish the list of the fields K by taking for K „ ^ „ the field with dis-

n, r y s 10,0 
criminant -215 067 767 of table 2 , for K1 the field with discriminant 

10 ' 817 298 432 = 2 . 798 143 defined by the polynomial 
X 1 0 - 4 X 8 - 2 X 7 + 5 X 6 + 6 X 5 - X 4 - 6 X 3 - X 2 + 2 X + 1 , for Kirt . the field with dis-

10, 4 

criminant -3 617 508 259 = -127. 28 484 317 defined by the polynomial 

X 1 0 - 3 X 8 - 3 X 7 + 2 X 6 + 6 X 5 + 3 X 4 - 2 X 3 - 3 X 2 - X + 1 , and for KiA , the field with 
1 0 , D 

discriminant 19 936 537 141 , defined by the polynomial 

X10- X 8 - X 7 - 8X6+4X5 + 15X4 - 4X3- 7X2+ X + 1 . 
The fields K listed above are not claimed to be those with minimal dis-

n, r 

criminant in absolute value for the given values of n and r . Actually, we did 

not make great efforts to find fields with n = 8 , r > 4 or n = 9 , r > 3 , or n = 1 0 , 

r > 2 , since the lower bounds for M which are required to prove that these 

fields are Euclidean are somewhat too large. However, it is well possible that 

some of the fields we considered in § 7 with n = 8 , r = 4 or n = 9 , r = 3 

have big enough M constant to be proved Euclidean by Lenstra's method. A near 
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miss is provided for n = 1 2 , r= 0 by the ray class field of conductor over 

< D ( £ ^ ) , for which one needs the inequality M >20 , whereas Mestre ( [15] , § 1) 

has proved the inequality M > 1 8 . 

For signature (n, r) with r < 7 , n = 8 , r = 0 or 2 and n = 9 , r = 1 , a 

more intensive research was made. For this reason, we finish this section by 

the 

CONJECTURE. - For (n, r ) = ( 7 , l ) , ( 7 ,3 ) , ( 7 ,5 ) , (8 ,0 ) , (8,2) and (9 ,1 ) , the 

fields K ^ are the fields with the minimal value of |°^r| • 

9. - Tables 

Table 1 can be found in section 3 . It is similar to table 10 of Lenstra, [ 10] . 

Table 2 contains the discriminants d^ of all norm Euclidean fields of degree 

2 , 3 , 4 with a sufficiently large Lenstra constant and of norm Euclidean exten­

sions of degree 6 and 8 with likewise sufficiently large Lenstra constant M . 

Inclusions are indicated and, in some cases a field generator is added ; d^ is 

underlined whenever, for a proper subfield K , the inequality M(K) >M(K ) 
o o 

already proves K to be Euclidean ; 18 of the given fields are new. The fields 

in degree 2 and 3 of course, and the totally real and totally complex quartic 

fields with one exception (d^ = 229) where known to be Euclidean before 

Lenstra's paper [ l o ] , likewise the two cyclotomic fields (•(£_) and (D(Cic)-
7 15 

Table 3 contains a list of all Euclidean number fields obtained by lower bounds 

for M after [10 ] appeared. It includes the four fields found by Mestre. This 

table is divided into ten parts according to the different values n , r , s of the 

involved field K . We give the discriminant d^= d and its prime factorization. 

Unless n = 7 , the second column contains either 0 -and then the field does not 

have any proper subfield- or one of those symbols listed in table 1 which ge­

nerates a proper subfield K of maximal degree. In the first case K = (Q . 
o o 

Next columns contain the coefficients of a monic, irreducible polynomial f ^ K j I x ] 

generating the field in question, a lower bound for M needed to prove K to be 

Euclidean via the estimates of Lenstra. The last column gives the sequence in 
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terms of a zero x of f , which allows to conclude the validity of the lower bound 

for M . In some cases, a reference is given to previous sections. Some of the 

polynomials of table 3 were computed by Lenstra. As we were looking only for 

polynomials with reasonably low discriminants, fields without a power basis for 

the integers will have escaped even if their discriminant is low and at the same 

time their Lenstra constant is large enough. For example,the field (Q(C3>8) 

would not have been detected by this method. U(f) clearly is defined for all 

monic f g Z ' I x ] , and for a monic factor g^Z[x] one has U(g) 3 U ( f ) . There­

fore, irreducibility is easily handled with. 

Table 4 is an improvement of Cl4], table II. It gives for given (n, r) the lower 

bound Odln of (d^J , obtained by Odlyzko under G R H , for fields K of 

degree n with r real places, and the number (jcL- | ^ n / O d l ) -1 , written 
n, r ' 

as a percentage. 

Table 5 is an update of Lenstra's table 11 of [ lO] 

Added in proof (october, 1982) 

One of us (A. Leutbecher) has found 34 new euclidean fields by convenient 

enlargements of sequence D (3 with n = 7 , r = l , 9 with n = 8 , r = 2 and 

22 with n = 9 , r = 1 ) . One of these fields, defined by the polynomial 

X 9 - X 8 + X 7 - 3 X 6 + 5 X 5 - 8 X 4 + 8 X 3 - 6 X 2 + 3 X - 1 , has discriminant 

101. 292 181 = 29 510 281 and can be taken as a new field 1 (§ 8) . The total 

amount of known euclidean fields is now 466 , and, in table 5 , the new numbers 

for (n, r+s) = (7,4) , (8,5) and (9,5) are 3 9 , 39 and 32 instead of 36, 30 

and 10 respectively. In table 4 , one can put 0 ,92% instead of 1,27% for 

n = 9 , r+s = 5 , and the conjecture which ends section 8 must be subsequently 

modified. Some lower bounds of M can be improved (e.g. M > 1 1 for Kg , 

M > 1 2 for Q ( £ j g ) ) , and a field with n = 9 , r = 3 and discriminant 

-367. 299 401 = -109 880 167 appeared, which can be used as a new ^ (in 

table 4 , one has then 1,02% instead of 1 , 1 2 % ) . 

These results will appear somewhere else. 
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Table 2 

degree 2 degree 3 degree 4 degree 6 degree 8 

- 1 0 0 5 1  
- 1 2 1 6 7  
- 1 ^ 2 8 3  
- 1 8 5* 1 5 

- 3 1 2. 1 1  
- 3 3 8 5 6 .  
- 3 3 8 5 6 

- 1 0 5 7 1  
- 2 9 7 9 1 

- 1 1 6 9 1 
• - 1 6 5 S 1 
• - 2 1 163 
' - 2 3 0 3 1 
- 2 ^ 0 0 3 

- 1 0 8 1 6 
j - 2 2 5 9 2 
- 1 6 8 0 7 :  

- 6 ^ 8 2 ? 

- 2 1 2 9 6 

x 2 8 0 3 7 S 

- 3 3 8 5 6 

^ 7 0 8 1 
V S 3 ^2 9 
\57 6 6 1 v 

- 3 5 5 5 7 
^ 6 1 504-
^ 7 0 1 5 3 
^ 3 1 2 1 3 / 
- 6 9 6 2 9 / 
^ 3 0 1 2 5 

•124-659 

10 4 - 8 7 5 
m^v 8 7 5 
•14-9 8 7 5 

1 0 3 2^3 
1 5 3 6 6 4 

4 - 3 ^ 5 8 1 / 

3 0 0 125 

3 7 1 2.935 

A 3 4 2 4 1 3 
/ 1 7 9 7 3 0 9 
- 2 1 1 8 0 6 9 
^ 2 2 1 7 2 1 3 
S 2 3 1 4 4 - 1 3 
A 3 1 7 ^ 3 3  
>1 H 9 2 1 Q 1  
W 6 0 1 6 1 3 -
- 1 8 2 0 63 7  
- 2 1^9 1 7 3 
] 2 3 13 ^4-1 

- 2 1 7 8 9 8 \ 

- 1 ? 6 3 584: 
-1 5 1 3 7 2 8 

- 1 25*7 7 2 8 
- 1 5 2 0 789 

/ I 5 7 8 1 2 5 
A & 9 0 62.5 SI 265" 6 Z 5 

- \ 3 6 1 5 1 3 

- 1 4-24-293 

- 2 1 9 3 125  
-h H 6 1 875 

-4- 9 6 O 0 O O 
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Table 3 

n = 6 , r = 2 , s = 2 

d K 
o 

a 
o 

, a x . . . . M > sequence 

47 149 prime 0 1 , -1 , 2 , 2 , - 3 , -1 , 1 6 B 

50 173 = 131.383 0 1 , 2 , 0 , - 4 , - 2 , 1 , 1 6 B 

51 757 = 73.709 0 1 , 1, - 2 , - 2 , 0 , o , 1 6 B 

57 152 = 2 6 . 19.47 0 1 , 2 , 2 , - 2 , - 3 , 0 , 1 6 B 

57 661 = 23 2 . 109 a 
3 

- a -1 , 1 6 A, [15] 

62 437 = 29.2 153 0 -1 , -1 , -3 , 4 , 3 , -4 , 1 7 A 

66 049 = 2 5 7 2 

Y l 1 , - 3 Y l - 1=0) 7 § 4 . 4 

70 153 = 3 1 2 . 73 Y -1 , -r1 , 1 7 A 

n = 6 , r = 4 , s = l 

- d K 
o 

a , a , . . . 
o 1 

M > sequence 

94 363 = 197.479 0 -1 , - 1 , 5 , 2 , - 4 , - 1 , 1 7 A 

104 483 = 163 . 641 0 1 , - 1 , - 4 , 6 , 2 , - 4 , 1 7 A 

104 875 = 5 3 . 839 G -0 > - 1 , - 1 , 1 7 A 

118 987 = 11. 29.373 0 1 , 1 , - 5 , 4 , 3 , - 4 , 1 7 A 

124 659 = 3 8 . 19 ^1 - v 
- 3 ^ + 1=0) 7 A 

144 875 = 5 3 . 19. 61 0 1 , 29 , -2-e , 1 8 A , 2 
9 

149 875 5 3 . 11.109 0 - 1 , -G 2 , 0 , 1 8 

153 664 7 4 0 , 1 8 B , X + X 

2 
X + X - 1 153 664 = 2 . 7 r\ 0 , 1 8 B , X + X * X 

161 939 = 67. 2 417 0 -1 , - 1 , 4 , 3 , - 3 , - 2 , 1 8 B , 2, 
X + X 

2x+ 1 
» X 

n = 6 , r = 6 , s = 0 

d K 
o 

a o • a l ' • • • 
M > sequence 

434 581 = 7 4 . 181 11 -1 , T T 1 , 1 11 § 6 .2 .9 
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Table 3 (continued) 

n= 7 , r = l , s = 3 

- d a » o 
a . 

1 
. . . M > sequence 

261 871 = 307.853 1, o, - 1 , 3, 1, -4 , 0, 1 6 B 

283 223 = 61.4 643 1, o, 0, 0, 1, 0, -2 , 1 6 B 

286 711 prime 1, o, - 1 . 2, 1, -2 , - 1 , 1 6 B 

289 831 = 109.2 659 - 1 , -4 , -2 , 8, 3, -5 , - 1 , 1 6 A 

289 987 prime - 1 , -2 , -3 , 4, 5, -3 , -2 , 1 6 A 

311 071 = 277. 1 123 - 1 , 1, -3, 3, -4 , 4, -2 , 1 6 D, [15] 

334 727 prime - 1 , - 1 , 1, 4, 1. -3 , - 1 , 1 6 B 

338 191 7.48 313 1, 2, 0, -2 , - 1 . 0, 0, 1 6 B 

357 911 = 7 1 3 1. 2, - 1 , - 1 , 1. - 1 , - 1 , 1 6 B 

380 831 = 11.89.389 1, 2, 0, -1 , - 1 . - 1 , 0, 1 7 B , ( x + l ) / x 2 

396 259 prime - 1 , 1, 0, - 1 , 1. 0, 0, 1 7 V* 

424 831 = l l 2 . 3 511 - 1 , -2 , 2, 4, -3 , -3 , 1, 1 7 B l 

433 391 = 7.101.613 - 1 , -2 , -2, 3, 4, -2 , -2 , 1 7 B l 

n = 7 , r = 3 , s = 2 

d a , o V M > 
sequence 

612 233 = 71.8 623 - 1 , -3 , 1, 5, 0, -4, 0, 1 8 C 

612 569 = 593.1 033 - 1 , -4 , 2, 2, 1, 1, -3 , 1 8 A i 

640 681 = 59.10 859 1, 2, -2 , 0, 2, -2 , - 1 , 1 8 
B 2 

649 177 = 59.11 003 1, 1, 0, 1, 0, -3 , 0, 1 8 B 2 

661 033 = 173.3 821 - 1 , - 2 , 3 , 5 , - 1 , - 4 , 0 1 9 C 

674 057 prime - 1 , o , 0 , 0 , 4 , 0 , - 3 , 1 9 § 7.2 
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Table 3 (continued) 

n = 7 , r = 3 , s = 2 

d aQ, , . . . M > sequence 

689 033 prime 1, 3, 2, -2 , -3 , -2 , 1 , 1 9 C 

3 2 

696 401 = 109.6 389 1, 4, 4, -3 , -7 , - 1 , 2, 1 9 B2 , (x+x -x-l)/x 

724 873 = 31.67.349 - 1 , - 1 , - 1 , 3, 5, -3 , -2 , 1 9 A£ 

726 721 = 79.9 199 - 1 , 0, 2, 3, 0, -4 , 0, 1 9 C 

746 633 = 127.5 879 - 1 , 1, 0, -2 , 5, 0, -3 , 1 9 

753 209 = 37.20 357 1, -2 , -3 , 6, 4, -5 , - 1 , 1 9 A£ 

763 993 = 113.6 761 1, 2, 0, -2 , 1, - 1 , - 1 , 1 9 B3 

765 529 = 19.43.937 1, 3, 1, -3 , - 1 , - 1 , 0, 1 9 B3 

780 401 prime 1, -2 , -5 , 5, 7, -4 , -2 , 1 9 A2 
2 

788 857 = 31.25 447 - 1 , -5 , - 1 , 8, 3, -5 , - 1 , 1 9 A j , -x/(x -x-1) 

789 289 = 79.97.103 - 1 , 0, 2, 4, - 1 , -4 , 0, 1 9 C 

792 873 = 32. 37. 2 381 1, 1, 1, 2, -3 , -3 , 1, 1 9 B3 

794 233 = 11.103.701 1, - 1 , 0, 4, 0, -4 , 0, 1 9 C 

796 753 = 41.19 433 - 1 , -2 , 4, 8, - 5 , -6 , 2, 1 9 C 
// 2 

819 713 = 41.19 993 - 1 , -3 , 0, 5, 2, -4 , - 1 , 1 9 A j , -x / (x -x-1) 
830 801 prime 1, 0, -4 , 0, 5, -2 , -2 , 1 9 A2 

// 2 
877 193 = 739.1 187 - 1 , 1, 5, 0, -4 , - 1 , 0, 1 10 B3 , x/(x -1) 

2 
909 673 = 23.39 551 - 1 , -3 , -3 , 5, 6, -4 , -2 , 1 10 B3 , x/(x -1) 

n = 7 , r = 5 , s = l 

- d a , a. , . . . M > sequence  
o 1  

2 306 599 = 107.21 557 - 1 , 1, 3, 1, - 1 , -3 , 0, 1 12 § 7.3 

2 369 207 = 23.239.431 1, 0, - 1 , 5, - 1 , -5 , 1, 1 12 § 7.3 
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Table 4 

Small discriminants 

rv^i i i i i i i I — i — i 
r + K 2 3 4 5 6 7 8 9 10 

x 1. 721 

0. 64% 

~ 2. 225 2. 820 3. 263 

0.50% 0.85% 0.79% 

~ 3.639 4.036 4.345 4. 592 

0.56% 0.90% 0.77% 0.65% 
" 5.124 5.322 5.484 5.619 5. 734 
4 

1.27% 1.11% 0.51% 0.61% 0.92% 

~ 6.640 6.638 6.653 6. 675 6. 699 6.726 

2.55% 1.36% 0.85% 1.08% 1.27% 1.27% 

~ 8. 143 7.960 7. 834 7. 745 7. 680 
6 

0.48% 1.88% 0.90% 1.12% 1.36% 

~ 9.611 9.266 9.012 8. 818 

14.99% 3.00% 2.40% 2.44% 

" 11.036 10.547 10.177 
o 

3.16% 4.43% 5.28% 

Table 5 

The number of known Euclidean fields 

n Total 
1 2 3 4 5 6 7 8 9 10 

1 1 5 6 

2 16 52 34 102 

3 57 11 12 28 108 

4 9 10 33 36 43 13l 

5 1 11 24 30 10 4 80 

6 3 2 0 0 0 5 

Total 1 21 109 54 23 75 62 73 10 4 432 

r+s 
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