@incollection{AST_1984__118__13_0, author = {Almgren, F. J. and Super, B.}, title = {Multiple valued functions in the geometric calculus of variations}, booktitle = {Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983}, series = {Ast\'erisque}, pages = {13--32}, publisher = {Soci\'et\'e math\'ematique de France}, number = {118}, year = {1984}, zbl = {0575.49025}, language = {en}, url = {http://archive.numdam.org/item/AST_1984__118__13_0/} }
TY - CHAP AU - Almgren, F. J. AU - Super, B. TI - Multiple valued functions in the geometric calculus of variations BT - Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983 AU - Collectif T3 - Astérisque PY - 1984 SP - 13 EP - 32 IS - 118 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1984__118__13_0/ LA - en ID - AST_1984__118__13_0 ER -
%0 Book Section %A Almgren, F. J. %A Super, B. %T Multiple valued functions in the geometric calculus of variations %B Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983 %A Collectif %S Astérisque %D 1984 %P 13-32 %N 118 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1984__118__13_0/ %G en %F AST_1984__118__13_0
Almgren, F. J.; Super, B. Multiple valued functions in the geometric calculus of variations, in Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983, Astérisque, no. 118 (1984), pp. 13-32. http://archive.numdam.org/item/AST_1984__118__13_0/
[A1] Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer.. Math. Soc. No. 165 (1976), VIII + 199. | Zbl
,[A2] Approximation of rectifiable currents by Lipschitz Q valued functions, Ann. of Math. Studies (to appear).
,[A3] valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two, (preprint). | Zbl
,[A4] Lecture notes on geometric measure theory, (in preparation).
,[ATZ] Equilibrium shapes of crystals in a gravitational field: crystals on a table, J. Statist. Phys. (to appear).
, , and ,[B] Regularity theory for almost minimal currents. Arch. Rational Mech. Anal. 78 no. 2 (1982), 99-130. | DOI | Zbl
,[F] Geometric Measure Theory, Springer-Verlag, New York, 1969. | Zbl
,[HS] Boundary regularity and embedded solutions for the oriented Plateau problem, Ann. of Math. 110 (1979), 439-486. | DOI | Zbl
and ,[M] Lower semicontinuity, existence and regularity theorems for elliptic variational integrals of multiple valued functions. Trans. Amer. Math. Soc. (to appear). | Zbl
,[N] A priori integral geometric estimates for non-positively curved surfaces, Ph.D. thesis, Princeton Univ., 1983.
,[S1] Lipschitz spaces of multiple valued functions and the closure theorem, Ph.D. thesis, Princeton Univ., 1982.
,[S2] A new proof of the closure theorem for integral currents, Indiana J. Math, (to appear). | Zbl
,[SU] Computational algorithms for generating minimal surfaces. Senior thesis, Princeton Univ., 1983.
,[T1] Unique structure of solutions to a class of nonelliptic variational problems, Proc. Symp. P. Math. XXVII (1974), 481-489. | Zbl
,,
[T2] Crystalline variational problems, Bull. Amer. Math. Soc. 84 (1978), 568-588. | DOI | Zbl
,[w] Tangent cones to two dimensional area-minimizing integral currents are unique, Duke Math. J. 50 (1983), 143-160. | Zbl
,