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NON-ABELIAN COHOMOLOGY AND THE HOMOTOPY CLASSIFICATION OF MAPS (*) 

by Ronald Brown 

To a filtered space 

X : X „ C X. C . . . C X C . . . C X 
0 1 n 

we can associate the homotopy CH.o&i>Q,d aomptdx. irX, which consists for n = 1 of 

the fundamental groupoid TTJX = TT^XJJXQ), and for n > 2 of the family TT̂ X of 

relative homotopy groups ""n^n'^n-i 9 v € Xo' ŵ "tn fc^e usua^ boundaries 

6 : 7T X TT ,X and action of TT.X on IT X. The formal properties satisfied by 
n~ n-1- 1- n~ * * J 

TTX define the notion of CA044ed complex, and we have a category XC of crossed 

complexes. Note that crossed complexes generalise chain complexes C (with Ĉ  = 0 

for i < 1), and they also generalise groups, groupoids, and crossed modules. 

A brief survey of their use in topology and algebra is given in [6]. See also 

[4, 5, 7]. 

The category XC of crossed complexes has a convenient notion of homotopy 

[lO, 6, 7] . So for crossed complexes D, C we can define the set 

[D.C] 

of homotopy classes of morphisms D C. 

The objetc of this talk is to advertise the definition (suggested in §.5 

of [6]) 

H°(X ; C) = [TTX, C] 

for CW-complex X with skeletal filtration X, and for a crossed complex C. That 

is, we take [TTX, C] as the cohomology o£ X with COZ^ld^wtb in C. 

The definition makes sense, because TTX is a homotopy invariant of X. The 

proof of this is not entirely trivial. One proof is given by J.H.C. Whitehead 

in [10] another is given in . (Here wemean X = Y implies TTX - TTY) . 

The point of the definition is that we expect cohomology to have something to 

do with the sets [X,Y] of homotopy classes of maps of spaces. From [7] we take : 

(*) 
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R. BROWN 

Theorem 1. T/ieAe ¿6 a faunctoK B : XC Top aAAtgvUng to a QJio&bzà complex C a 

CW-comp£ex BC w^t/i pfiopeAty that thojid ¿6 a rca£u/ia£ blj<LCJbLon 

[x, BC] = H (X ; C) 

ion. OA-(L0mpL<LX<Lb> X. 

Two special cases are of interest : 

(i) If C is a group G in dimension n (where G is abelian if n £ 2) and 

zero otherwise, then BC = K(G,n), and Theorem 1 generalise a classical result of 

Eilenberg-MacLane. Note that the non-abelian case n = 1 is also included. 

(ii) If Cj is a group G, is a G-module M, C = 0 for i ï 1, n and 

all boundaries are zero then Ĥ (X ; C) is a kind of twisted cohomology of X 

with coefficients in the G-module M, and so we have a twisted homotopy classifi­

cation theorem. 

There are three obvious questions about Theorem 1, 

Ql. How do you prove it ? 

Q2. What use is it in tackling the gdViWaZ, problem of listing the elements of the 

set [x, Y] of homotopy classes of maps X -> Y ? 

Q3. How do you compute H°(X ; C) ? 

All these have interesting answers which we can only outline here. More details 

are given in [4,5,7]. 

The construction of the "classifying space" BC is done dubically. So we 

construct a cubical complex NC, the YlQAve. of C, by setting 

(NC) = XC(7Tin, C) 
n A~ 

where i n is the standard skeletalfiltration of the n-cube. We then set BC = |NC|, 

the geometric realisation of the cubical complex NC (There is also a simplicial, 

and homotopy equivalent, version B̂ C ; see the Introduction to 3 , which includes 

the relevant theses [l,8].) 

The first part of the proof of Theorem 1 is to note that it is sufficient to 

restrict to the case when X is the realisation |K| of a cubical complex K, 

and then to use an equivalence of homotopy categories to obtain 

[|K|, BC] = [K, NC] 

For this we need to know NC is a Kan complex. In fact, NC has a lot of 

extra structure, since it turns out to be an example of an u-Qtioupotd, which is a 

complicated algebraic structure defined in [4] . Any w-groupoid is a Kan complex, 

168 



NON-ABELIAN COHOMOLOGY 

and hence NC is a Kan complex. We write (as in [4,5]) XC for NC with its 

structure of w-groupoid. 

Because XC is an w-groupoid, we have a bijection 

[K, NC] = [pK, xc] 

where the latter set of homotopy classes is taken in the category of w-groupoids, 

and pK denotes the ^ee. us-QKOWpotd on K. But it also turns out that there is an 

equivalence, of categories with homotopy, between w-groupoids and crossed complexes, 

and that this equivalence takes pK to TT|K|, and XC to C. So 

[pK, xc] s [TT|K|, C] 

and we are done. 

Unfortunately, the details of the above are strenuous. However, the pattern of 

argument parallels the case BC = K(G,n) (n > 2), which uses the simplicial abelian 

group structure on K(G,n). We are using w-groupoid structures instead, and this is 

what allows for non-abelian results. 

Something needs to be said about the homotopy type of BC. For convenience we 

restrict to the reduced cas, i.e. when C^ is a point. Then TTJ(BC,V) is the 

quotient group G = C^/óCj, while for n £ 2 TTN(BC,v) is the homology of C, 

i.e. Ker6/Imó, together with the action of G. Further, there is a fibration 

BC K(G,1) whose fibre is 1-connected and is of the homotopy type of a product 

of Eilenberg-MacLane spaces. (This observation is due to J.L. Loday. I am not too 

clear about the classification of such non-principal fibrations.) 

Now let Y be a reduced CW-complex with cellular filtration Y. We can form 

the homtopy crossed complex irY and the classifying space BTTY. In this case 

TTJ(BTTY, V) S TTJ(Y,V) and for n ^ 2 ^(BTTY, V) is isomorphic to H (Y), the 

a, 

homology of the universal cover Y of Y. Further there is a map q : Y -> BITY_ 

which induces, on homotopy groups TT , an isomorphism for n = 1, and for n > 2 

a morphism equivalent to the Hurewicz TT (Y,V) H (Y) . 

n n 

These facts are deducible from results of §.8, 9 of [5] , but are not explicit 

there, so it should prove useful to exeplain the procedure. 
For any filtered space Y there are cubical complexes and maps 

RY > KY 

P 

Pi 
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where KY is the cubical singular complex of Y, and i is the inclusion of the 
{UXoAdd. 6tngutaA. complex RY of X '> THAT I S RX consists in dimension n of all 
filtered maps 1™ Y. The mapping p is a quotient mapping. It identifies two 
filtered maps l n -> Y if and only if they are nomotopic, relative to the vertices 
of Ĵ ,and through filtered maps. (This definition is not exactly the same as that 
given in [5] , but the two definitions agree if ^Q^Q = YQ» which is sufficient for 
our purposes.) 

The cubical complex pY has the structure of w-groupoid, and its associated 
crossed complex is TTY. That is, pY is isomorphic as w-groupoid to XTTY. 

In [5] it was shown that p : RY -*» pY_ is a fibration in the sense of Kan. 
This result was found to be an important technical tool in the proofs of the main 
results of [5] , since it helped in proving p̂Y * Air, and in establishing a crucial 
property of "thin elements" in pY. We can now give this fibration property of p 
another role. 

The cubical complexes RŶ  and KY are known to be Kan complexes. (The cor­
responding property for pŶ  is not so simple to prove.) The inclusion i : RŶ  KY 
is a homotopy equivalence if the functions induced by inclusion ^Q^T "̂ QY are 
surjective for r = 0 and bijective for r > 0, and the based pairs (Y,Y ,v) are 

m 
m-connected for all m $ 1 and v e Y^. In particular, i is a homotopy equivalence 
if Y is the skeletal filtration of a CW-complex Y. For such a Y, the realisation 
IKYI has the same homotopy type as Y, and in this way we obtain the map 
q : Y BTTY with the properties set out above. 

Let X be a CW-complex. We have an induced function 
q̂  : [X,Y] + [X, BTTY], 

This function is bujective if dim X $ m and q : Y BTTY has m-connected homoto­
py fibre. This will be true if, for example, TT.Y = 0 for 1 < i < m. In these 
circumstances we obtain a bisection 

[X,Y] H°(X ; TTY). 

So we can see the relevance of this non-abelian cohomology to some general homotopy 
classification problems, particularly in the non-simply connected case. 

How do we compute Ĥ (X ; C) ? For this we generalise some ideas of Whitehead 
in [10] . 

For simplicity, we restrict to the reduced case. Let GC^ be the category 
with objects the triples (K,G,v) in which G is a group, K is a chain complex 
of G-modules (with K^ = 0 for i < 0), and K Q is a free G-module with basis the 
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element v e KQ. The morphisms of GC^ are to be pairs (f,0) : (K,G,v) (K1,G',vf) 
where 0 : G -> G1 is a morphism of groups, f : K •> K1 is a chain map and an 
operator morphism over 0, and f(v) = v1. 

Let XC^ be the category of reduced crossed complexes. There is a functor 
A : XC -»•• GC in which if (K,G,v) = AC, then G = C./6C- ; K = C as a G-module * * 1 Z n n 
for n £ 3 ; is Ĉ  made abelian ; Kj is the C-module induced from the 
augmentation ideal ICj by the quotient morphism Cj -> G ; and is the free 
G-module on the element v e CQ. (This construction is given in [7] and extends 
a construction given in |~10] for the case Ĉ  is free. A further result proved 
in [7] is that A has a right adjoint, and so preserves colimits.) This functor A 
transforms homotopies to homotopies, for a suitable definition of homotopy in GC^. 
So for reduced crossed complexes C,D we have a function 

A* : [D>c] [AD,AC] . 

Now Whitehead proves (but does not state) that if Ĉ  and Dj are free groups and 
D2 is a free crossed D^-module, then is a bisection. Also, he notes that if 
X is the skeletal filtration of a reduced CW-complex X, then ATTX consists of the 
cellular chains C^(X) of the universal cover X of X, these chains being taken 
as modules over the fundamental group of X. That is, we have a bijection 

H°(X ; C) = [C^(X),AC], 

This gives a reasonable computational description of Ĥ (X ; C), and so of [x,BC]. 
For example, it leads to the homotopy classification of maps from a surface to the 
projective plane [ 2 ] . 

Consider again the bijection 

[X,Y] S [C^(X),CA(Y)] 

given when dim X £ m and TT̂ Y = 0 for 1 < i < m. If also TT̂ Y = 0, then Y = Y 
and the definition of morphism and chain homotopy in GC^ implies that 

[C4(X), C4(Y)] S [CS(X), C4(Y)] 

where C^(X) is the usual cellular chain complex of X. Since Ĉ (Y) ŝ a chain 
complex of free abelian groups there is a chain map <j> : Ĉ (Y) -*• H^(Y) (where the 
latter has zero differential) inducing an isomorphism in homology. So we obtain 

[X,Y] S [C^(X), H^(Y)] 

5 H°(X ; H^Y)) 
£ Hm(X ; Hm(Y)). 
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This result includes the Hopf classification theorem (which is the case Y = S m). 
Thus the non-abelian results reduce to classical abelian results. 

All these results give point to a remark of Whitehead in the Introduction 
to [lo], which reads in our terminology : 

The &io&&ed complex TTX appeasu> to be moKe u&efcal than the chain complex 
C ^ ( X ) tn problem* concenntng geometric KealiAabiJUXy. On the othen. hand, the 
chain complex C^(x) AJ> a6e^a£ tn htxidytng concrete problem*. 
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