Loop space decompositions in the theory of exponents
Homotopie algébrique et algèbre locale, Astérisque, no. 113-114 (1984), pp. 118-131.
@incollection{AST_1984__113-114__118_0,
     author = {Husemoller, Dale H.},
     title = {Loop space decompositions in the theory of exponents},
     booktitle = {Homotopie alg\'ebrique et alg\`ebre locale},
     series = {Ast\'erisque},
     pages = {118--131},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {113-114},
     year = {1984},
     zbl = {0546.55016},
     mrnumber = {749047},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1984__113-114__118_0/}
}
TY  - CHAP
AU  - Husemoller, Dale H.
TI  - Loop space decompositions in the theory of exponents
BT  - Homotopie algébrique et algèbre locale
AU  - Collectif
T3  - Astérisque
PY  - 1984
SP  - 118
EP  - 131
IS  - 113-114
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1984__113-114__118_0/
LA  - en
ID  - AST_1984__113-114__118_0
ER  - 
%0 Book Section
%A Husemoller, Dale H.
%T Loop space decompositions in the theory of exponents
%B Homotopie algébrique et algèbre locale
%A Collectif
%S Astérisque
%D 1984
%P 118-131
%N 113-114
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1984__113-114__118_0/
%G en
%F AST_1984__113-114__118_0
Husemoller, Dale H. Loop space decompositions in the theory of exponents, dans Homotopie algébrique et algèbre locale, Astérisque, no. 113-114 (1984), pp. 118-131. http://archive.numdam.org/item/AST_1984__113-114__118_0/

1. M. G. Barratt, Spaces of finite characteristic, Quart. J. Math. Oxford, Ser. (2) 11 (1960), pp. 124-36. | DOI | MR | Zbl

2. F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, Torsion in homotopy groups, Annals of Math. 109 (1979), pp. 121-68. | MR | Zbl

3. P. R. Cohen, J. C. Moore, and J. A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Annals of Math. 110 (1979), pp. 549-65. | DOI | MR | Zbl

4. P. R. Cohen, J. C. Moore, and J. A. Neisendorfer Moore spaces have exponents , to appear.

5. B. Gray, On the sphere of origin of infinite families in the homotopy groups of spheres, Topology 8 (1969), pp. 219-32. | DOI | MR | Zbl

6. D. Husemttller, Splittings of loop spaces, torsion in homotopy, and double suspension, Topology Symposium, Siegen 1979, LN 788. | MR | Zbl

7. D. Husemöller, La décomposition des espaces des lacets et la torsion impaire des groupes d'homotopie, Seminaire Bourbaki, 1979-80, n° 547, LN 842. | EuDML | Zbl

8. D. Husemöller, Fibrations arising in the study of p-torsion in homotopy, Proceedings of Workshop on Algebraic Topology, Barcelona, 1982. | MR | Zbl

9. J. A. Neisendorfer, Primary homotopy theory, Mem. A.M.S., No 232, 1980. | MR | Zbl

10. J. A. Neisendorfer, 3-primary exponents, to appear. | DOI | MR | Zbl

11. J. A. Neisendorfer, Smaller exponents for Moore spaces, to appear.

12. J. A. Neisendorfer, Properties of certain H-spaces, to appear. | DOI | MR | Zbl

13. J. A. Neisendorfer and P. S. Selick, Spaces without exponents, to appear. | Zbl

14. P. S. Selick, Odd primary torsion in π k (S 3 ), Topology 17 (1978), pp. 407-12. | DOI | MR | Zbl

15. J-P Serre, Homologie singulière des espaces fibres, Applications. Annals of Math. 54 (1951), pp. 425-505. | DOI | MR | Zbl

16. J-P Serre, Groupes d'homotopie et classes de groupes abeliens, Annals of Math. 58 (1953), pp. 258-94. | DOI | MR | Zbl