@incollection{AST_1984__118__189_0, author = {Korevaar, N.}, title = {The normal variations technique for studying the shape of capillary surfaces}, booktitle = {Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983}, series = {Ast\'erisque}, pages = {189--195}, publisher = {Soci\'et\'e math\'ematique de France}, number = {118}, year = {1984}, mrnumber = {761748}, zbl = {0609.76017}, language = {en}, url = {http://archive.numdam.org/item/AST_1984__118__189_0/} }
TY - CHAP AU - Korevaar, N. TI - The normal variations technique for studying the shape of capillary surfaces BT - Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983 AU - Collectif T3 - Astérisque PY - 1984 SP - 189 EP - 195 IS - 118 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1984__118__189_0/ LA - en ID - AST_1984__118__189_0 ER -
%0 Book Section %A Korevaar, N. %T The normal variations technique for studying the shape of capillary surfaces %B Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983 %A Collectif %S Astérisque %D 1984 %P 189-195 %N 118 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1984__118__189_0/ %G en %F AST_1984__118__189_0
Korevaar, N. The normal variations technique for studying the shape of capillary surfaces, dans Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983, Astérisque, no. 118 (1984), pp. 189-195. http://archive.numdam.org/item/AST_1984__118__189_0/
[1] Una maggiorazione a priori relativa alle ipersuperfici minimali nonparametriche, Arch. Rat. Mech. Anal. 32 (1969), 255-269. | DOI | MR | Zbl
, ,[2] New estimates for equations of minimal surface type, Arch. Rat. Mech. Anal. 14 (1963), 337-375. | DOI | MR | Zbl
,[3] Global regularity of the solutions to the capillarity problem, Ann. Scuola Norm. Sup. Pisa 3 (1976), 157-175. | EuDML | Numdam | MR | Zbl
,[4] The normal variations technique for studying the steepness of capillary surfaces, in preparation.
,[5] Gradient estimates for the capillary-type problem via the maximum principle, preliminary version. | DOI | Zbl
,[6] Interior gradient bounds for non-uniformly elliptic equations, Indiana U. Math. J. 25 #9 (1976), 821-855. | DOI | MR | Zbl
,[7] Existence and regularity of a capillary surface with a prescribed contact angle. Arch. Rat. Mech. Anal. 61 (1976), 19-34. | DOI | MR | Zbl
and ,[8] On the existence of a capillary surface with a prescribed angle of contact, Comm. Pure Appl. Math. 28 (1975), 189-200. | DOI | MR | Zbl
,[9] A new proof of the interior gradient bound for the minimal surface equation in n-dimensions, Proc. Nat. Acad. Sci. USA 69 (1972), 166-175. | DOI | MR | Zbl
,[10] Solution to the capillary problem, Vestnik Leningrad Univ. 19 (1973), 54-64; (English translation: Vestnik Leningrad Univ. Math. 6 (1979), 363-375). | Zbl
,