Spaces whose rational homology and de Rham homotopy are both finite dimensional
Homotopie algébrique et algèbre locale, Astérisque no. 113-114  (1984), p. 198-205
@incollection{AST_1984__113-114__198_0,
     author = {Halperin, Stephen},
     title = {Spaces whose rational homology and de Rham homotopy are both finite dimensional},
     booktitle = {Homotopie alg\'ebrique et alg\`ebre locale},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {113-114},
     year = {1984},
     pages = {198-205},
     mrnumber = {749058},
     zbl = {0546.55015},
     language = {en},
     url = {http://www.numdam.org/item/AST_1984__113-114__198_0}
}
Halperin, Stephen. Spaces whose rational homology and de Rham homotopy are both finite dimensional, in Homotopie algébrique et algèbre locale, Astérisque, no. 113-114 (1984), pp. 198-205. http://www.numdam.org/item/AST_1984__113-114__198_0/

[1] J. Friedlander and S. Halperin. Rational homotopy groups of certain spaces, Invent. Math. 53 (1979) p. 117-133. | Article | MR 560410 | Zbl 0396.55010

[2] S. Halperin. Finiteness in the minimal models of Sullivan. Trans. Amer. Math. Soc. 230 (1977) p. 173-199. | Article | MR 461508 | Zbl 0364.55014

[3] S. Halperin. Rational fibrations, minimal models and the fibring of homogeneous spaces. Trans. Amer. Math. Soc. 244 (1978) p. 199-223. | Article | MR 515558 | Zbl 0387.55010

[4] D. Sullivan, Infinitesimal Computations in Topology. Inst. Hautes Etudes Sci. Publ. Math. 47 (1978) p. 269-331). | Article | MR 646078 | Zbl 0374.57002