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Morse theory and Intersection Homology theory 

by 

Mark Goresky1 and Robert MacPherson2 

Introduction 

0.1 The intersection homology of a singular complex variety exhibits 

many of the same properties as the ordinary homology of a nonsingular 

variety. For example it satisfies Poincare duality, and the hard 

Lefschetg theorem, and conjecturally it has a pure Hodge decomposition. 

(See [CGM], introduction, for a discussion of this.) In this paper 

we add a further property to the list: a critical point of a Morse 

function has a Morse index. 

The main results of classical Morse theory for ordinary homology 

and for a compact smooth variety M can be summarized as follows: 

For an open, dense, set of functions f : M > 3R 

(called Morse functions), all values v e 3R have 

exactly one of the following properties (and only 

finitely many values have property 2 ) 

1) For small enough e , M<v+£ is homeomorphic to 

M ^ 

2) There is an i (called the Morse index of the 

critical point p with critical value v) such that 

for small enough e , 

Hk(M<v+e , M<v-c> 
0 for k =(= i 

21 for k = i 

Here M<c denotes the inverse image by f of the open inter­

val (-°°,c) 
1) partially supported by a grant from the Alfred P. Sloan 

Foundation 
2) partially supported by a grant from the National Science 
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M. GORESKY, R. MACPHERSON 

The Morse theory we present here for intersection homology and 

for a compact Whitney stratified singular complex analytic variety 

X analytically embedded in a smooth variety M , implies the fol­

lowing : 

For an open dense set of functions f : M > 3R 

(called Morse functions in the sense of Lazzeri and 

Pignoni), all values v e 3R have exactly one of the 

following properties (and only finitely many values 

have property 2 ) : 

1) For small enough e , X<v+£ is homeomorphic to 

X<v_£ in a stratum perserving way. 

2) There is an i (again called the Morse index of 

the critical point p with critical value v) such 

that for small enough e , 

IHk<X<v+e , X<v-e) = 
0 for k =(= i 

A for k = i 

Here A is called the Morse group of the critical point p ; P 
it is not necessarily 2Z . it depends only on the stratum of X 

containing p , not on f 

The existence of a Morse index is false for ordinary homology 

in the singular case: H, (X^ , X^ ) may be nonzero for several ^ k <v+£ , <v-e J 
different k . For an example, see section 4.5 example 3. 

0.2 As in the case of a smooth complex analytic variety, convexity 

properties of f can be used to give a priori estimates for the 

Morse indices of its critical points. We will use this idea in this 

paper to obtain three results: 

136 



MORSE THEORY AND INTERSECTION HOMOLOGY THEORY 

1) The Lefschetz hyperplane theorem holds for the inter­

section homology of a (singular) projective algebraic 

variety section 5.4) 

2) The intersection homology of a complex n-dimensional 

Stein space vanishes in dimensions >n (section 5.3) 

3) The sheaf of intersection chains on a general fibre 

specializes (over a curve) to a perverse object [BBDG] 

on the special fibre (section 6.1). 

Since our initial work on Morse theory, other methods have been 

used to obtain some of these results. Deligne observed that the 

sheaf theoretic method of Artin [A] could be used to prove (1). (See 

[GM2]). Malgrange [Mal], Kashiwara [K] and Bernstein [Ber] have used 

3* module techniques and Beilinson and Bernstein [BB] have used char­

acteristic p techniques to prove (3). However the method of Morse 

theory has several advantages: it can be used to study the inter­

section homology with 2Z coefficients (as well as Q coefficients) 

and it applies to analytic (as well as algebraic) varieties. 

0.3 we now give a more detailed statement of our main results. We 

assume that X is a purely n dimensional complex analytic variety, 

Whitney stratified with complex analytic strata, and embedded in a 

complex analytic manifold M 

Definition ; 00 
A C Function f : M > IR is called a Morse 

function for X provided 

1) For each stratum S of X , the function f|s has only 

nondegenerate critical points. 
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(The critical points of f are the critical points of 

f|S for some stratum S ; the critical values of f 

are the values of f at these points.) 

2) At each critical point p e X , the differential 

df (p) (t) =j= 0 whenever x is a limit of tangent planes 

from some larger stratum T =j= S 

3) All critical values are distinct. 

This definition is due to Lazzeri [L] and Pignoni [P]. 

If p is a critical point in the stratum S , then the Morse  

index i of f at p is c + X where c is the complex co-

dimension of S in X and A is the classical Morse index of 

f |S . 

To determine the Morse group A^ we make the following con­

struction. Choose a complex analytic manifold N meeting s trans­

versely at p and a generic projection tt : N n X > C sending 

p to 0 For 0<£<<6<<1, the complex link <£ of S and 

its boundary d& are 

2 = tt"1 (t) n B6 

3# = Tr"1(t) n 3B6 

where 0 < |t| < e and is the intersection with X of a ball 

of radius 6 centered at p and ^B^ is the intersection of X with 

the boundary of the ball. The Morse group A^ is the image of the 

variation map 
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(1-y) : IH t (£P ,d& ) I H c - l ( i ? ) « 

(The variation map associates to a chain Z in SB with 

boundary in d& the chain Z - y Z where y is the monodromy 

transformation obtained by "carrying Z over a small loop around 

0 in C " . The chain Z - y Z is a cycle in & since the mono­

dromy is the identity near d& . For a rigorous explanation of the 

variation map, see section 3.8). 

Theorem; Suppose f is a Morse function for X and f[x is proper. 

1) If v is not a critical value, then for small enough e , 

X^ , and X^ are homeomorphic by a stratum perserving map. 

2) If v is the critical value for the critical point p , 

then for small enough e 

IHk(X<v+e , X<v-e> = 
Го if k + i 

A if k = i 
. P 

where i is the Morse index of f at p and A is the Morse 
P 

group of the stratum through p 

0.4 Method of proof: In section §4.4 we will construct the following 

commutative diagram, where each sinusoidal curve is an exact sequence. 

(This is a local intersection homology version of the braid diagram in 

Clemens [C]). Here B is N n B. and L , the link of S , is 

N n dB^ . The group IH, (X^ . X^ ) k <v+e , <v-e is denoted M. . The 

variation map is marked "VAR". 
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MORSE THEORY AND INTERSECTION HOMOLOGY THEORY 

In the language of SGA IV, is the group of "R<f> vanishing cycles" 

and IH (.2?, d&) is the group of "Rip vanishing cycles" for tt at p 
-K 

(of the sheaf of intersection chains) 

Remark: We may replace the symbol IH in this diagram with IH^ for 

any perversity p , or with homology or cohomology, and in each case 

the resulting diagram will commute and have exact sinusoidal curves. 

The proof of the theorem is a simple diagram chase, once we know 

the following facts about intersection homology: 

a) IH^B) = 0 for all i > n ; IH^(B) = IH^(L) for all i < n . 

b) IHi(X,X-p) = 0 for all i < n ; IH^X^-p) = IH^CL) for all i > n 

c) IHi(i?) = 0 for all i > n - 1 

d) IH±(&, 3i?) = 0 for all i < n - 1 

Facts (a) and (b) are restatements of the support conditions which 

characterize intersection homology (e.g. see CGM2]). Facts (c) and (d) 

are proven using Morse theory (and induction) for the function 

±g : S? > ]R which is given by g(y) = distance (y,p) 

§ 1. Intersection Homology Of Subanalytic Pseudomanifolds 

The statements and proofs in this paper use relative intersection 

homology IHk(X,A) where X is a stratified pseudomanifold and A is 

an open subset. The only properties of relative intersection homology 

that we will need are topological invariance (sec. 1.3), excision (sec. 

1.5), the Kunneth theorem (sec. 1.6), and the local calculation and 

cocalculation (sec. 1.7). 
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There are several constructions of intersection homology which 

may be adapted to the relative case. For example, using the piecewise 

linear construction of [GMO] and [GM1] one may define IHk(X,A) to be 

the k t h homology group of the quotient chain complex IC*(X)/IC*(A) . 

Using the sheaf theoretic version of EGM2], one may define IH, (X,A) 

to be H k R j ft c J j * IC(X) where j is the inclusion of X - A in X 

and Hc denotes hypercohomology with compact supports. Readers 

familiar with one of the above constructions can verify the properties 

mentioned above and skip chapter 1. 

We present here a construction of relative intersection homology 

which is defined when X is an open subset of a subanalytic pseudo-

manifold. We believe that there are several advantages to this ap­

proach. It gives a canonical group of chains (not requiring the choice 

of a PL structure), and it is more geometric than the sheaf theoretic 

approach. 

of a PL structure), and it is more geometric than the sheaf theoretic 

approach. 

1.1 Pseudomanifolds : 

An oriented n-dimensional subanalytic pseudomanifold X is an 

open subset of a locally compact (real) subanalytic set, together 

with a Whitney subanalytic stratification x0 = xx = . . . c xn_2 = 

E c x . Here, ^i1*1™ X. = i , £ is the singular set, and each 

X^ - X^_^ is a union of finitely many i-dimensional analytic man­

ifolds. X - £ is oriented and dense in X and each : e X. - x±_± 

has a neighborhood which is subanalytically isomorphic to 

E1 x cone°(L ) by an isomorphism which takes strata to strata. Here, 

E1 is the open i-dimensional disc, and Lx is a subanalytic pseudo-

manifold of dimension n - i - 1 , and cone° denotes the open cone 5 

i.e. the cone minus its base. We shall assume that X has only 
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strata of even codimension, i.e., X^ = if n - i is odd. 

1.2 Chains 

Suppose X is an oriented n-dimensional subanalytic pseudomanifold 

with strata of even codimension only. Let be the sheaf of 

i-dimensional subanalytic chains on X (see Hardt [H]) with integer 

coefficients. This sheaf assigns to any open subset U c x the 

group C?M (U) of subanalytic chains £ with closed support |£| c U . 

(These are chains with "infinite support", or "Borel-Moore" chains). 

The boundary operator gives the structure of a complex of (fine) 

sheaves. Define the subcomplex IC* by 

IC?M(U) = U e C?M(U) I dim|Ç| n Xm < i - (n-m)/2 - 1 and 

dim|9£;| n X^ < i - (n-m)/2 - 2 for all m < n}. 

Definition: IH^ (X) = IH^(X,ffi ) is the homology of the chain complex 

. . . > ICi+1(X) > IC±(X) > ici_1(x) > ...... 

where IC.(X) denotes the subgroup of icf (x: consisting of chains 

with compact support. Similarly, IHf(X) is the homology of the 

complex 

. . . > icfj^x) > Icf(X) ic^l(x) 
... 
... 
... 

1.3 Relative Intersection Homology 

If X is a (not necessarily compact) pseudomanifold, then any 

open subset U c x inherits the structure of a stratified pseudo-
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manifold. Therefore IC*(U) is defined as above and is a subcomplex 

of IC*(X) . Define IC*(X,U) to be the quotient complex 

IC*(X)/IC*(U) . This gives rise to the exact sequence 

. . . —> ih^u) > ih^x) > iHi(xfu) > ihì_1(u) > . . . 

An inclusion of open subsets (Xf,U') c (X,U) induces a map between 

the corresponding long exact sequences. Similarly if V is open in 

U , and if U is open in X , then we have the long exact sequence 

. . . > ih^UfV) > IKLfXfV) > ih±(X,U) > ihì_1(u,v) > . . . 

Theorem; ([GM1] , [GM2 ] ) is independent of the choice of 

stratification of X and is even a topological invariant of (X,U), 

i.e. if f : X > X1 is a homeomorphism of subanalytic pseudo-

manifolds which takes the open subset U c x homeomorphically to 

U' c X' then f induces an isomorphism IH±(X,U) = IHi(X
,

/U
I) 

for all i 

Proof ; The proof follows from the identity 

IH±(X,U) = M~X (Rj*j* IC) 

(where j : X - U c x is the inclusion) and the topological in­

variance (up to qua si-isomorphism) of the complex of sheaves IC 

(see [GM2]) 
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1.4 Remark on pseudomanifolds with boundary: 

In this paper we will avoid taking the intersection homology of 

a pseudomanifold X with boundary 3X (or with corners) by replacing 

it with the intersection homology of the interior X° = X - 3X 

Similarly we will replace the relative intersection homology of 

(X,3X) with the intersection homology of the interior of X modulo 

a collared neighborhood of 9X 

1.5 Excision Formula 

If U is open in X and V is closed in U , then the in­

clusion (X-V,U-V) > (X,U) induces an excision isomorphism. 

IH^X-V^-V) = IHi(X/U) 

Proof; The piroof is the same as for the excision formula in ordinary 

homology. The key ingredient is that each IC^ is a fine sheaf. 

1.6 Runneth Formula 

Let Ea denote the open disc {y e lRa | || y|| < 1} and let 

9Ea x e1 denote y e l a h < ||y|| < 1} which is a collared neigh­

borhood of the boundary of Ea . Suppose U is an open subset of 

a pseudomanifold X . Then 

IHi(X,U) = IHi(XxEa,U*Ea) 

IH. (X,U) = IH. , (XxEa,UxEa u Xx3EaxE1) l i*t"a 

145 



M. GORESKY, R. MACPHERSON 

I.7 The local calculation and cocalculation 

Suppose x e X is a point in some stratum S which has co-

dimension 2c . Let U be a neighborhood of x of the type 
n— 2c 

considered in §1.1, ie U is homeomorphic to E x c°(L^) where 

C° is the open cone and L^ is a pseudomanifold of dimension 

n - 2c - 1 . Let 3u x e1 denote a collared neighborhood of the 

boundary of U , ie 

9U x E1 = 8En"2° x E1 x C°(L ) u En~2c x L x E1 . 
X X 

Then (CGM2]§2.2) 

IH?M(U) = IHi(U,8UxE1) = 
IH. ^0 ,(L ) if i > n - c + 1 i-n+2c-l x 

0 if i < n - c + 1 

IHi(U) = 
0 if i > c 

IH. (L ) if i < c x x 

Proof: To calculate IHi(U,9UxE1) it suffices to find 

IH. ^ (C°(L ),L xe1) because of the Kunneth formula. If £ is i-n+2c x ' x ^ 
a cycle in IC, (C°(L ),L xe1) and k < c then |£| does not intersect 

JC XX 

the conepoint {x} . Thus "pushing along cone line" deforms this 

cycle into the neighborhood L^ x e1 of the boundary. Thus 

IHk(C°(Lx),Lxxe1) = 0 . However if k > c + 1 then £ is homologous 

to the cone over a cycle £' in Lx which can be obtained by inter­

secting £ with Lx x {t} for some t e E1 
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Similarly IH^(U) -S IH^(C°(Lx)) . Any compactly supported 

cycle £ e IC^(C°(Lx)) is the boundary of cone(|Ç|) which is an 

allowable chain in ICi+l (c° ^L

x'^ provided i > c . Otherwise 

£ can be deformed into an i-dimensional cycle in Lx x{t} for some 

t e E1 . 

1.8 Twisted Coefficients 

Let X be a stratified subanalytic pseudomanifold with even 

codimension strata and with singularity set E . For any strati­

fication of any i-dimensional chain Ç which satisfies the allow­

ability conditions of §1.2, each i-dimensional stratum of Ç and 

each i - 1 dimensional stratum of Ç will be contained in X - E . 

Thus we may speak of chains Ç with coefficients in T , whenever 

T is a local system of coefficients on X - £ . (The fibre of 

T must be a regular Noetherian ring). 

Definition; Let T be a local coefficient system in the sense of 

Steenrod [S] on X - E . IC^(T) is the sheaf on X whose sections 
BM 

over an open set U is IC^ (U;T), i.e. the group of i-dimensional 

subanalytic chains £ with closed support in U , with coefficients 

in T , and which satisfy the allowability conditions of §1.2 . 

IKN (X;T) is the homology of the chain complex of sections with com­

pact support of the sheaves IC*(T) 

Theorem; IHi(X;T) exhibits the formal properties which were listed 

above: long exact sequence for a pair and triple, excision formula. 

147 



M. GORESKY, R. MACPHERSON 

Kunneth formula, local calculation and co-calculation. 

§2. Real Morse Theory 

§2.1 Morse Functions on Subanalytic Sets 

Suppose X is a subanalytic set. In order to obtain a class 

of "smooth" maps f : X > IR and to obtain a suitable topology 

on this collection of maps, let us assume X is embedded in some 

smooth analytic manifold M . Fix a Whitney stratification of X 

by analytic submanifolds. 

Definition: A function f : X > 3R is a Morse function provided 

a) f is the restriction of some smooth f : M > JR 

b) For each stratum A of X , the function f|a has only non-

degenerate critical points. 

c) All critical values are distinct. 

d) At each critical point xQ e A , the differential 

d f (Xq) (t) =f 0 whenever t is a limit of tangent planes from 

some larger stratum B > A 

Remarks: Every zero dimensional stratum is a critical point. The 

subset of smooth functions g : M > ]R which are Morse functions 

on X depends on the stratification of X 

This definition of Morse function was made by Lazzeri [L] and 

was amplified by Pignoni CP] who also proved: 
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Theorem: [P] If X is closed in M then the subset of smooth 

proper functions g : M > 2R whose restriction to X is Morse, 

forms an open dense subset of C°° (M,]R) . Each such restric-c proper 
tion g|x is topologically stable. 

2.2 Morse Data 

The main technical tool in this paper is the theorem in this 

section which was announced in [GM3]. The statements here are par­

allel to those in [GM3] except the spaces considered here are open 

subsets of pseudomanifolds (eg, X ) instead of pseudomanifolds 
^ a 

with boundaries (eg, X ) . Complete proofs of the theorem in this 
^ a 

section will appear in [GM4]. 

Let X be a closed Whitney stratified subanalytic subset of 

some analytic manifold M . Suppose f : X > JR is a proper 

Morse function which is the restriction of some smooth f : M > 3R . 

Fix a critical point Xq in some stratum A of X Let A be 

the Morse index of f|A at x^ . Set v = f(x^) and a = dim(A) 

Choose an analytic submanifold V c M which meets A transversally 

in the single point {xq} 

Let B^(Xq) be the closed ball of radius 6 with respect to 

some local coordinates, centered at x^ and let B^(x^) denote its 

interior. Choose 6 > 0 to be so small that the following condition 

holds. 

N = B5(xQ) n V n X is compact, 6Bg(xQ) meets each stratum of V n X 

transversely, and the same is true for all 6' < 5 

Shrink 6 if necessary so that the following condition also 

holds: there exists e > 0 so that f is a Morse function on 
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N n f(v-2e,v+2e) with no critical points on any stratum of N , 

other than ^xq} (including strata of 6B^(Xq) n v n x); and so 

that a similar statement is true for any 6* < 6 

Define x^ = {xeXlf(x) < a} . Let N = B?(xn) n V n x . <a 1 o 0 
and let Em denote the open m-disc with 3em x E"^" denoting the 

complement of a smaller m-disc 

Theorem: x<v+e

 1 S homeomorphic to the space obtained from x

< v _ e 

by attaching 

ex x ea"a x n 
<v+e 

along 

(3eXxE1xEa AxN^ , ) u (EXxEa XxN ) 
<v+e <v-e 

Furthermore, the homeomorphism types of the space N , and of the 

pair (N N ) are independent of the choices of V , e , and 
^ Vi E , "^V^— 61 

Ô . 

Corollary: Using the Kunneth formula and excision, we have 

IHi(X<v+e,X<v-e) = I H i - l ( S

W e (

H < v - E

1 • 

Remark: In the case that x is a complex analytic variety, the 

normal slice V can be chosen to be complex analytic also. Thus 

N is a complex analytic space with a subanalytic compactification 
N . In the next chapter we will study the local geometric structure 

of this space N 
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§3. Local Geometry of Complex Analytic Spaces 

3.1. Introduction: In this section we study a particular neigh­

borhood B and its boundary L of a zero dimensional stratum {xq} 

in an analytic variety N by stratifying a generic projection 

p : N > <C and intersecting B with the fibres of this projection. 

The generic fibre of p intersects the pair (B,L) in a pair («2?, 

which we call the complex link (and its boundary) of the point x^ 

There is a monodromy homeomorphism y : SB > & which is the identity 

on a collared neighborhood of and from this information the pair 

(B,L) can be recovered up to homeomorphism as follows: is obtained 

from & x [0,1] by identifying (£,1) to (y(£),0) and then by 
2 2 1 attaching x d where d is a closed 2-disk along d& x s 

Then B is homeomorphic to the cone over L with cone vertex at x^ 

If X is a complex analytic variety with a Whitney stratification 

and if Xq is a point in some stratum S then this discussion will 

apply (for example, in section §4.4) to a normal slice N through X 

which is transversal to S at x^ 

3.2 Generic Projections 

Let N be a Whitney stratified (not necessarily closed) complex 

analytic variety in some Cm . Suppose ^xq-^ ^s a zero-dimensional 

stratum of N . Let p : N > C be the restriction of a linear 

projection such that p(xQ) = 0 and Re(p) is a Morse function near 

xQ . This means that dp(xQ) (t) =f 0 whenever x is a limit of 

tangent planes from a larger stratum. 

The set of such projections is open and dense in the space of 

all linear maps Cm > C . (See Pignoni [P]). 
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Notation: Let Br(Xg), B^(Xq), 8Br(x^) denote respectively the 

closed ball, open ball, and boundary of the ball of radius r centered 

at xQ . Let Dr, D°, 9Dr denote respectively the closed disc, open 

disc, and boundary of the disc of radius r centered at 0 e C 

3.3 Choice of £ and 6 

Definition: The real number 6 > 0 is small if Bx(xn) n N is 
ò 0 

compact, 3B^(Xq) is transverse to each stratum of N , and so that 

the same is true for all 5' with 0 < 6' < 6 

If it is small, the real number e > 0 is subordinate to 6 

(written e << 6) if Re(p) has no critical points (other than x^) 

on any stratum of N n Bg(xQ) n p'^tD^ £ ) (including the strata in 

N n 8B^ (Xq) n p~"^(D2 £ )) • This is equivalent to the statement that 

for any £ e D^ / p~^"(£) is transverse to each stratum of N n B^(x^) 

with the single exception that p "'"(O) fails to be transverse to the 

stratum {Xq} 

The number 6 > 0 is very small (written 6 << 1) if it is 

small, and for any 5' < 5 there exists an e > 0 which is sub­

ordinate to 6" . (Such a 6 exists because Re(p) is a Morse 

function). 

Choose 5 > 0 very small and choose e > 0 subordinate to 6 

Let D = D and fix £ e D - {0} . 
e 

3•4 Definition of the Complex Link and related spaces 

1. The complex link, its interior and boundary: 
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2 = p"1(5) n B6(x0) 2° = p n B°(xQ) 

M = p"1(^) n 3B6(xQ) 

2. The particular neighborhood of x^ and its interior: 

B = p"1(D) n B6(xQ) B° = p"1(D°) n B£(XQ) 

3. The "horizontal" and "vertical" parts of the real link, and their 

interiors: 

M = p"1(^) n 3B6(xQ) M = p"1(^) M = p"1(^) L£ = p-^-CD0) n 3B6(x0) 

L V = p"1OD) n B6(xQ) L° = p"1OD) n B°<xQ) 

I. The boundaries of the horizontal and vertical parts of the real 

link: 

3Lv = 3Lh = p 1OD) n 3B6(x0) 

5. The real link: 

L = 3B = L u L, v h 

6. The cut off spaces: 

B n = p 1({z|Re z < 0}) n B Mp"1(^) B<0 = B<t)n B ? ( V M = p"1 

L<0 = B<0 n L M = p"1(^) 
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X0 .6 

The ball B^(Xq) in the normal slice 

L 

0. e 

A 

C 

The particular neighborhood B 
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The horizontal part of the real link 

The vertical part L of the real link 
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3.5 Topological properties of the neighborhood 

The results of this section were announced in [GM3]. The proofs 

involve delicate stratification theoretic arguments using controlled 

vector fields, and will be published in [GM5]. Previous results in this 

direction are due to Milnor [Mi2] and Le [Le]. 

Theorem: (a) The projection 

p : B - p"1(0) > D - {0} 

is a topological fiber bundle. 

(b) There is a homeomorphism 

q : Cone(L) > B 

of the cone on L to B which 

takes the vertex of the cone to XQ , takes the 

base of the cone to L by the identity and takes 

Cone(L<Q) homeomorphically to B<Q u (XQ) 

(c) There is an embedding 

r : d& x [0,1) x D > B 

which takes d& x {0} x D homeomorphically to L ^ and such that 

p o r : d& x [0,1) x D > D is the projection on the third factor. 

We denote the part of the collared neighborhood of 3i2? that lies 

in L° by dSe x E l c go 
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(d) The pair (B°e ,B° s) 
2 2 

is homeomorphic to the pair 

M = p"1(^) M = p"1(^) M = p"1(^) M = p"1(^) (for some n sufficiently small), where 

B6(x0}<a = { x e B°(xQ) |Re(p(x)) < a} M = p"1(^) and similarly for 

Remark: Part (c) of this theorem says that the fibration of part (a) 

is trivial near , and that the trivialization can be chosen to 

extend over the whole disk D . It also says that has a 

collared neighborhood in B , dSP has a collared neighborhood in <? , 

and these collared neighborhoods are compatible. 

Theorem: The topological type of each of the spaces and maps defined 

in the preceeding sections is independent of the choices of 

p, e, or 6 . If N was obtained as the normal slice at x^ to 

a connected stratum S in some Whitney stratified complex analytic 

variety X , then the topological type of these spaces and maps is 

also independent of the choice of N or xQ 

3.6 Intersection homology of the neighborhood 

The following are corollaries of the first theorem of the last 

section (3.5) . 

Corollary 1: There is an isomorphism 

IHi(B°-{x0}/B<0) = IHi_1(i?0,,8^ xe1) 

for all i 

Proof: We prove this corollary in four steps, 
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Step 1: 

IHi(B°-{x0},B°0) = IH^L,!.^ 

In fact there is a homeomorphism of pairs of topological spaces 

(B°-{x0},B°0) = (L,L<()) x E1 

as may be seen from Theorem 3.5, part 2. The isomorphism above 

follows then from the Kunneth theorem. 

Step 2: Let 

Lc = L<() u Lh u r(3i?x [0,^-] x 3D) 

= L<Q u r(3i?x {0} x D u 3i? x [0f~] x 3D) 

We claim (L,L<Q) is homeomorphic to (L,Lc) therefore 

IHi(L,L<0) = IHi(L/Lc) 

In order to see this, consider the subspace of L , 

Lh = r(3^x {0} x D U d& x [0,1) x D) 

This is an open neighborhood of L ^ in L The homeomorphism 

L ^ = 3^ x D extends to a homeomorphism L ^ = 3i? x where 
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D° = {ze<c||z|<3e}, in such a way that the collaring lines pro­

ject to radial lines in <C . Algebraically, 

{r(9i?x[0,l] x 3D) > 8i?xc (*) 

r U,t,£) > U, (l+2t)5) 

There is a homeomorphism of the following pairs of open subsets 

of € (where the larger space is the 3e disc and the subspace is 

shaded) 

M O O 

which is the identity in a neighborhood of the 3e circle. Applying 

this homeomorphism with (*) above establishes the claim. 
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Step 3. Consider the pair of subspaces of <C , 

I = {z e 3D I - 1 
2 e < Re (z) } 

J = {z e 3D I - 1 
2 e < Re(z) < 0} 

The restriction of the fibration p : L° > 3D to the open interval 

I is trivial. By theorem 3.5(c) the trivialization 

T : &° x i > p-1(i) n L° can be chosen so as to take (3^x E1) X I 

homeomorphically to r ( 9i?x (o ,j) *i) . The pair (L°/857XE1) X (I,J) 

is then taken by T to the pair (L,!.^) . By excision. 

IHi(L,Lc) = IHi((^°/3^xE

1) x (I, J)) 

Step 4. 

IHi( (<?°, d& x E1) x (I,J)) = IH._1(5,°,9i?xE1) 

by the Kunneth formula. 

Remark: A careful analysis of the above argument shows that the 

resulting isomorphism of 

IHi (B ° -{xQ } ,B°Q) with IHi_1 (L °, 9^° XE1) 

is canonical. 
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Corollary 2. There is an isomorphism 

I H i ( B S ( V < n ' B6(V<*T, 
IH.(B° ., B°0) 

Remark: By the results of §2.2, the left hand side of this equation 

is the Morse group. 

Proof of corollary 2. From theorem 3.5(d) we have. 

I H i ( B ? ( x 0 , < ï , ' B6(x0)<-n) '•• IH.(B°e , 
1 2 

B< £) 
2 

The inclusion of pairs (B°£ , B° e) -
2 2 

M = p"1(^) M = p"1(^) induces an 

isomorphism 

IH.(B°£ , B° e) 
1 2 "2 

IHI(B° , B°Q! 

for the following reason: from theorem 3.5(a) the inclusions 

B°£ > B° and B<_£

 > B^Q are isotopic through inclusions 

to homeomorphisms. Therefore these inclusions induce isomorphisms 

on intersection homology. The corollary now follows from the five 

lemma. 

Corollary 3. There is a canonical isomorphism 

IH.(B°0) = IH.(<?°) 

Proof: By theorem 3.6 part 1 B°Q « 2° * E2 
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3 . 7 Variation Map 

Definition; The variation map is the composition 

M = p"1(^) M = p"1(^ 
M = p"1(^)) 

E iHi(^°/ 9^ x E1) (see §1.4 

= IDi»<0)= IDi»<0)= IDi»<0)= IDi»<g0<swf) 

= IDi»<0)= IDi»<0)= IDi»<0)gpiunytuuiygh [§3.6 corollary 1) 

9* 

= IDi»<0) ù$ù^ù$ 

= IDi»<0)= IDi»<0) 

= IDi»<0)= IDi»<0) (§3.6 corollary 3) 

Intuitive Description: This homomorphism may be defined rigorously 

in the subanalytic context as follows: by Hardt [HD the monodromy 

y : > & may be taken to be a subanalytic homeomorphism which 

fixes a collared neighborhood U of d& in & . The subcomplex 

IC* («2?° ,U) of IC* {SP° ,U) consisting of chains which respect the 

product structure of U has the same homology as IC* (£?° ,U) 

However, for any £ e IC^(&° ,U) , £ - p(£) is an absolute chain in 

IC. («2?°) . Thus (I-y) induces a homomorphism 

IH±(&° rU) > IHi(^
7°> . This homomorphism agrees with the com­

position defined above. 
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§4. The Main Theorem 

§4.1 Proposition An 

Let X be a complex purely n dimensional analytic Whitney 

stratified space and let f : X > 3R be a proper Morse function 

with a nondegenerate critical point x^ . Let S be the stratum 

which contains x^ , and let c > 0 be the complex codimension of 

S in X Define m , the Morse index of f at x Q , t o k e 

A + c where A is the Morse index of f|s at x^ . Suppose the 

region [v-e , v+e) contains no critical values other than v = f(x^) . 

Then 

IHi(X<v+e , X<v-e> = 0 unless 1 - m)= IDi»<0) 

Furthermore, if c > 0 then IH (X^ , X^ ) m <v+e , <v-e is isomorphic to 

the image of the variation map 

(I-y) : IHC-1(^° , a ^ x E

1 )= IDi) 
I H c - l = I D i » < 0 ) 

where , d&) is the complex link and its boundary which is 

associated to the connected component of S which contains x 

Remark 1: This isomorphism can be made canonical if 

a) the transversal slice N is chosen through XQ 

b) the projection N > C is taken to be the complexification 

of the differential df(xQ) , where f is a smooth extension 

of f to some Cm which contains X 
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c) the complex link, monodromy, and variation map are constructed 

from this particular projection. 

Remark 2: The Morse index m = A + c can be viewed more symmetri­

cally as follows: relabel IH*(X) according to the Beilinson -

Bernstein-Deligne-Gabber scheme, IH^(X) = IH^_n(X) . Then 

IHi{X<v+e . X<v-e) - 0 unless 1 = X/2 

where i is the index of the Hessian of f|s at xq / i.e., i 

is the number of positive eigenvalues of the Hessian minus the 

number of negative eigenvalues. 

4.2 Proposition Bn 

Let Y be a complex analytic Whitney stratified space of any 

pure dimension and let S be a stratum of Y whose complex codimen­

sion is c = n+ l > 0 . Choose a point yQ e S and let SB be the 

complex link of S at the point yQ (which will have complex dimen­

sion n) . Then 

IHi (S?° ) = 0 for all i > n + 1 

IHi(i?0,3^?x E1) = 0 for all i < n - 1 

4.3 Proof that A implies B 
n n 

As in [GM3] we consider the proper function f : <£ > (0,6) 

given by 
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f(y) = distance between y^ and y 

By a slight (C°° close) modification of f we may assume it is a 

Morse function and has the property that for any stratum A of SB , 

index (fI A) < dim^A at any critical point in A . Proposition 

= IDi»<0) applied to this f implies that for each critical value v , 

IH. («2?° , a>° ) = 0 for all i > dim^A + cod^A = n 

where A is the stratum which contains the critical point. 

To prove the second statement, consider the function 

f x SB° > (-6,0) qiven by 

f(y) = - distance between y^ and y 

This can be approximated by a Morse function whose restriction to 

each stratum A has critical points of index > dim^A and for 

which SB° ̂  x = dSBx E1 and = SB° . 

Repeated application of proposition A^ (at each critical point) 

gives 

IHi(^° , d&xE1) = 0 for all i < n . 

4.4 Proof that B, for all k < n applies A  K n 

If the critical point x^ lies in the nonsingular part of X 

then the conclusion of An is clear since x < v + e ^s obtained from 
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<v-e by attaching = IDi»<0)= IDi»<0) 

along = IDi»<0)= IDi»<0, c = n = dimc(X]) 

Thus we may assume x^ lies in the singularity set of X 

By restricting f to a suitably chosen normal slice through x^ , 

applying theorem 2.2 and the Kunneth formula, we may reduce to the 

case that {XQ} 1 S a zero dimensional stratum of X , c = n = dimc(X] 

and X = 0 

The main idea of the proof is to analyze the triple of spaces 

(B°,B° - {xQ}, b<Q) where B° is the particular neighborhood of xQ  

(§3.4) and B^Q is the assoicated cut off space. By theorem 3.5(b), 

B° - {XQ} is homeomorphic to L x E1 , and by 3.5(a), B°g is home-

omorphic to &° x E2 . So we denote this triple by 

(B°,LXE1,^° XE2) . 

The Morse group , c = n = dimc(X],c = n = dimc(X c = n = dimc(X] is isomorphic to the 

intersection homology of the pair (B°,SP° XE2) by corollary (2) of 

§3.6 . Consider the long exact sequence for the triple 

{SB° x E2 c L x E1 c B° ) (§1.3) and the long exact sequences for the pairs 

(LXE1,^0 x E2 ) , (B°,i?0xE2) , and (B°/LxE1) . These fit together 

in the following commutative braid diagram which has exact sinusoidal 

curves. 
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The argument now proceeds by a diagram chase plus these facts: 

IH.(B°,LXE1) = 0 for i < n 

IHi(B°) = 0 for i > n 

from §1.7 and §3.5 (a) 

IH±(&0) = 0 for i > n from proposition B^ for k < n 

IHi(L,^°xE1) = IHi_1(&° , S ^ X E 1 ) = 0 for i < n - 1 

from §3.6 corollary and proposition B, for k < n 

Remark: The braid diagram of this proof is naturally isomorphic to 

the braid diaqram in the introduction to this paper because: 

a) The identification IHi + 1 ( L , ^ ° XE1) = I H . f ^ ^ ^ x E 1 ) is made 

in §3.6. This identification can be chosen compatibly with the 

variation map defined in §3.8. 

b) The "Morse group" IH±(X<e

 x<_e) i s identified with 

IH. (B°,£e° XE2) in corollary 2 of §3.6 as remarked above 

c) The local intersection homology IH^(X,X-XQ) is identified with 

IH^(B°,LXE1) by excision and theorem 3.5 part (b). 

d) The remaining identifications follow from the Kunneth formula of 

section §1.6. 

§4.5 Examples : 

1. Suppose C is a complex algebraic curve with a singular 

point xQ . The complex link of C at xQ consists of m points. 
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where m is the multiplicity of C at x^ . The kernel of the 

variation map has dimension b , where b is the number of analytic 

branches of C at xQ . Therefore the Morse group at xQ has rank 

m - b 

2. Consider C2 = { (zlfz2,0,0).e C 4 | z l f z 2 £ <C} . Let X be the 

singular Schubert variety 

X = {P e G2 ( C 4 ) |dimc(Pn<C2) > 1} 

2 
with isolated singular point {XQ} = t n e plane <C . The Morse 
group at xQ is 0 for the following reason: 
~ 2 4 2 

X = {(L,P) c G1(C ) x G2(<C )IP n C = L} is a small resolution 

([GM2 ]) of X , with projection TT : X > X given by TT(L,P) = P . 
Therefore TT^ C^ = , i . e . the complex of sheaves of inter­

section chains on X is just the pushforward of the complex of 

sheaves of ordinary chains on X . Let f : X — — > 3R be a Morse 

function. Then (by a simple calculation) f o ir : X > 3R is a 

Morse function with no critical points on IT ^"{X^} . Consequently 

IHi(X<v+e , X<v-e> = Hi(X<v+e , ^v-e5 = 0 

where v = f(x

0) is the critical value. 

3. Let V be a complex algebraic variety embedded in C P N . Let 
n+ n 

X be the cone over V in C P . Then the complex link SB of 

the cone point p in X is homeomorphic to the complement of a 

generic hyperplane section of V 
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By the results of [GM3D , for an open dense set of functions 

f : C p n + 1 > IR , for v = f (p) and for small enough e , we 

have 

Hk(X<v+£ , X<v-e> = 5k-l<^ 

where H denotes reduced homology. Choosing V with enough homology, 

we get a counterexample to the existance of a Morse index in ordinary 

homology. For example if V is the disjoint union of two non-singular 

curves at least one of which is not a C P1 linearly embedded in C Pn , 

H, (X^ . X. ) is nonzero for k = 1 and 2 k <v+e . < v~ F. 

§ 5. Consequences and Extensions of the Main Theorem 

§5.1 Twisted Coefficients 

Suppose X is a Whitney stratified complex analytic variety 

and T is a local system of coefficients (CSD) on the nonsingular 

part X - Z , whose fibre is a regular Noetherian ring. Then T res­

tricts to a local system of coefficients (also denoted T) on the non-

singular part of each of the spaces considered in §4 (eg B°,S?°, №, etc.). 

Propositions An and Bn remain true if IH* is now interpreted as 

the intersection homology with coefficients in T (§1.8) because only 

the formal properties from §1 of intersection homology were used in 

the proofs of A and B ^ n n 

5.2 Intersection Homology of the link 

Proposition; Suppose X is a stratified complex analytic variety and 
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XQ is a point in a stratum S of complex codimension c > 0 . Then 

IHi(L) 

~IH. .ll^^XE1) for i > c 

I ker (I-y) for i = c 
coker (I-y) for i = c - 1 
IH (&°) for i < c - 1 

where L is the link of S at xQ , 2 is the complex link of S at 

xQ , and (I-y) : IEc_±(2, dSJ? ) > IH r(iZ?) is the variation map 

(§3.7) . 

The proof is immediate from propositions An ' Bn of §4 and the 

xraid diagram. 

5.3 Intersection Homology of Stein spaces 

Theorem; Let X be an n-dimensional Stein complex analytic variety. 

Then IH^X) = 0 for all i > n 

Proof: Embed X as a closed analytic subspace in CN for some N 

Choose a point p e X such that 

f(x) = distance (p,X) 

is a Morse function. Then for any stratum A of X and for any 

critical point x e A , we have 

index (f|A,X) £ dim^A 

so IH^(X<v+£ c = n = dimc(X x<v_c = n = dimc(X£) =c = n = dimc(X 0 for a11 i > n , by theorem AN (where 
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v = f(x)) . 

5.4 Lefschetz Hyperplane Theorem 

Let X be a complex n dimensional algebraic variety embedded in 
N 

complex projective space C P and let y c x be a generic hyper­

plane section of X, i . e . Y = X n H where H is a hyperplane 

which is transverse to each stratum of a Whitney stratification of X . 

Theorem: The inclusion Y -—> X induces isomorphisms 

IH.(Y) = IH.(X) for all i < n - 1 and a surjection 

IH (Y) > IH -i (X) . 
n—i n—1 

Proof: The transversality assumption implies that Y has a product 
2 

neighborhood (which we can denote Y x E ) in X . By the Kunneth 
2 

formula and the long exact sequence for the pair (X,YXE ) i t suffices 
to show that IHi(X,YxE ) = 0 for all i < n . 

Stratify X . Let f : X > 1R be a Morse perturbation of the 

function x —> distance (x,H) where distance is taken with respect 

to the usual (Fubini-Study) metric on C PN . Then X<^ = Y x E 2 

for some 6 > 0 and X, = X for some m > 0 . Furthermore, for 
<m 

any stratum A of X and for any critical point x^ e A we have 

index (fI A, xQ) > dimcA 

If v = f(xQ) then for some e > 0 we have 

IHi(X<v+e , X<v-e} » 0 for 3c = n = dimc(X11 1 K n 
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Apply this formula to each critical point in X - Y x E to obtain 

the result. 

2 

Remark: The Lefschetz hyperplane theorem was discovered independently 

by P. Deligne who used sheaf theory and the method of Artin ([A]) in 

his proof. (See [GM2] §7). 

5.5 Morse Inequalities 

An argument identical to the standard one (eg Milnor [Mi]) can 

be used to derive Morse inequalities for the intersection homology 

groups. However each critical point must be counted with a multi­

plicity which is the rank of the Morse group at that point: 

Suppose X is a complex analytic variety with a Whitney strat­

ification. For each x e X define the rank of the variation at x , 

Mx) = rank I-y) : IH*^0, d& x E1) > IH*(^0) 

where 2 is the complex link associated to the stratum which contains 

x (define % (x) =1 if x is a nonsingular point of X). 

Theorem: Suppose X is compact and f : X > TR is a Morse 

function. Define I b = rank (IH_. (X) ) and for each nonnegative 

integer m define 

Rm = iil.ix) |x is a critical point of f and 

codim (S) + index (f|s,x) = m , where S is the stratum containing x} 
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Then the following Morse inequalities hold: 

Ro > 1 bo 
Ri - Ro > 1 b i - 1 bo 

R2 ~ Rl + R0 I b 2 - I b 1 + I bQ 

etc. 

and 
2n • 2n 

Z (-D1 Ri = E (-D1 ib. 
i=0 1 i=0 

where n is the complex dimension of X 

5•6 Other Perversities 

Propositions A and B of section 4 must be modified if *• n n 

we wish to consider any perversity p other than the "middle" per­

versity. However the proof of the modified propositions proceeds 

exactly as before but with changes in the numbering. We give the 

results here: the intersection homology Morse group is 0 except 

in a range of dimensions which depends on the perveristy. 

Definition: Let p = (p(2),p(3),...) be a perversity ([GMl]) i . e . 

p(2) = 0 and p(j) < p(j + l) < p(j) + 1 . 

Define d(0) = d(l) =0 and for k > 2 , 

d(k) = sup{j - 1 - p(j) |2 < j < k} 

but set d(k) =0 if all these numbers are negative. 
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Define h(0) = h(l) =0 and for k > 2 , 

h (10 = sup{p(j) - j [2 < j < k} 

but set h(k) =0 if all these numbers are negative. 

Proposition A^: Suppose X is a complex n dimensional Whitney 

stratified analytic variety and f : X > TR is a proper Morse 

function. Let XQ be an isolated critical point with critical value 

v . Say S is the stratum which contains x Q / ^ is t n e Morse 

index of fIS at xQ and c > 0 is the complex codimension of S in 

X . Suppose Cv-e , v+e) contains no critical values except v 

Then 

IH?(X^ ^c = n = dimc(X ) c = n = dimc(X = 0 

unless c - h(2c) + \ <_ i < c 4- d(2c) + A 

Proposition : Let Y be a complex analytic stratified space 

and let S be a stratum of Y whose codimension is c = n + l > 0 

Fix y e S and let SB be the complex link of S at the point y 

Then 

IH?(^d) =0 for all i > n + 1 + d(2n) 

IHP(#o X E 1 ) = 0 for all i < n - 1 - h(2n) . 

Corollary: Let X be an n-dimensional Stein complex analytic variety. 
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Then IH?(X) = 0 for all i > n + 1 + d(2n) 

Corollary: Let Y be a generic hyperplane section of a complex 

n-dimensional projective algebraic variety X . Then the map 

(CGM2] §5.4) 

IH?(Y) > IH?(X) 

is an isomorphism for all i < n - 1 - h(2n) and is a surjection 

for i = n - 1 - h(2n) 
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§6. Specialization over a Curve 

6.1 Introduction. Throughout this section X will denote an irre­

ducible complex analytic variety and f : X > D° will be a prope: 

analytic map to the (open) unit disc in the complex plane. We will 

assume that f is the restriction of a smooth proper nonsingular 

analytic map f : M > D° where M is a smooth variety which con­

tains X . We will furthermore assume that X and D° have been 

analytically Whitney stratified so that f takes each stratum of X 

submersively to a stratum of D° , and so that the origin 0 e D° i: 

the only zero dimensional stratum in the target. (It follows that 

f : X > D° satisfies condition Af of Thorn ([T],[Ma])). 

For any t e D° , let Xfc = f~1(t) 

We will construct a continuous map 

*t : xt —> xo 

for |t| sufficiently small, which we call the specialization map. 

Our main theorem is that the "complex of vanishing intersection 

homology cycles" Rc = n = dimc(X c = n = dimc(X ̂ s a Perverse sheaf, i . e . an object in 

the abelian category described in [BBDG]. 

The specialization map I(J depends on the choice of stratificatior 

of f . It is a fact (which we do not prove here) that the quasi-

isomorphism class of R (JC-) does not depend on the choice of 

stratification of X , and i t agrees with the R\p (IC*) from SGA 4. 
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Method of proof: 

The map * t

 : x t xo will be the restriction to X^ of a 

"canonical retraction" ^ : U > Xn of a neighborhood U of 

XQ to XQ • This retraction corresponds to the intuitive notion 

of collapsing a tubular neighborhood of each stratum of X^ down to 

that stratum; however special techniques from stratification theory 

are needed to make such a retraction continuous. This retraction is 

locally trivial over each stratum of x Q ' s o R ^t* ) ^s con"" 

structible. We must show that the stalk cohomology of this complex 

vanishes in a certain range of dimensions. However the stalk co­

homology of this complex of sheaves at a point x in a stratum A 

of XQ is just IH^U"1^) n Ball n X T ) where TTa : TA > A is 

the projection of a tubular neighborhood of A to A 

We wish to apply Morse theory to calculate this intersection 

homology group. Unfortunately TT'^CX) is not necessarily a complex 

analytic space. Therefore we find a homemorphism 

TTA

1(X) n Ball n Xt = T n Ball* n Xfc

f 

where T is a complex analytic normal slice through A at x 

We apply Morse theory to this second space, concluding that its 

intersection homology vanishes in the desired range of dimensions, 

and the same holds for the first space since IH* is a homeomorphism 

invariant. 

The second axiom of perverse sheaves amounts to showing that 

the intersection homology with compact support also vanishes in a 
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certain range of dimensions. The same Morse-theoretic methods appi 

in this case. 

6.2. Definition of if>t : Xfc > XQ 

Choose a system of control data {TA , TTa , pA> on X . (See 

[T],[Ma]). This consists of tubular neighborhoods TA = TA(2 £) in 

M of each stratum A , together with projections TTa : TA > A 

and "tubular functions" pA : TA > [0,2 £] such that whenever 

A c B the following commutation relations 

*A ^B = ÏÏB V ' PA "B = PA 

hold on T

A

 n TB " Recall that PA<
X) = <4>~1(x), c))"1 (x) > where 

<t> : EA > M is a smooth embedding of the normal bundle of A into 

M , and <,> is a smoothly varying inner product on the fibres of 

EA ' 

Control data satisfies the following transversality property: 

for any pair of strata A, B in X , where A <= B , and for any 

e' _< 2£ and for any x £ A , 

c = n = dimc(X
 N Q h " 1 { e t ) is transverse to B in M (*) -

For any stratum A in XQ , define the £-interior of A to 

be the compact subset 

A° = A - U p ' 1 C0,£) 
B B 
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where the union is taken over all strata B c A . We claim there 

exists n > 0 such that for any x e A ° and for any t e C - {0} 

with |t| < £ f
 A(t) is transverse to -1 (x) -1/ ^ 

1 P A ( £ ) 
(Such 

an n will be called "sufficiently small"). 

Proof of claim: Suppose there is no such n . Then there is a 

sequence t^ e C - {0} which converges to 0 , a sequence x^ e Ac 

which converges to some x^ e A° , and a sequence 

y. e ^ ( x . ) n p"1^) n X, where transversality fails (since A° 

is compact). We may assume the y^ all lie in the same stratum D 

of X and converge to some y^ in a stratum C of X^ . We may 

also assume the tangent planes T (XtnD) converge to some plane 
y i 

x . However by condition Af of Thorn, 

T C c T 
y0 

which is not transverse to Ty0

(irÄ1(x0) n pI1(£)) 

This contradicts (*) . 

Define : U(e) > XQ to be the continuous "retraction1 

defined in [Gor] §7.1, where 

U(e) = u (y e T A I c = n = dimc(XPA(Y) - E' 

this union being taken over all strata A of XQ . (ty is not 

actually a retraction in the strict sense of the word because its 

restriction to X is not the identity, but is only homotopic to the 

identity). 
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Definition: i|>t : Xfc > XQ is the restriction of i|> to the fibre 

Xt where |t| <_ n and n is sufficiently small. 

It is a fact which we do not prove (or use) here that the 

topological type of the map ^ t is independent of the choice of 

control data, subordinate family of lines, or parameter values t 

Remark: For any stratum A of XQ and for any x e A there is 

a unique x' e A° such that 

c = n = d i m c ( X 1 ( x ) = i r ^ t x ' ) 

i(;t

1(x) = T T ' 1 ^ ' ) n U(e) n Xfc 

and this x1 depends continuously on x . This can be seen from 

the construction of ip in [Gor]. 

6.3 Specialization Data 

Fix a connected component A of a stratum of XQ . Special­

ization data for A is a collection 

{p, < >, m, 6, n, t} 

with the following properties: (1) p e A . (2) < > is a 

positive definite inner product on the vectorspace V = T^M/T^A 

(3) m : V > M is a smooth map such that m(0) = p , and m is 

transverse to A at 0 , i . e . dm(0) (V) + T (A) = T (M) 
P P 

(4) 6 > 0 is a real number such that m is an embedding on 
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{v e V|<v,v> < 6} and for all 6 • <_ 6 the set 

3B.( = (m(v) I <v,v> = <5' } 

is transverse to every stratum of X . (5) n > 0 is a real number 

such that for all s e € - {0} with | s | _< n , f (s) is transverse 

to 3B- n X . (6) t e C - {0} and |t| < n . 

The trace of the specialization data (p, < >, m, 6, ri/ t} is 

the (stratified) topological space f""^"(t) n X n B^ (p) where 

B^(p) = (m(v)|<v,v> < 6 } 

Proposition: For any choice of p, < >, m satisfying (1),(2),(3) 

above, there exist 6, n and t which satisfy (4),(5) and (6). If 

{pQ/ < >0, mQ, 6Q, r)0, tQ} and {p1, < >±, n^, 6 l f r)lf t ± } are two 

choices of specialization data, then there is a smooth one-parameter 

family of specialization data connecting them. 

Corollary 1: The homeomorphism type of the trace of specialization 

data is independent of the choice of p, < >, m, 6, n, or t 

Proof of Corollary 1: given two choices of specialization data, 

find a one-parameter family {p , < > , m , ô , n , t } between them. 
s s s s s s 

The set Y c M x [0,1] which is given by YG = f"1(tg) n X n B G (pg) 
s 

projects by a stratified submersion to the unit unterval [0,1]. The 

first isotopy lemma of Thorn gives a homeomorphism from Y^ to Y^ 

Corollary 2: The fibre at any point p e X Q of the specialization 

map i|>t : X T > X Q is homeomorphic to the closure (in XFC) of a 
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complex analytic subspace. Fibres over nearby points can be given 

compatible analytic structures. 

Proof of Corollary 2: The fibre at p of ^ t is (by definition) the 

trace of the specialization data {p1 , < >, <)>, 2e, n, t} where 

|t| < n , TI is sufficiently small, and < >, 4), e are determined by 

the system of control data on X , and p' lies in the same stratum 

as p 

Let A denote the stratum of XQ which contains p . Choose 

61 > 0 and a map m : T fM/T ,A > M which satisfies property (3) 
P P 

of §6.3 and which is a complex analytic embedding on the set 

{v e Tp,M/Tp,A|<v,v> < 2 6'} . According to proposition 6.3 there 

exists 6 <_ 6' , w > 0 and s e € - {0} such that {p' , < >, m, 6, w, s} 
satisfies properties 1 through 6 of §6.3. The trace of this special-

— i 

ization data, f (s) n X n B^(p') is therefore homeomorphic to 

^~1(p) (by corollary 1) and is also the closure in XT of the analytic 

subspace f-1(s) n X n T where 

T = m({v e T .M/T ,A|<v,v> < 6 } ) 
P P 

6.4 Proof of Proposition 6.3. 

(a) Existence of 6, n and t : given p, < > and m, there 

exists 6 > 0 satisfying (4) because dm(0) has maximal rank, and 

the stratification of X satisfies Whitney's condition B . The 

proof that n and t exist satisfying (5) and (6) is exactly the 

proof of the claim in §6.2 (i.e. if no such n exists then condition 

Af of Thorn is violated). 
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Remarks; The set of (6,rift) which satisfy (4), (5) and (6) is open 

in IR+ x 3R+ x <C - {0} . In fact, given the first k elements of 

a collection of specialization data, satisfying properties (1)... (k) , 

i t is possible to find the remaining 6-k elements satisfying pro­

perties (k-l)...(6) , and the set of such choices is open in the 

space of all possible choices of those 6-k elements. 

(b) existence of one parameter families of specialization data: 

Given {pQ, < >Q, mQ, 6Q, nQ, tQ} and {px, < >1, m1, r^, t ^ 

satisfying properties (1) through (6) of §6.3, choose a smooth path 

p(s) from PQ to p^ . Choose a connexion on the normal bundle of 

the stratum A in M so we can identify the normal spaces 

Vg = TpjsjM/Tp^A with a fixed vectorspace V It is easy to find 

a one parameter family of inner products < >(s) on V which connect 

< >0 to < > i • Choose a one-parameter family of maps 

m(s) : V > M such that m(s)(0) = p(s) and dm(s)(0) has 

maximal rank, and m(0) = , m(l) = m-^ 

Uniform choice of 6 z We claim there exists 6" > 0 such that 

for any s e [0,1] the collection 

{p(s) , < > (s) , m(s) , 6} 

satisfies property (4) of §6.3. For, suppose not. Then there is a 

sequence (_s^,6^) > (so'°^ such that (4) fails for each i 

This means either (a) dm(s^)(v^) = 0 for some v^ e V , <v^,v^> < 6^ , 

or else (b) 3B^ (p(s^)) fails to be transverse to some stratum of X 
i 

If (a) occurs for infinitely many values of i then this contradicts 

185 



M. GO RE SKY, R. MACPHERSON 

the fact that dmfSg)(0) has maximal rank. If (b) occurs for in­

finitely many values of i then this contradicts Whitney's condition 

B for the stratification of X (at the point p(sQ)) 

Uniform choice of n : We claim there exists rf > 0 such that 

for every s e [0,1] the collection 

{p(s), < > (s), m(s), ô, n> 

satisfies condition (5) of §6.3. For, suppose not. Then there is a 

sequence > 0 which fail to satisfy condition (5), i . e . there 

is a sequence of points t^ e C - {0} with | t ^ | < , and points 

y^ e f "*"(t^) n 9B^(p(s^)) n X where transversality fails. By taking 

subsequences if necessary, we may assume the y^ all l i e in the same 

stratum D of X , they converge to some y^ in a stratum C of XQ 

and the planes T (f^"(t.)) nT D converge to some plane T 

By Thomas condition A^ , 

T C c T which fails to be transverse to T (3B?(p(s0))) This 

contradicts property (4) which was already verified. 

It is now clear how to construct a one parameter family of 

specialization data: shrink t from t Q to some t where 

| t | < rf . Then shrink n from HQ to IT Then shrink 6 

from 6Q to "5" . Then move p, < >, m along the path p(s), 

< >(s), m(s) . Then increase 6 from 6 to 5^ , increase n 

from r\ to and finally move t from t to t^ 
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6.5. Specialization of Perverse Objects [BBDG] 

Suppose Y is a complex n-dimensional Whitney stratified 

analytic variety. Let R be a regular Noetherian ring and let £* 

be a bounded complex of sheaves of R-modules on Y whose cohomology 

sheaves H1(S/ ) are locally constant on each stratum of Y . S* is 

an object in the abelian category of perverse sheaves if, for any 

stratum A of Y , any point y e A , and any sufficiently small 

conical neighborhood U of y (of the type considered in §1.1), the 

following support and cosupport conditions hold: 

H1(j*S') = H1(U;S') = 0 for all i > c 

H1(j!S*) = H^(U;S') = 0 for all i < 2n - c 

where c is the complex codimension of A in Y , and j : {y} —> Y 

is the inclusion of the point. 

In order to make the complex of sheaves IC* into a perverse 

object we must use this shift of indices : 

i c 2 n _ i = IC. 

Theorem: Suppose TT : X > D° is a proper analytic map to the 

unit disc D c c (as in §6.1) and ^ t : Xfc > XQ is the special­

ization map of §6.2. Then Ript * (IC') is a perverse object. 

Proof: Since IC* is a complex of fine sheaves we may write 

*t*(l£') instead of R ± (IC*) . 
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The argument in §6.5 shows that ipt* (IC-) is constructible, i . e . 

that its cohomology sheaves are locally trivial on each stratum of 

XQ . The whole map $ t is locally trivial over each stratum of XQ . 

We must verify the support and cosupport conditions. Suppose 

x e XQ is a point in a stratum A of complex codimension c . By 

taking an analytic normal slice through A at x and applying the 

Kunneth formula, we may assume A = {*Q} is a zero dimensional 

stratum (so c = n) 

The stalk cohomology is: 

Hi(j**t*IC-) = IH™_i<'*t1(x)) = I H 2 n - i ( X t ' X t " * t 1 ( x ) ) 

(by Godement [God] 4.17.1 or Bredon [B] theorem IV 6.1 p. 141 and 

theorem II 12.1 p. 59). 

According to corollary 2 of §6.3, I ) ^ 1 (x) is homeomorphic to 

some analytic space T n BE(x') n X . By excision 

I H 2 n - i ( X t ' X t ~ * t 1 ( x ) ) " I H

2 n - i ( T n X t n B ô f T n X t n ( 9 B Ô X E 1 ) ) * Use the 

Morse theory for a Morse perturbation of the function 

f (y) = - distance (y,x) 

as in- §4.3 or §5.4, to see that this group vanishes whenever 

2n - i < n 

Similarly the costalk cohomology is 

H^R+^ic-) = i H ^ i ( x t / x t - * ; 1 ( x ) ) = i H 2 n - i ( * t 1 ( x ) ) 
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by Bredon [B] prop. V 7.2 p. 206 and theorem II 12.1 p. 59. Replace 

^"^(x) with T n B^(x') n Xt as above and use a Morse function 

close to 

f ( y ) = distance (y/X) 

as in §4.3 or §5.3 to see that this group vanishes whenever 

2n - i > n 

Corollary: R IJJ^* takes perverse objects to perverse objects. 

Proof: The simple perverse objects on Xfc are the intersection 

chains IC* (with twisted coefficients) of subvarieties of Xfc . 

The specialization of any such complex of sheaves is a perverse 

object on XQ according to theorem 6.6. It follows that the same 

is true for extensions of such sheaves. 
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