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INDEX OF p-ADIC DIFFERENTIAL OPERATORS 

III. APPLICATION TO TWISTED EXPONENTIAL SUMS 

by 

Philippe ROBBA*** 

§ 1. INTRODUCTION. 

1.1. Motivated by the recent work of Dwork, Sperber and Adolphson on 

p-adic cohomology associated with certain twisted exponential sums 

and their relations with the p-adic theory of special functions, we 

give in this article a systematic treatment of one-variable coho­

mology of p-adic analytic type and we apply this to the explicit 

calculation of one-variable twisted exponential sums and of the 

associated L-functions. 

We shall in particular consider H/£H where H is a space of 

analytic functions in one variable and I is an ordinary linear dif­

ferential operator of order n with rational coefficients. This 

analytic cohomology will be compared with the algebraic cohomology 

L/JIL where L is the ring of rational function whose poles lie in a 

fixed set chosen such that L is stable under £. Finiteness of L/£L 

is a well known consequence of partial fraction decomposition and 

of the theory of indicial polynomials of ordinary linear differential 

operators (cf. [Ad]). We are concerned with the 3 questions : 

1.1.1. Is H/£H finite ? 

1.1.2. What is the dimension of H/5.H ? 

1.1.3. Under what conditions does the imbedding of L into H lead to 

an isomorphism of L/£L with H/£H ? 

This work was done while the author was visiting Princeton 

University. 
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We answer these questions when l is of first order. 

We apply our present results to determine the L-functions asso­

ciated with twisted exponential sums by means of the Reich-Monsky 

trace formula. Of course A. Weil determined the degree and verified 

the Riemann hypothesis for all L-functions on curves but our treat­

ment is useful for investigations of the p-adic value of the roots 

and for studying the variation of roots with parameters. 

1.2. We give now a brief historical survey. 

For analytic theory the first results seem to have been those 

of Dwork [Dw 5] who in his work on zeta functions formulated an ad 

hoc p-adic cohomology naturally associated with the theory of 

exponential sums in several variables. He considered the space 

of power series in n variables which converged and were bounded in 

a fixed open polydisk and studied the Kozul complex of commuting dif-

ferential operators D, ,...,D on H where D. = exp fox. -r °exp(-f) 

and where f is a fixed polynomial in several variables. The central 

fact was the hypothesis that exp f ^ Hn , but in much of his work 

additional hypotheses were imposed upon f and upon the polydisks 

(defining Hn) so that an effective reduction theory could be deduced. 

By an effective reduction theory we mean that each polynomial £ (in 
n 

n-variables) can be represented as a sum £ = n+ \ D. £ . where n 
is a polynomial of degree bounded independently of £ and such that, 

in the sup norm on the polydisk, |n| , |€¿1 / • • • / I€n| may all be 

bounded in terms of | £ | . 

For the one variable theory the situation in which H is the 

space of functions analytic on a disk B= D(0,r) of radius r goes 

back to E . Lutz [Lu] who observed that if 0 is an ordinary point 

of I then the solution of Si at the origin all have non-trivial p-adic 

radii of convergence. Although Lutz did not consider this question, 

it is obvious (since non-homogeneous linear equations can be solved 

by quadratures) that in this situation H/£H is finite provided r 

is small enough. This was generalized by Clark [CI] who showed that 

the same result holds if the origin is a singular point provided 

the exponents (i.e. the roots of the indicial polynomial at the 

origin) are p-adic non-Liouville numbers. The result of Clark was 

based upon a lower asymptotic bound for |a(a+1)...(a+s-1)|as 
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s » for each zero a of the indicial polynomial. In effect Clark 
analyzed the recursion formulae involved in solving a non-homogeneous 
equation of the form Jt£ = n • 

In the work of Adolphson [Ad] the key point is that H/JtH may 
be determined if l is analytically equivalent on D(0,r ) to a dif-
ferential operator whose solution matrix is x where B is a cons­
tant matrix satisfying the following condition : (N) Each eigenvalue 
of B is p-adically non-Liouville. Adolphson globalized this result 
by means of the Mittag-Leff1er theorem. Let A be the complement of 
a finite union of disks, on each of which I is analytically equi-

B. 
valent to an operator whose solution matrix is x^ where x^ is 
a suitable local variable and B^ is a constant matrix satisfying 
condition N . Adolphson determines Ha/£HA where H is the ring of functions analytic on A (this is not valid for the ring of 
analytic element on A ) . 

We show here (§ 9) that Adolphson1s theory needs not be res­
tricted to the case in which the excluded disks contain only regular 
singular points. We may exclude disks on which l is analytically 
equivalent to a normalized differential operator whose solution 

B —1/k' 
matrix is x expA(x ' ') where x denotes the local variable and B 
is a constant matrix which commutes with the polynomial matrix A . It 
is known by the theorem of Turrittin as explained in Baldassarri's 
article [Ba] that subject to the hypothesis that the exponents diffferences of I at the origin are non-Liouville, £ is surely 
analytically equivalent to such a normalized operator on a disk 
D(0,r) provided r is small enough. Unfortunately, effective esti­
mates for r are not available. Even in the ordinary case (i.e. 
A=0, B diagonal with 0,l,...,k-l as eigenvalues) for differential 
equations defined overs Q(x) we may have r=l for almost all 
primes while there are examples of the Lame equation with exponents 
in 2 and four singular points such that r = p"1//̂ p~1̂  for an 
infinite set of p . 

It is implicit in our reduction procedures that a good knowledge 
of the first order case is essential. While in this case the explicit 
representation of the kernel near the singular point is most evident 
we do not use this explicit representation but rather start with a 
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knowledge of the radius of convergence of the kernel at a generic 
point on the boundary of each excluded disk. We believe that this 
is the best formulation for avoiding the problem of domain of 
analytic equivalence in the higher order case. 

Even for the case n = l these questions are of interest. Ad 
hoc treatments of special cases may be found in [Boy] , [Dw 1], [Dw2], 
[A-S], [La] for Gauss sums, twisted Kloosterman sums, L-series of 
certain cyclic coverings of the sphere with four ramified points. 
together with the relation to the p-adic theory of gamma functions, 
Bessel functions and hypergeometric functions. The present work 
provides a common basis for these and many other special differential 
equations e.g. the confluent hypergeometric function and the Jordan-
Pochhammer differential equations. 

1.3. We now outline our article. 

In sections 2 and 3 we give basic definitions and recall pro­
perties of analytic functions and of the index of liner operators. 

In section 4 we determine the index in a disk of a first order 
scalar differential operator in terms of the radius of convergence 
of the solution near the generic point on the boundary. We then give 
some variations on this basic formula and compute an explicit example. 

In section 5 we consider Dwork's p-adic cohomology and solve 
problem 1.1.1 - 1.1.3. 

In section 6 we sketch Dwork's theory of L-functions in the one 
variable case. We show how we can recapture some of Weil's results 
for L-functions in the case of twisted exponential sums. 

In section 7 we investigate the p-adic values of the zeros of 
L-functions associated with exponential sums in one variable. This 
section is closest in spirit to the work of Dwork in the 1960 ,s. 

In section 8 we explain the dual theory and the functional 
equation of these L-functions. 

In section 9 we explain how Adolphson's theory can be genera­
lized. 
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I thank Princeton University for its hospitality and in parti­
cular N. Katz and B. Dwork for their helpful suggestions. 

For the convenience of the reader we include a list of the more 
frequently used symbols and indicate the paragraph where they are 
defined. 

A ( A ) 5.4.2 tr generic point 2.6 , 4.2 

B C c , ^ ) 2.2 Tc 8.2 
C(c,r) 2.2 T 8.1 

DF 8.1 
- F 8.1 

A 
D F 

8.4 
° F 8.1 

H ( A ) 2.5 * 
A F 

8.3 
Hc(r±) 4.1 8.2 
3CF(A) 5.1 

R F 8.5 

£ F 
8.2 * 7.1 

kr 6.1 (6.3.3) 
L 5.1 9,6 6.3 
L(g;f,h;t) 6.1 

PS 
Pc(L,r) 4.2 

+ ord_ c 2.2 X 3.1 
A A . 
R,R 8.2 X*(L,r) 4.1 
R 4.1 1 lc(P) 2.8 
Sr(g;f,h) 6.1 < , > 8.2 
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§ 2. NOTATIONS. ANALYTIC ELEMENTS. GENERIC DISKS. 

2.1. Let K be an algebraically closed field of characteristic zero, 
complete under a non-archimedean valuation. Let ft be an algebrai­
cally closed field, complete under a valuation extending that of K , 
and linearly disjoint form K(x) over K . Assume further that the 
residue classe field ft of ft is a transcendental extension of the 
residue class field K of K . 

2.2. For each c e ft and each positive number r let 

B(c,r") : = {x G r , |x-c| < r } 
B(c,r+) : = {x s r , |x-c| 4 r } 
C(c,r) : = {x €= r , |x-c| = r } 

In this article we shall only consider disks with radius r £ , 
and thus the circumference C(c,r) is not empty. 

2.3. For f G ft [ [x-c , ]], f = £ b^(x-c)v, analytic in the 
\)=z—oo 

annulus A = B(c,R+) -B(c,r ) (so lim |b |Rv=0 and lim |b |rv=0) , 
let for r < p < R 

|f|c(p) := supv|bv|pv 

ord+(f,p) := {sup v, |bv|pv= |f|c(p)} 

ord~(f,p) : = {inf v, |bv|pv= |f|c(p)} . 

It is well known [Ami that 

ord*(f,p) = 
d log IfI (P) + 
1 d log p ; 

ord~(f,p) = 
d log|f| (p) -
1 d log p ' 

where(^)" )(resp. (^)" ) denotes the right hand (resp. the left 
hand) derivative of u with respect to r . 

It is also known that the function ord and ord are increa-
c c 
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sing functions of p. From this one can deduce easily the following 
result. 

SCHWARZ1S LEMMA : Let f be analytic in the annulus A then 

_ o r d + U , r ) 
|f|c(R) > (£) C l f l c ( r ) 

ord"(f,R) 
|f|c(r) > (§) c Iflc(R) . 

2.4. These definitions are extended to functions f, meromorphic in A, 
by writing, if f=g/h where g and h are both analytic in A , 
|f|c(p) = |g|c(p)/|h|c(p), ordc(f,p) = ordc(g/P) - ordc(hfP) . 

If f e ft [ [x-c] ] is analytic in the disk B(c,R+), it is known 
that ord^(f,p) (resp. ordc(f,p) ) is the number of zeros of f in 
the disk B(c,p+) (resp. B(c,p ) ) . 

For fe ft [x] , we denote ordcf the order of the zero of f at c, 
and write ord^f = -deg f. These definitions are extended as usual 
to rational functions. 

2.5. Let 3P = 3P ( ft ) = ft u {°°} . For A C P let AC = IP - A . Let A c I 
with d(A,Ac) = inf{|x-y|, x e A, y G AC} > 0 . V7e denote by R (A) the 
set of all rational functions with coefficients in K without poles 
in A . An analytic element on A with coefficients in K is the uni­
form limit on A of elements of R(A) . We shall denote by H(A) the 
set of analytic elements on A with coefficients in K . For f e H(A) 
let II f II = sup |f (x) I . This defines a norm on H (A) and with this 

A xe= A 
norm H(A) is a Banach space over K . 

If A = B(c/r+) and f G H(A) , then f is analytic on B(c,r+) 
and HfH = |fI (r) . 

2.6. Let r e |ft*| and let t e C(c,r) . We shall say that t is 
generic on the circumference C(c,r) if the disk B(t,r") (which is 
contained in C(c.r) ) contains no Doint in K . 
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By our hypothesis on Q there is always a generic point on 
C(c,r) . The disk B(t,r") will then be said to be generic in the 
circumference C(c,r) . I f f G K ( X ) , then f has neither poles nor 
zeros in B(t,r") and |f(t)| =l|f |lB(t r~x = l f l c<r ) • 

§ 3. INDEX OF A LINEAR OPERATOR. 
We recall some well-known properties of the index of a linear 

operator. The proofs can be found in [Ro 2, § 4] . 

3.1. Let U and V be two vector spaces over K . Let L(U,V) denote 
the space of linear mappings from U into V . If U and V are topo­
logical vector spaces let L(U,V) denote the subspace of continuous 
linear mappings. 

We say that L G L(U,V) has an index if it has a finite-dimen­
sional kernel and a finite-dimensional cokernel. The index of L is 
then x(L ; U,V) = dim Ker L - dim coker L . 

We shall also write x(L) when there is no ambiguity, or x(L;U) 
if U = V . Thus x(L) is the Euler-Poincar§ characteristic of the 
complex 

O > y _Jk_> v > o m 

If U and V are complete metric spaces and L is continuous 
and has an index, then L is a homomorphism onto its image and Im L 
is closed. 

3.2. LEMMA. Let L G L(U,V) and Q G L(V,W) . If two of the three  
operators Q , L and QL have indexes, then the third one also has  
an index and 

x(QL) = x(Q) + x(L) . 

3.3. LEMMA. Assume that the following diagram is commutative with  
exact rows 
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o > > u 2 > u 3 > o 

1L1 J L2 J L3 
o > v x > v 2 > v 3 > o 

and that two of the three operators L 2 L^ have an index, then 
the third one also has an index and 

X ( L 1 ) - x(L 2) + x(L 3) = 0 . 

3.4. COROLLARY. Let Q G LdJ^V.^ and Q 2 G L(U 2,V 2) have indexes. 

Then Q © Q 2 G L ( U , © V , U 2 © V 2 ) has index and 

X C Q J L © Q 2 ) = X ( Q X ) + X ( Q 2 ) . 

Proof. Apply lemma 3.3 to the situation 

0 > u x > u x © u 2 > u 2 > O 

Q l Q 1 ® Q 2 Q 2 
V V V 

O > v± > v x © v 2 — — > v 2 > O 

3.5. COROLLARY. Let U = U ^ H and V = V 1©G with dim H < + °° , 
dim G < + 0 0 . Let L G L(U,V) . Assume that the restriction L^ of L 
to U 1 maps into V 1 . Then, if L 1 has an index, L also has  
an index and 

X (L) = x (1^) + dim H - dim G . 

Proof. Apply lemma 3.3 to the situation 

O > u 1 > U > H > 0 

L x L L 
V V V 

O > V, > V > G > 0 

where L is defined in order to make the diagram commutative. As H 
and G have finite dimension L has an index, x(L) = dim H - dim G . 
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3.6. LEMMA. L is injective and has an index if and only if L has  
a left inverse L' which has an index. If furthermore U and V are  
Banach spaces and L is continuous L1 can be chosen continuous. 

3.7. LEMMA. Let U and V be Banach spaces, L € L(U,V) . Suppose that 
L is injective and has an index and Let L* be a continuous left in­
verse of L . If Q G L(U,V) and ||Q-L|| < 1/HL1 ||, Q is injective and 
has an index Y(Q) = Y(L) . 

3.8. LEMMA. Let U and V be complete metric spaces, and let 
(resp. V^) be a subspace dense in U (resp. V) . Let L G L(U,V) . 
Assume that its restriction h1 to U1 belongs to L(U1,V1) . 
Assume further that L and L. have indexes, then 

X(L) > X(L1) . 

If we have equality : x (D = xd^) , then Ker L = Ker L-ĵ  , 
V/Im L Vi/Im Li ' and a complementary of Im L1 in. V̂ ^ is also a 
complementary of Im L in V . 

§ 4. INDEX OF A DIFFERENTIAL OPERATOR OF ORDER 1. 
We establish a relation between the index of a differential 

operator of order 1, viewed as a linear operator on the space of 
analytic elements on a disk, and the radius of convergence of its 
solutions near the generic point on the boundary of the disk. 

We make a conjecture for a similar relation in the case of dif­
ferential operators of order > 1 and we give an example which sup­
ports this conjecture. 

We show how we can also compute the index in H(A) where A is 
a disk minus a finite union of disks. Another example will be given 
in the next paragraph with Dwork*s cohomology. 

4.1. Let R = K [x] [̂ ~] be the ring of linear differential operators 
with polynomial coefficients, the multiplication being given by 
d d . da 
dx dx dx 

200 



INDEX OF P-ADIC DIFFERENTIAL OPERATORS 

Let A be a bounded subset of ft (with d(A,A°) >0> . Then R is 
identified naturally with a subring of continuous endomorphism of 
H(A) . Let c e ft, r G |ft*| . For simplicity we shall use the nota­
tions 

Hc(r+) : = H(B(c,r+)) and Hc(r ) : = H(B(c,r~)) . 

Then if L e R, viewed as element of L(H (r ),H (r )) (resp. 
L(Hc(r ),Hc(r )), has an index, we shall denote this index by xc(L,r) 
(resp. Xc<L'r) ) • 

4.2. We now consider a differential operator of first order, 
L = a + b with a , b <= K [x] , together with £ = ^ L = ^ - + f-
Let tr be a generic point on the circumference C(c,r) and let u 
be a solution of Lu = 0 in a neighborhood of tr . Denote by pc(L,r] 
the radius of convergence of u . 

The main result of this paragraph is the following theorem. 

THEOREM. Assume that, for r = rQ , pc(L,rQ) < rQ . Then for r close 
enough to rQ , L is injective and has an index in Hc(r+) (resp. 
Hc(r )), p'c(L,r) is a continuous function of r and we have the  
relations 

(4.2 +) d log pc(L,r) + + + 
( d log r ) = xc(L'r) + ordc(a'r) 

(4.2 -) 
d log p (L,r) -
< d log r > = xc(L'r) + ordc(a'r) • 

Remark : The fact that L is injective and has an index in Hc(r±) is 
a special case of Theorem 6.16 of [Ro 2] which asserts a similar 
property for differential operators of any order, but we shall give 
a simple proof valid for operators of order one. The new feature in 
this theorem is formula (4.2) which permits us to compute the index. 
Some lemmas are needed for the proof. 

4.3. LEMMA. Let 
Q {amd n C R . 

Viewed as a continuous endomor-
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phism of Hc(r+) (resp. Hc(r~)), Q has operator norm 

llQl^ = max |amlc(r)/rm . 
m 

See [Ro 2] § 1.11. 

4.4. LEMMA. Let a c K [x] . Viewed as an endomorphism of Hc(r+) 

(resp. Hc(r~))f multiplication by a is injective, has index 

X*(a,r) = - ord*(a,r) (resp. x~(a,r) =-ord~(a,r) ) and has a left  

inverse of norm l/|a| (r) . 

See [Ro 2] Theorem 4.15. 

4.4. Proof of Theorem 4.2. 

As c and L remain fixed in this paragraph, for simplicity we 

shall write p instead of p (L,r) . 

4.4.1. Let u be analytic near tr such that Lu = O . Then 

I = o u"1 . Define 

(4.4.1) b 1 u(u-l)(m) . 
m mi 

One has the recursion formula 

(4.4.2) b = 1, b . , = — M b * + £ b ) O ' m+1 m+1 a m 

and therefore amb G K[x] . 
m 

On the other hand 

(4.4.3) 

1 0m _ „ 1 , d .ni -1 _ v , 1 / d vi 
mT 1 = u°mT(dïï) °u = J 0 bm-i TT (diE) 

,m m m 
Jtm = amb + R m ! m m 

where Rm = J a X - i TT ^ ^ • 
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By Taylor's formula 
u X(x) = I b (t ) (x-tr)m . 

m > O m 

As a connot be zero in the generic disk, u never vanishes in 
the generic disk and therefore if p < r , the radius of convergence 
of u is also p . Therefore for all p > p 

(4.4.4) lim |bmlc(r)pm = lim |bm(tr) |Pm = + oo. 
m->oo m-»-00 

We apply this to the case r = rQ and p = rQ . So there exists 
m > 1 such that 

(4.4.5) lbiJc(rO)rS " n maX , lbi'c(rO)rO O^i^m-1 

(observe that lb0lc^r0^rO = ^ ' 

We deduce from lemma 4.3 

1 m1 c 0 > max I a b. | (r )r CL<i<:m-l i c u u 
> max I a b. | (r )r 
CL<i<:m-l i c u uII Rm II r µ 

As these functions are continuous functions of r , for r close to 
r we have again 

(4.4.6) = -ord^(ambm,r)> II Rm II r µ 

Then we deduce from (4.4.3), (4.4.6) and from lemmas 3.7 and 4.4 
m + that —r l is injective in H (r~) and has index mi c 

(4.4.7) * C < S T ^ r > -ord*(«-bnfr) 

Now £ is not and endomorphism of H (r~), but for all i > 0 , 
1 ± 1 ± /- (— Hc(r ) , i+1 Hc(r )) . Considering the decomposition of the 
a a 

singular part around the zeros of a in B(c,r ) one sees easily that 

-TFT V r ± > = "IT Hc<r±> «Gi 
a. a. 
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with dim Gi = ordc(a,r) and thus dim Gi does not depend on i . 
Therefore one deduces from corollary 3.5 that if £ as an index as 

l ± 1 ± element of L (̂ j Hc(r ) , i+1 Hc(r )) for one i , then the same is 
a c a 

true for all i and this index does not depend on i . 

We have seen that £m has an index as element of (Hc(r+),—Hc(r+) 
and the formula (4.4.7) can be rewritten a 

(4.4.8) x(^;Hc(r±) r±nc(r+-)) =-ord^(ambm^) . 

Therefore Z e 1 ( — Hc('r~) / Hc(r-)) has an index and using 
a a 

lemma 3.2 we obtain 
mx(il;Hc(r±) Hc(r±)) = x(^m;Hc(r±) ^(r*)) 

(4.4.9) 
= -ord^(ambm,r) 

and therefore L = aJl is injective and has an index in Hc(r ) with 

x*(L,r> = x(^;Hc(r±),i H^r*) = Z± ord^(ambm^) 
(4.4.lO) 

= - o r d J a , r ) - ord^ (bm,r) c m e m 
One can find e > O small enough such that 

(4.4.11.1) for rQ-e^r^r0 : ordc(a,r) = ordc and 

ordc(bm'r) " "^'".•'O1 

(4.4.11.2) for r Q ^ r ^ r + e : ordc(a,r) = ordc(a,rQ) and 

ordc(bm'r) = ordc(bm'rO) 

(4.4.11.3) for r0-e^r^r0+e : | bm | c (r) rm > 1 . 

and then one has 

(4.4.12.1) for r0-e^r<rQ : Xc<L,r) = x*(L,r) = X~(L,rQ) 

(4.4.12.2) for r 0 < r < r Q + e : x^(L,r) = x*(L,r) = x*(L,rQ) 
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(4.4.12.3) for r0"-e^r<rQ+e : pr < r. 

4.4.2. Now choose r e (rQ - e , rQ) and let 

(4.4.13) 
rQ xc(L,r) + ordc(a,r) 

P : = • PR (—) 

We shall prove that p = p . One can then deduce easily (4.2). 
r0 

First we prove that one cannot have p > p . In fact assume that 
0 

p > p . If p >rn choose m satisfying (4.4.5), then one has also 

(4.4.14) lbmlc<rO> pm > n SUP Jbilr ^ ' 0<i<m-l 

If p < rQ , choose m satisfying (4.4.14). Such an m exists 
because of (4.4.4) applied to r= rQ . Then one has also (4.4.5). 
Inequality (4.4.14) implies 

(4.4.15) ord;(ambm) = -mXç(L,r0) 

As (4.4.5) is satisfied we deduce from equation 4.4.7 that 

ord;(ambm) = -mXç(L,r0) 

and therefore, by Schwartz's lemma. 

(4.4.16) |ambjc(r) > la-bJc'V ^ 
•mxc(L,r0) 

From (4.4.11.1) one can deduce 

(4.4.17) |."lc(r) - |."l0(r0) 
m ordc(a,r) 

From (4.4.13), (4.4.15), (4.4.16), and (4.4.17) we get 

|ambjc(r) > la-bJc'V ^ -m(x~(L,r)+ord~(a,r)) 
"r = l»»mlo(r0)pn>l 

which is not true. 
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We prove now that we cannot have p < p . In fact assume 

0 
p < p . Define 

rO 
(4.4.18) 

Xc(L,r) + ord (a,r) 
P1 : = P„ (—) 

r0 r0 

Then one has p* > pr . Therefore one can find m^.1 such that 

(4.4.19) lbnJc(r) > max lb i lc( r )p, i 

(4.4.20) |bJ (r) rm > max |b | (r)r1 . 
m ° O^i^m-1 1 c 

In particular one has 

(4.4.21) |bmlc(r)p'm > i . 

From (4.4.10) and paragraph 4.4.1 we deduce 

ord^(ambm,r) = - m x*(L,r) 

therefore using (4.4.12.1) we get 

(4.4.22) °rdc(a\'r) =-mX¡(L'ro) 

and therefore by Schwarz1 s lemma 

(4.4.23) 
abmlc<V%nabm|c(r)p-o(^) =-mX¡(L'ro) 

As (4.4.17) is again valid, we get from (4.4.18), (4.4.21) and 
(4.4.23) 

|bm lc<V%nbm | c ( r)p-o(^) 
-m(x„(L,rn+ord~(a,r ) ) , 

= Ibmlc(r)p m> 1 

which is not true. 

4.4.3. Formula (4.2+) is proven in the same way. 

4.5. The formulas of theorem 4.2 are very similar to the formulas of 
§ 2.3. The purpose of the next proposition is to show that x"(L,r) 

± c 
enjoys properties similar to that of ord (f.r) . 
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PROPOSITION. Let c e r . Let L, Q G R and assume that for 
r e (rn,r.) r e 1 ^ * 1 , L and Q have no solution in the generic disk 

± 
of the circumference C(c,r) . Then L and Q have indexes in Hc(r ) 
and further i) For rQ < r < r' < r . 

O > X~(L,r) => X*(L,r) > X~(L,r') > xJ(L,r') 

ii) X*(LQ,r) = x*(L,r) + x*(Q#r) 
X~(LQ,r) = x^(L,r) + x*(Q,r) 

iii) Let r e | n |, with r e (r^r^) . Consider the partition 
of the closed disk B(c,r+L into its residue classes, i .e. 
B(c,r+) = u B(c.,r") with |c.-c. | = r for i ^ j . Then 

i d 1 3 
xc (L,r) = 0 for almost all i and 

X*(L,r) = I xc (Lfr) . 
i e I i 

Proof. The fact that L and Q have indexes and are injectives results 
from theorem 4.16 of fRo 21 . 

i) O > xc(L,r) comes from the fact that L is injective ; 
Xc(L,r) ^ x^(L,r) is a consequence of iii) together with the pro­
perty that all x~ (L,r) are ^ 0 . 

_ i 
Xc(L/r) < xc(L,r') is a consequence of lemma 3.8 and of the fact 
that Hc(r' ) is a dense subspace of Hc(r+) . 

ii) Is a special case of lemma 3.2. 
iii) Let J be a finite subset of I and let 

A : = B(c,r+) - u B(c.,r~) . 
i e J J 

Then by lemma 4.IO one has 
(L ; H(A)) = xn(L,r) - U X" (L,r) . 

C iGJ ci 

As L is injective in H(A) its index is < 0 and thus for all 
finite subsets J of I 

I XN <L,r) > X*(L,r) . 
i e j i c 
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As all these numbers are negative or zero integers, we get that for 
almost all i , x (L/r) = O . 

ci 
Now in theorem 4.16 of [Ro 2] it is proven that there exist 

P G R and a e K(x) such that 
||PL-a||r < l/|a|c(r) . 

Therefore using lemma 3.7 and lemma 4.3 one obtains 

X^(PL,r) = x£(P,r) + Xc(L,r) = X*(a,r) = - ordc(a,r) 

x" (PL,r) = x" (P,r) + x" (L,r) = x~ (a,r) = - ord" (a,r) for all i. c. c. c. c. c. 
Therefore 

[x*(P,r) - I xn (P,r)] + [x^(L,r) - I xo (L,r)] 
c i e i ci c i e i ci 

= - [ord (a,r) - I ord" (a,r)] = O 
c i e i ci 

As 

X^(P,r) - I x" (P,r) and x*(L,r) - I x" (L,r) 
c i e i ci c i e i i 

are non-positive 

integers they must be zero, which ends the proof. 

4.6. PROPOSITION. Let L = a ^ + b G R . Assume that pc(L,rQ) < rQ 
and that ord~(a,rQ) = O . Let p be the radius of convergence of the  
solution of L near c . Then p > pc(L, r^) and p = pc(L, rQ) if and  
QnlY *f ^(L,rQ) = 0 . 

Proof. If for some r < rQ , pc(L,r) = r then, as L has no singula­
rity in the disk B(c,r ), by the transfer principle [DW 3] the solu­
tion of L near c converges in B(c,r ) . If the radius of convergence 
p were greater than r, we would have also pc(L,r) = p > r which 
would contradict the hypothesis. Thus p = r . 

Assume that x~(L,r0) = 0 . For r < rQ as long as pc(L,r) >r 
we have xc(L/r) = 0 by proposition 3.5. By theorem 4.2 we obtain 
d log p (L,r) 
— d log r = 0 so Pc(L'r) = pc^L,ro^ " Therefore we shall have 
Pp(L,p) = p for p = p (L,r ) . 
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Assume that xc(L,rQ) ^O, then in some interval (r1,rQ),xc(L,r)<0 
and otherwise x"(L,r) < 0 • From theorem 4.2 we deduce that p (L,r) c c 
is a decreasing function of r , strictly decreasing in (rlfrQ) , so 

p (L,r) >p (L,r ) . And therefore if p (L,p)= p we have p > p (L,rn). 

4.7. Example. Let K = (Ep. Let L = - xp 1 = exp(xp/p) o ̂ oexp(-xp/p) . 

xP tP 
A solution u(x) of L near t is given by u(x) = exp(— —) . 

Set x = t + y,u(t+y) = exp(tp_1y + tp"2y2 +. . .+ typ_1 + ¿ 1 ) = 
A p 

exp(tp""1y)exp(^ tP"2y2) ...exp(yp/p) . 

If the functions exp ^(?)t """y1, 1 < i p , have different radii 

of convergence, the radius of convergence of u near t will be the 

infinum of these radii. So for t generic with |t| = r, we get 

P (L,r) = inf( inf 
UIS<P-] 

(p-l/(p-l)/rp-i)l/i/p-l/(p-l)) = 

r p-i/(p-D 

1 p - V(P - D/rP-i 

r « 1 

r > 1 

(The value for r = 1 is obtained by continuity) . 

By formula (4.2) we obtain 

X±(L,r) = O p - V ( p - l ) < r < x 

XQ<L,r) = -(p-1) 1 < r 

XQ(L,1) = O , XQ(L,1) = -(p-1) . 

Then by proposition 4.5 iii) we see that for some c with |c| = 1 , 

we must have x~(L,l) ^ 0 . 

The method of proof of theorem 4.2 permits us to find the 

residue classes where the index of L is not 0 . We use the notations 

of § 4.4. We see easily that 

|bIL0(l) = 1 for O < i ^ p-1 
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and a well known formula gives 
p! bp= - (xp(p X) + (p-l)I) mod pZp[x] 

bn = ̂ (xP^"15-!) = i(x-l)P(x-2)P...(x-(p-l))P mod Z [x] . 
P P P ir 

Thus |b |Q(1) > sup |b. |0(1) , and thus for |c| = 1 
p O^i^p-1 

X^U,1) = - i ord"(bp,l) 

and xc(L,l) = -1 for c = 1,2...(p-1) . 

Consider the situation in the disk B(l,l ), let pr denote the 
radius of convergence of the solution near the generic point of the 
circumference C(l,r) . For p~1//p < r < 1 one has 

|b I (r) > 1 > sup |b J (r) 
P 1 0<Up-l 1 1 

and ord*(bp,r) = p . So for p 1//p < r < 1 if pr < r one has 
xj(L,r) = -1 

and therefore 
Pr = Pl/r = p ^ / ^ - ^ / r . 

One has pr = r for r = p 1/2^P 1̂  > p""1//p . We can conclude that the 
xp-l 

solution near 1, u(x) = exp(———) has radius of convergence 
-1/2(p-1)_ But 

u(l+y) = expfy + ̂ r-) exp Ezl y2...expyp 1 . P ^ 

As exp A (?) y 1 has radius of convergence > p 1//2 ̂p 1̂  for 
VP 

2<i^p-l, one deduce that exp(y + Ĵ -) has radius of convergence 
> p"1/2^""1^. This in ideed a well known fact which is usually proven 
using the Artin-Hasse exponential function. 

Conversely one could have used the fact that the solution 
xp-l 

exp(— ) near 1 has radius of convergence greater than the solution 
near the generic point t (with |t| =1) to conclude that x1(L/l) / O 
and likewise for the residue classe 2...p-l . From the fact that 

X~(L,1) + ...+ Х р ^ а , ! ) > XQ(L,1) = "(P-I) 
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one would have concluded that 
X~(L,1) = . . .= Xp_1(L,D = - 1 -

4.8. Case of a disk of center » . 

Let r e I n* I denote Bc(r+) = JP(Q) - B(c,r ) 
B (r") = 3P(n) - B(c,r+) . 

Let L = a + b with a, b e K(x) without poles in Bc(r+), 
(in particular without pole at °°) . 

Let pc(L,r) be the radius of convergence of a solution of L 
near the generic point t on the circumference C(c,r) . Assume that r i p (L,r) < r . Let R = 1/r . The change of variable y = — — 

+ + x defines an isomorphism between H(Bc(r )) and HQ(R ) (resp. between 
H(Bc(r )) and HQ(R )). The differential operator L becomes 

L = a 4— + b dy 

with a(y) = - a(c+~)y2 and b(y) = b(c + ̂ ) . 

Near the generic point t_ = l/(t -c) a solution of L has 
^ 2 radius of convergence p (L,R) = p (L,r)/r . 

Now L need hot have polynomial coefficients, but there exists 
+ % 

A e K [x] without zeros in B(0,R ) such that AL e R , and multi­
plication by A is an invertible linear endomorphism of HQ(R+) as 
well as H (R~) . So by formula (4.2+) 

d log pn(L,R) + 
( y ) 
1 d log R ; 

= XQ(AL,R) +ordJ(Aä,R) = Xfl(L,R) + ord*(a,R) 

d log p (L,r) -
K d log r ; +2 = x(L;H(Bc(r+))) -ord~(a,r)+2 

Thus 
d log p (L,r) -

_ ( 2 ) k d log r ; = x (L ; H(Bc(r+))) - ordc(a,r) 

and one can prove in the same way 
d log Pc(L,r) + 
( d loa r ) = x (L ; H(Bc(r ))) - ord+(a,r) . 
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These formulae will help us to understand the formula that we 
shall obtain in proposition 4.11. They can be interpreted in the 
following way : - ord"(a,r) is the number of zeros of a in the disk 

d log p (L,r) -
B (r ) , while - (—j—T ) can be viewed as the derivative 
c d log r 

of log pc(L,r) with respect to the logarithm of the radius in the 
direction of the "exterior normal". For an alternate proof of these formulae see the proof of 
lemme 4.10. 

4.9. A set A of the form 
A : = B(c,r) -

n 
u B(c.,r.) , 
i=l 1 1 

where the disk considered can be circumferenced or not, but have 
their radii in |ft*| , will be called a Laurent domain. 

We can assume that the B(ci#ri) are all disjoint. The disks 
B(ci,ri) will be called the holes of A . The circumference C(c^,r^) 
will be called the boundary of B(ci,ri) and will be denoted 
9B(c .,r.) . 

We shall say that A is a closed Laurent domain if one has 

A = B(c,r+) n 
- u B(c. ,r7) . 

i=l 1 1 

4. lO. LEMMA. Let A be a Laurent domain and let T be a hole of A . 
Let L e R and assume that L has an index as endomorphism of 
H(AUT) and that L has no solution converging in the generic disk  
of the boundary 3T of T . Then L has an index as endomorphism of  
H(A) and 

(L ; H (A) ) = Y ( L ; H ( A U T ) ) - Y ( L ; H ( T ) ) . 

O c c Proof. Denote by H (T ) the set of analytic elements on T which 
are 0 at °° . Let A be the generic disk of T. By theorem 4.16 of 
[Ro 2] one knows that, under our hypothesis, L has index as endomor­
phism of H(T) as well as endomorphism of H(A) and that further 

X(L ; H(A)) = O . 
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By the Mittag-Leff1er theorem 
H(A) = H(A u T) © H°(TC) 
H(A) = H(T) <e H°(TC) . 

Consider then the commutative diagrams 

(4.10.1) 

O *H(AUT) >H(A) >H°(TC) > 0 

L L L 
V V v 

0 >H(AUT) > H (A) >H°(T°) * O 

(4.10.2) 

O > H(T) >H(A) »H°(TC) »0 

L L L 

O > H(T) >H(A) >H°(TC) >0 

0> 'Vj 
where L and L are defined by reduction. It turns out that L and L 

O c 
are the same operator : for u e H (T ) a. 

Lu = Lu = (Lu)T 
is the singular part of Lu associated to the hole T . 

From (4.10.2) and lemma 3.3 one deduces that L has an index 
X(L) = x(L ; H(A)) - x(L ; H(T)) = - X(L ; H(T)) . 

Then from (4.10.1) and lemma 3.3 we deduce that L has an index 
as endomorphism of H(A) and 

X(L;H(A)) = x(L;H(AUT)) + X (L) 
= X(L;H(AUT)) - x(L;H(T)) . 

+ n 
4.11. PROPOSITION. Let A = B(c,r ) - u B(c.,r.) be a closed 

i=l 1 1 Laurent domain. Let L = a ^ + b G R . Assume that pc(L,r) < r 
(resp. pc (L/ri) < r for all i ) then L has an index as endomorphism  
of H(A) and 

X(L;H(A)) = 
d log p (L,r) + 
K d log r ; 

n d log Pc (L,r±) -
- Y ( i ) 
± ^ d log r± ; 

I ord a . 
^ TV a 

a G A 
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Proof. Using theorem 4.2 and lemma 4.9 we prove by induction on n 
that 

X (L ; H (A) ) = 
d log pc(L,r) + n d log pc (L,r±) -

( d log r ) " ±| ( d log r± } 

+ n [ord (a,r) - I ord (a,r.)] 
c i=l c 1 

and then observe that 
+ n 

J ord a = / zeros of a in A = ordc(a,r) - £ ord (a,r.) . 
a e A a i = l 
4.12. Generalization : operator with coefficients analytic elements. 

It is easily seen that theorem 4.2 and proposition 4.3 are still 
true if we assume that L = a + b has its coefficients a, b in 
H*(r+e) for some e >0. (This case can be even reduced to the case 
where a e K fxl ) . 

Lemme 4.1O is also true if we assume that the coefficients of L 
belong to H(A u T) . 

Now in proposition 4.11 we could assume that the coefficients a 
+ n and b of L belong to H (A ), with A = B(c,(r+e) ) - u B(c.,(r.-e) ) , e e i=i 

for some e > O . But then the proof that we have given is no longer 
available. 

Conjecture : Proposition 4.11 is still true under the hypothesis  
a, b e H (A ) . 

4.13. Generalization : operators of higher order. 
Let tr be the generic point of the circumference C(c,r). Let 

L e R. We shall say that L has a zero-kernel at tr if L has no 
solution converging in the generic disk B(t fr ) . It is known 
(theorem 4.16 of [Ro 2]) that if L has zero-kernel at t then L has 

+ _ w index as endomorphism of Hc(r ) and Hc(r ) for r close enough to 
rQ , but no formula for that index is known. We conjecture that the 
followina formula aives the index. 

Let L be of order n. L = a dn dn_1 
—r,+ bi „ ,+...+ b . We denote dx11 1 dx11"1 
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Pc(L,r) = max p(u^)...p(uR) , the maximum being taken upon all the 
families of n linearly independent solutions u1-..un of L in a 
neighborhood of t , p(u^) being the radius of convergence of u^ . 

Conjecture : lf_ L has a zero-kernel at t , then 
d log p (L,r) ± 
K d log r ; = X*(L,r) + ord*(a) 

Then to compute the index one has to be able to determine pc(L,r) . 
In the case of operators of order one this can be easily done using 
the formal solution as we have seen in example 4.7 and as we will 
see more generally in § 5. In the case of order greater than one. 
we expect that it will be possible to compute pc(L,r) at least if c 
is an irregular singular point and r is small enough using the 
formal solution of Turritin (see [Ka 1] ) . 

This conjecture is supported by the following example where 
L = L^oi^ with L^ and L2 in R of first order. 

4.13.1. LEMMA. Let L = with L1 , L2 G R of first order. 
Then L has a zero kernel at tr if and only if L^ and L2 have both ;  
zero kernel at t and then 

Pc(L,r) = pc(L1,r) + pc(L2,r) . 

Proof. Let us write t : = tr , p± := pc(L,r) , P2 : = pc(L2,r) and 
let Kert L (resp. Kert Li) be the kernel of L (resp. Li) in a 
neighborhood of t . 

Denote by Wp the space of bounded analytic funcitons in the 
disk B(t,p") for p<r . It is known (theorem 4.16 [Ro 2]) that L is 
an isomorphism of w£ if and only if L is injective in . It is alsc 
known (theorem 3.5 [Ro 2]) that L has a zero-kernel at t if and only 
if L is injective in W. . 

Lf L has a zero-kernel at t, as Kert L2 c Kerfc L, L2 has also a 
zero-kernel at t. So L and L2 are isomorphisms of w£ and therefore 
L also, which implies that L, has a zero-kernel at t . 

If L1 and L2 have zero kernel at t, L̂ ^ and L2 are isomorphisms 
of , therefore L also, which implies that L has a zero-kernel 
at t. 
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If p > max(p2,p1), L1 and L2 are isomorphisms of w£ , therefore 

L also, which implies that no u G Kerfc L has radius of convergence 

> max(p2,p1) . Let G Kert L' u2 G Kert L2' ul ̂  ° u2 ̂  ° " Then 

u2 e Kert L . If pi<p2 / a seconc^ element of Ker^ L is 

f Ul 
V = u2 J —2 dx 

and so p(v) > P(U1) = p1 . 

If pi = p2 ' then for all u G KertL , p(u) = P1 = P2 and thus 

Pc(L,r) = PXP2 • If pi < p2 ' wronskian (u2,v) = u1u? and so 

p(wronskian) = P 1 > P ( V ) SO P(V) = Px and Pr(L) = PXP2 • 

pl 

If p2 < pi , L2 is an isomorphism of Wfc , but not L-ĵ  , and so 

neither is L, which implies that there exists u e Ker^ L with 

p(u) = p . Therefore again pc(L,r) = P1P2 • 

4.13-2 COROLLARY. If L = L1°L2 ' with Lx i L2 e £ of first order, 

the conjecture is true. 

Proof. Let Lx = a.1 h1 , L2 = a2 ̂ + b2 , then a = axa2 , so 

± ± _ ± „ ± 
ord a = ord a,a0 = ord^a. + ord a0 . c c l 2 c l c 2 

Further by lemma 3.2 

X*(L,r) = x*(L1,r) + X*(L2,r) 

and by lemma 4.12.1 

d log pr (L) ± 

( d log r ) 

d log Pr.(L1) ± 

1 d log r ; 

d log P ^ C L ^ ± 

+ K d log r ; 

and so the conjecture is a consequence of theorem 4.2. 

4.14. Reduction to normal form. 

Let L , L« be two n-dimensional linear differential operators 
+ 

defined over H0^r )' i»e- two nxn matrices whose entries are poly­

nomials in d/dx with coefficients in HQ(r+) . These then are endo-

morphisms of HQ(r+) ââ£ g . Let V be an nxn matrix with coeffi­

cients in H (r+) and non-trivial déterminent. Clearly V acts on G 
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and provides an endomorphism of G into itself which is injective 
and has an index. 

Now assume that 
L1oV = VoL2 . 

(We shall say that L1 and L2 are equivalent). It is then obvious 
that L, and L2 have the same index if either exists. Indeed we have 

X(L1,G) + x(V,G) = x(L1oV/G) = X(VoL2,G) = x(L2,G) + X(V,G) . 

The application of this remark is that it permits the repla­
cement of a differential operator by a Turrittin normal form (see 
[Ba] ) in the calculation of index. 

§ 5. RATIONAL COHOMOLOGY AND ANALYTIC COHOMOLOGY (DWORK'S 
COHOMOLOGIES). 

5.1. Let K = (0̂  . Let S be a finite subset of IP(<Cp) with °° e S 
Let f e Cp(x) with lflgauss s=|f|0(l) <1# and assume that the 
poles of f belong to S . Let o^ezs , a. e S, 1 < i < s . Write 

s a . 
F = IT (x-a. ) 1 exp-rr f(x) 

i=l 
where TT = (-p) 1/(P 1) 

Let L be the space of elements in Cp(x) with poles only in S . 
Then the differentiation d sends FL into FLdx because F' /F e L . 
We shall be interested in the rational cohomology F L dx/d(FL) . 

In order to define a Frobenius mapping, one cannot work with 
the rational cohomology but one must work with the analytic coho­
mology. 

Let A = B(0,1+) -
m 
u B(c.,l"), with |c.-c.| = 1 , ij#1, j = l 3 3 

and where the disks B(c_.,l*~) are precisely the residue classes 
containing points of S, (P((C ) - A = S) . Let 

+ s P 
A = B(Of(l+e) ) - u B(C.,(1-G) ) for e > 0 . The Washnitzer-

i=l 1 
Monskyfs dagger space 3C (A) is 
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5C+(A) : = U H (A ) 
e > O e 

We shall say that the element of K (A) are overconvergent analytic 
elements on A . 

We shall consider the analytic cohonology FK (A)dx/d(FJf (A)) . 
These cohomologies are considered by B. Dwork in his study 

of Zeta function and of L-functions [DW 1] and [DW 2] . We shall give 
an example of Dwork's techniques in the next paragraph. 

An important question is to prove that these cohomologies are 
finite and to determine if the rational cohomology and the analytic 
cohomology are isomorphic. We shall answer that question in § 5.6. 

5.2. Let I : = Fo|oF 1 = ^ - F ' / F . Clearly 

FLdx/d (FL) ^ L/ilL and F3C+ ( A) dx/d (FXf ( A) ) * J€f (A)/№+ (A) . 

As Ker l has dimension at most 1, the finiteness of cohomology is 
equivalent to the existance of index of l, and the dimension of the 
cohomology is determined by the index of l. 

We shall first compute the index of H in 3f (A) (§ 5.4) then in 
L (§ 5.5), we will then get easily a criterium asserting that the 
rational and the analytic cohomology are equal. 

The method developped in § 4 allows us to compute the index of 
a in H(A£) (and therefore in 3C+(A) ) provided that £ has a zero-
kernel at the generic point of the circumference C(c^,(l-e)) for 
all i (and likewise for C(0,l+e) ) . This means more or less that I 
has an irregular singularity in the corresponding hole B(c^#(l-e) ) 
(or that f has poles in this disk). If this is not the case then the 
method fails to work and in fact we do not expect l to have an index 
in H(A£) in that case (see lemma 4.10 [Ro 2]). Fortunately 
A. Adolphson [Ad] shows how to compute the index of a differential 
operator t when you remove disks containing regular singularities. 
But then you have an index only if you consider the space of 
unbounded analytic functions A(A ) on A . Since (A) = u A(A ) 
this causes no difficulty and supports our use of K (A) . 
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5.3. The following lemma allows us to compute the index in the case 

of a regular singularity. 

DEFINITION. We say that a G <C is a non-Liouville number [C£] if 

lim inf la-nl1^11 = 1 and lim inf |a+n|1//n = 1 . 
n-*+°° 

Remark. All algebraic numbers are non-Liouville numbers. 

LEMMA. Let £ = (x-c) ~-- a+ (x-c)b(x) where c e C , a e <C is 

non Liouville and b(x) e C (x) without poles in the disk B(c,r0) , 

Assume that £ has a formal solution (x-c) y(x) with y(c) ^ 0 and  

y analytic in B(c,rQ) . For r < rQ write B = B(c,r ) and 

A = B(c,rQ) - B(c,r+) . Then for r < rQ £, as endomorphism of the space  

functions analytic on A (resp. on B), has index O . 

This is a special case of a more general result of Adolphson 

[Ad]. We can give a simpler proof due to the fact that we deal with 

an operator of order 1. 

Proof. We may assume that c = 0 . Let n be analytic on A (resp. on B) , 

we want to solve the equation £c = n . It is known that c is given 

formally by the formula 

ç(x) = xa y(x) x"01""1 y"1(x)n(x)dx 

where by definition 

' l a xn-a-1ax = L n J n 

a 
J x a if a is not an integer. 

a _ 
= Y - — x + a log x otherwise . n-a a n^a 

Note that y never vanishes in its domain of convergence, thus y 1 

is analytic on B(0,rQ) and y 1n is analytic on A (resp. on B). The 

hypothesis a non-Liouville implies then that the formal solution is 

also analytic on A (resp. on B) provided there is no logarithmic 

term. So if a £ % (resp. a £ 3N), £ is injective and surjective thus 

Y ( £) = o . 
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If a G TL (resp. a e E) our equation has a solution if and only 

if a = O, and so dim coker £ = 1, but then dim Ker I = 1 and so a ' 
X (l) = 0 again. 

5.4. Computation of the analytic index. 

We do not want to assume that the singularities of the differen­

tial operator all lie in AC. So let us state again our hypothesis. 

Let c1...cm G <Cp with |c_.| < 1 for all i and |ci-Cj| = 1 for 

i ï j, and let A = B(0,1 + )- u B(c.,l~). 
j=l 3 

Let f G <Cp(x) with |f |gauss < 1, let a± G <Cp, a± e 2, 1 < i < s . 

s a . d -1 
Define F : = n (x-a.) exp tt f (X) and I : = Fo^-oF . Let P G C [x] 

be such that L = P£ has coefficients without poles in A. Without 

loss of generality one may assume that all the zeroes of P lie in A. 

We define the exponent of L in the residue class B(c,l") (resp. 

the residue class «>, 3P((C ) -B(0,1+)) to be £ i i a. (resp. 
P Ic a4 I 1 2-

1 1 a I i a.). We shall assume that the exponents of L in the residue 
I ai I < 1 1 

classes B(Cj,l ), 1 < j < m, and in the residue class °° are all non-

Liouville numbers. 

The object of this section is to show that, as endomorphism of 
t t K (A), L has an index, and to compute x (L ; 3C (A)) . 

We shall first reduce the computation to the case where our dif­

ferential operator L satisfies the supplementary condition : 

Condition (*) 

i) In the residue class B(Cj,l") , 1^ j^m, L has at most a 

singularity at c^ and, in the residue class °° , L has at most a 

singularity at 00 . This means that if a^ G B(c..,l~~) then a^ = c_. , 

that in B(Cj,l~) f has at most a pole at c.. , and that no ai and no 

pole of f have absolute value > 1 . 

ii) Define d^ : = -min (0, ord— f ) , 1 ̂  j < m, and d : = -min (O,ordoof ) . 

— ala 
Where f G ]Fp ^ (x) is the reduction of f. Then for 1^ j^m 

d. = -min (0, ord f) and p y d . if d. ^ O 
3 3 3 
d = -min(0,ordœf) and p y d if d ^ 0 . 
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We shall then compute the index x(L ; 5C (A)) for an operator L 
satisfying condition (*). 

5.4.1. Reduction to the case of an operator satisfying condition (*). 

Let B = B(c,l ) be a residue class not contained in A . 

_ x-a. a. c-a. a. 
a) If a. e B(c,l ), as a. e » , (—-r) 1 = (1 + ^tz~) defines 

1. J- p X C X o 
a function analytic for |x-c| > |c-a.| which never vanishes. As x-a. a. x-a. -a. . 
|c-ai| < 1, ( X_C:L) as well as ( Xmm(̂ ) 1 belongs to K (A) and so 
multiplication by these functions is an invertible endomorphism oi 

x-a. -a. x-a. a. 
K (A) . Thus L has index if and only if ( X,C"L) 1oLo ( X_C"L) has 
index and their indexes are equal. Therefore we do not change the 

a . 
index of L if we reulace n (x-a.) by (x-c) with 

|a.-c|<l 
a = Y a. . 

|a.-c|<l 1 
i Now if |a.| > 1, (- 1) again is an invertible element of i a. 

t 1 ai x ai dC . As we do not change L if we replace (x-a.) by ( 1) , we l a. a . l 
see as previously that if we suppress the term (x-a^) inf F we do 
not change the index of L . 

b) Let fB be the singular part of f corresponding to the residue 
class B, i.e. fB is the sum of the singular parts of f corresponding 
to the poles of f in B . Consider the Laurent expansion of f . 

oo u 
f = V 2 _ B S , ,n n=l (x-c) 

Let dß = 0 if |un| < 1 for all n 
= sup{n,|u I =1} otherwise. 

Define h = I - — . one has IfB~hB'gauss < 1 ; and there" 
n=l (x-c) y 

fore gB = expir(fB-hB) belong to K (A) and is invertible, so again 
L has the same index as gB^LogB = Po(F/gB)oi0(F/gj"1 and F/g 
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has in B only a pole at c, with ordcf = ordc f if ordc f <0 and no 
pole in B if ord—f >, O . 

The case of the residue class « can be treated in the same way. 

c) Suppose now that dg ^ 0 and p|dfi , dfi = p6 . Choose v e <Cp 
such that vp = u - (with u as defined in § b). Then it is well po n 
known that <f> 

(x-c)r (x-c) 
belongs to and is inver-

tible. So considering (j> <>Lo(t> we will have an operator with same 
index as L but we will have reduced -ord—f . Repeating this procedure 
we can obtain eventually either ord^ f > 0 or p ord- f . 

5.4.2. Computation of the index when L satisfies condition (*). 

For simplicity write B+: = B(0,1+), B. : = B(c.,l ) l < j ^ m . 
m d . + 1 

Let Q(x) = n (x-c.) 3 
j = l 3 

Then QL has coefficients without poles in B . For 0«£ s^m 
+ s + define A : = B - u B. . Thus A,= B and A_= A . We shall prove hy s . H O m 

J t induction on s that QL has an index in "K (Ag) and we shall compute 
that index. 

a) Computation of x(QL , 3Cf(B+)) . 
If d ^ O; let t be a generic point on the circumference C(Ofr) 

with r > 1. Let x = t + y . Near t QL has a solution 
m a . 

j-i j 
expTt (f (t+y) - f (t) ) . 

AS a. e Zp , U + t^T)"3 has radius of convergence |t-Cj| = r . 

expir(f (t+y)-f (t) ) = expir I ((f(v)(t)/v!)yv) . As t is generic, for 
all v 

|f(v)(t)/v!| = |f(v)/v!|Q(r) « rd"v 
and as p Jf d 

|f(t) I = |f I (r) = r*"1 , 

therefore the radius of convergence of exp(f(t+y)-f(t)) is l/rd 1 . 
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We deduce from theorem 4.2 that for all r > 1 

x(QL,H(B(0,r+))) = -(d-1) - ord (QP,r) 
m 

= -(d-1) - I (d.+l) - deg P 
j = l 3 

(ordQ(P,r) = deg P because all the zeros of P lie in A), 

This index does not depend on r. Choose R > 1, and let E be a 
complementary subspace of QL(H(B(0,R+)) in H(B(0,R+)). For 1 < r< R, 
H(B(0,R+)) is dense in H(B(0,r+)). Applying lemma 3.8, we see that 
for all r e (1,R), 

Ker(QL,H(B(0,r+)) = Ker(QL,H(B(0,R+)) (= (0>) 

and that E is complementary to Im(QL,H(B(0,r+)) in H(B(0,r+)). 
Therefore 

Ker (QL,5C+(B+) ) = Ker(QL,H(B(0,R+)) 
+ + t + and E is complementary to Im(QL,5f (B ) ) in K (B ) , which shows 

that OL has an index in (B+) with 
x(QL,3f+(B+) ) m 

= -(d-1) - I (d. + l) - dea P . 
j = l : 

If d = 0, then xA = x p L has near infinity the formal solu-
m 

tion xay where a = £ a. is a non-Liouvielle number and 
A — 1 -J m c . a . 

y(x) = n (1--^.) 3 expir(f(x) - f(°°)) is analytic for |x| > 1 with 
j = l x 

y(°°) =1. The version of lemma 5.3 for the residue class 00 tells us 
that for 1 < r < R, if A denotes the annuls A = B(0,R~) -B(0,r+) , 

c + 
and A(A) (resp. A (B (0,r )) ) denotes the space of functions analy-

c + 
tic on A (resp. analytic on B (0,r ) and zero at «> ) , x(x£,A(A)) = 0 , x(x£,A (BC(0,r+)) = 0 . 

As ^ QP is an invertible element of A(A), 

(QL, A(A)) = x(2~x£,A(A)) = x(x£,A(A)) = 0 . 

Let N = deg ^ QP = 
m 

-1 + I (d.+l) + deg P, then 
j=l 3 
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X(QL ; AQ(BC(0,r+)), xN AQ(BC(O,r+)) = 0 . 

Let y : xN AQ(Bc(0,r+) > AQ(Bc(O,r+)) be the cut-off operator 

N-1 -1 Z n . v n 
a x \ > ) a x . n L n 

n=—oo n = — 00 It is clear that X(Y) = N and then 

x(yoQL ; AQ(BC(0,r+)) = N . 

By the Mittag-Leff1er theorem 

A(A) = A(B(0,R~)) «Ao(BC(0,r )) . 

Consider the commutative diagram 

O >A(B(0,R )) *A(A) > Ao(B°(0/r )) *0 

QL QL QL 
V V V 

O >A(B(0,R~)) >A(A) * AQ(BC(0,r+) ) >0 

where QL is defined by reduction. One sees that QL = y°QL . 

Therefore, by lemma 3.3 

X(QL,A(B(0,r )) = x(QL,A(A)) - x(YoQL,A^(BC(0,r+)) = - N . 

This index does not depend on r. The same proof used previously shows 

that QL has index in W+(B+) with 

X (QL,5C+ (B+) ) = - N = 1 -
m m 
I (d. + l) - deg P = -(d-1) - £ (d. + l) - deg P . 
j=l 3 j=l 3 

b) Computation of x (QL,3C+ (Ag) ) , l ^ s ^ m . 

Denote by y. the cut-off operator 

y. : Î" an(x-c.)n 1-^ ^ an<x-c,)n . 
n=-°° n=-°° 

By the Mittag-Leffier theorem 

3C+(As) = 3C+(As_1) ©JC^(B^) . 

Consider the commutative diagram 
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O ^^+CAS-1) *tf+(AS) >3Cq(B°) *0 

|QL J Q L JQL 

O * ^ + ( A ,) >Kf(A) ^^o(Bg) >0 

where QL is defined by reduction. One sees that QL = YS°QL . By 
lemma 3.3, if YSOQL has an index then 

x(QL,3C+(AS) ) = X(QL,^T(AS_1) ) + x(YsoQL,^(B°) ) . 

We shall compute X ( Y S O Q L , ^ ( B ^ ) ) . 

If dg / O the same proof as in the case of the residue class 00 
shows that near the generic point r of the circumference C(cg,r) 
with r < 1. the solution of QL has radius of convergence 

do+1 
l/|f1(t)|c(r) = r s and by theorem 4.2 we have 

X(QL ; H(B(c ,r )) ) = d + 1 - ord^ (QP,r) = 0 . s s cs 
As in proof of lemma 4.10, we prove that 

X(Y °QL ; H(BC(c ,r ))) = -X(QL ; H(B(cs,r ))) = 0 . 

This index does not depend on r, so as previously we deduce that 
X(Y°QL ; X +(B°)) = O . 

If ds = 0, observe taht QP = (x-cs) * polynomial with no zero 
a 

in Bg. Further QL has near cg the formal solution (x-cg) s y with ac 
x-c a. 

non-Liouville number, and y = IT (1+ ) J expiT(f(x) -f(c )) 
j*s cs"cj s 

converges in B^ because a. e Z_ and f has no poles in B . 
s D P ^ s 

By lemma 5.3 we have for all O < r < R < 1, with 
A = B(c .R") - B(c ,r+), 

X(QL;A(A)) = 0 and x(QL ; A(B,(c , R ~ ) ) ) = 0 , 

from which we deduce as previously that 
X(Y°QL ; An(Bc(c,r+))) = 0 . 
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This index being independent of r we conclude again that 
X(YS°QL ; 3C+(B^)) = O 

and therefore for all s G [l,m] x (QL ; 5C+ (Ag) ) = x (QL ;5C+(As-1)) 
and so, using the fact that Q is an invertible element of JC^(A) , 

X (L ; (A) ) = x (QL ; *CT (A) ) = x (QL ; KT (B+) ) = - (d-1) - J (d ... ) - deg P . 
j=l D+1 

This formula was obtained under the hypothesis that P has all its 
zeros in A . If we drop this hypothesis then deg P must be replaced 
by 

ordA P = (number of zeros of P in A) = J ordaP . 
a G A 

5.4.3. Expression of the analytic index (the general case). 
We use the notation of the beginning of § 5.4. 

Consider f G Fplg(x) . For c 4 A (this includes the case c = «>) 
define 

nc : = 1 - inf (O,sup(ordc (f - 4>p + <j>) ; <J> G JFplg(x) ) ) . 

PROPOSITION. The differential operator L defined in § 5.4 has index 
in 5f+(A) 

X(L ; 7Cf(A)) = 2 - £ _ n - \ ord P . 
c f A c a G A 

5.5. Computation of the algebraic index. 
Let S be a finite subset of 3P(<C ) with « G S . Assume that the 

P 
poles of the coefficients of L = P£ lie in S (with l and L as defined 
in § 5.4) . Again let L denote the space of elements in Cp(x) with 
poles only in S . Define for c G S 

nc : = 1 - inf(O,ordcf) . 

PROPOSITION. The differential operator L defined in § 5.4 has index  
in L 

X (L ; L) = 2 - I n - I ord P . 
C G S c a G S 
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Proof : We may assume that P has no zeros on S . Then 

degP = \ ord P . 
a$ S a 

Let S = {*,c. , . . ./C } , then L = <C [ x, * , . . . , * ] . For 
1 s 

s+1 — 
m = (m,m1,...,mg) e Xî let L(m) deonote the subspace of L 

i m -i m-i - <3+l 
spanned by {x >i==0 u (uj=1 Ux-c_.) >i^1) . If m1 <E H we say 

— s+1 
that m1 > m if m* > m and m^ > m^ , 1 ̂  i ̂  s . Définie n e u as 

(5.5.1) n = n - 2 + deg P, n. = n 1< i< s . oo î c ̂  

It is clear that for m<m', L(m) c him1), that L maps L(m7 into 
L(m+n) and that L = u L(m) . 

m 
Choose m so large that Ker(L,L) c Ker(L,L(m)) (hence they are 

equal) and such that for m1 >m 

(5.5.2) ordwLxm = -m1 - n, ordc L (x-c^) 1 = -m^ - , l < i ^ s . 

(This is possible because (5.5.2) is true except for a finite number 

of m1,m!) . 

A consequence of (5.5.2) is that 

(5.5.3) L (L (m) ) = L(L(m')) n L(m+n) . 

Let G be a complementary subspace of L (L (m) ) in L(m+n) . We 

claim that G is a complementary subspace of L(L(m1)) in Mm1 + n) . 
In fact from (5.5.3) we deduce that G n L(L,mI)) = O . Further as 

we are dealing with finite dimensional spaces, it is well known that 

— _ — _ — _ — s 
X(L ; L(m1) ,L(m'+n)) = dim L(m') - dim L(m1+n) = - |n| = - n - £ n. . 

j = l 3 

So this index does not depend on m', and we have the same index for 

m' = m . As Ker(L,L(m)) = Ker(L,L(m1)), we see that 

codim of L(L(m')) in L(m'+n) = codim of L (L (m) ) in L(m+n) = dim G , 

and this proves the claim. 

Then it is clear that G is complementary to L(L) in L(L) and 

thus aqain 

227 



P. ROBBA 

S 
X (L ; L) = -n - l n. 

j = l 3 

which, taking into account definition 5.5.1, is the formula to be 

proved. 

Note : This proposition could also be deduced from proposition 1 of 

[Ad] . 

5.6. Comparison of the analytic and the algebraic cohomology. 

Consider the situation decribed in § 5.1. We use the notations 

of § 5.1. If F e 3C+(A) , then the analytic cohomology is trivial as 

it is 5f+(A) dx / d3f+(A) . So we assume that F 4 3C+(A) (and therefore 

if £ = F O ^ - O F " 1 , Ker (L,3C+(A) ) = O) . We assume also that the dx 
exponents ai are non-Liouville numbers (for example algebraic num­

bers) . 

For each c G S define 

dc : =-inf(O,ordc f ) 

and likewise for c* é A define 

d : =-inf(O,ord f) . 
c c 

THEOREM. Under these hypotheses, the analytic cohomology is finite. 

The analytic cohomology and the algebraic cohomology are isomorphic 

if and only if S has exactly one point in each residue class not 

contained on A (i.e. card S = card S), for each c e S d =d— and 
— ^ c ^ c 

P X &c • Then a complementary submodule of d (FJC (A) ) in FJC (A) dx can  

be chosen in F L dx . 

Proof : The finiteness of the analytic cohomology results from the 

fact that £ has index in JC^ (A) (Proposition 5.4.3). 

Now we want to know under which conditions K (A) /ZJC (A) y_ L/£L . 

By our hypothesis Ker ( £ ,̂ C+(A) ) = Ker(£,L) = {0} . So we want to know 

if 

x(£ ; tf+(A) ) = x U ; L) . 

For c e A° let n be as defined in § 5.4.3. Then n ^ = l + d # 
c c c 

if p Xd and n < 1 + d if p|d . Now if c e S and c = c*f one has 
c c c c 
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d ^ < dc , thus 
I _ » nc = l_ , <l+dc) > 1 + 3 , , 

C G S , C = C ce S,c=c c 

and we have equality if and only if there is only one c G s such 
that c = c* and further dc = d ^ and p )( dc . 

As x ( Ä ; *C+ (A) ) = 2 - I _ n and X ( «- ; L) = 2 - I n = 
C G A C C G S 

c $ A c G S,c=c 
one can have equality if and only if 

- for each c 4 A, card(c G S,c = c*) = 1 
- for each c G S , d = d— and p )f d„ . 

c c c " c The last statement of the theorem is a consequence of lemme 3.8. 
(Strictly we cannot apply lemma 3.8 as 3C+(A) is not a complete 

metric space, it is only an inductive limit of complete metric 
spaces. But all we need in the proof of lemma 3.8 is Banach1s open 
mapping theorem which is true in "W? (A) ) . 

§ 6. APPLICATION TO L-FUNCTIONS. 

6.1. Notations. 
We follow Serre's report [Se] (In order to comply with the 

tradition, in this § 6.1 only, x will denote a multiplicative charac­
ter and not an index, and an additive character, later we will 
introduce the ^-mapping of Dwork which is absolutely unrelated). Let 
p be a prime. Let z, be a primitive pth root of unity in <Cp . For 
x G JFp, let e(x) = cX- Denote by k the field of q = pm elements an 
by k the extension of k of degree r. Let Tr : k i—> W be the 

a r r r P 
absolute trace. If we put ij>r(x) = e(Trr(x) ) for x G Kr , then 

ib : k > <C* 
yr r p is an additive character. 

For x G 3F g let Teich(x) € Qalg c C be the Teichmuller P P representative of x. If we put x(x) : = Teich(x) for x G k, then 
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X | k* is a multiplicative character of k and 
X : k* > <C* 
Ar r p 

is a multiplicative character of kr where for x G k^ we define 
Xr(x) = x(Nk /k(x)) = Teich x(q -^/(q-U . 

Let g G k[x], g ^ O . Let f, h G k(x) such that the pole of f 
and the zeros and poles of h are zeros of g . We define the twisted 
exponential sum, (TES) , Sv.(g;f,h) by 

Sr(g;f,h) : = I K, (f (x))xr(h(x)) . 
xGkr,gTx)^0 

To these TES is associated an L-function 
oo 

L(g;f,h;t) = exp( \ S^(g ;f,h)tr/r) . 
r=l 

It is a formal series in t with coefficients in ®^(q-.i)p) (where 
for n G UN, yn represents the group of nth roots of unity). 
Let Z : = {00} u {x G 3Falg ; g(x) = 0 }. For x G Z define 

nx : = 1 - inf (O,sup(ordx(f - c|>r+<l>) ; 4» e 3Fplg(x) ) . 

6.2. THEOREM. The function L(g;f,h;t) is a polynomial in t of 
degree \ n -2 , except if n = 1 for all x G Z and v <= «7 X X 
h(x) = ch1(x)g_1 with G k [x ] where it is the trivial situation 
where for all r G 3N and all x G kr with g(x) ̂  O, ^r(f(x))xr(h(x) ) =u>r 
with a) indépendant of r and x and then ( l-qcot) L (g ; f ,h ; t) is a poly­
nomial of degree card.Z - 1 . 

This result is due to A. Weil [We] . (See also [Se]) . 
We want to explain how this result is related to Dwork's 

cohomology considered in the previous paragraph. We give a rapid 
sketch of Dwork's theory. 

6.3. Dwork1 s theory. 
We consider first the case where g(0) = 0 . We shall explain 
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later how the general situation can be reduced to that case. 
Let tt denote a solution of 

.p-1 = - p . 

It is a well-known result of Dwork (cf. [La] for example) that 
there is a bijective correspondence between the primitive ptn roots 
of 1 and the solutions TT of TT^"1 = -p under which K corresponds to 

2 
TT if and only if c = 1 + TT mod TT (in <C ) . Further the fonction 6 (x) : = exp-rr (x-xp) , defined near O, has radius of convergence > 1 
and 6(1) = £ . Therefore for a suitable choice of *rr we shall have 
for x G 3F : e(x) = e(Teich(x)) . P 

s-1 s 
Denote 0 (x):=0(x)0(xp)...0(xp ) ; near 0 0 (x) = exp-rr (x-xp ), 

PS P 
Then one can express the TES 

(6.3.1) S (g;f,h)= I (Teich h(x))(q "1/^"1)e (Teich f(x)). 
xek ,g(x)^0 qr 

We want now to express this sum as the trace of a linear opera-
tor. 

Let T be the maximal unramified extension of © . Let g GT [x], 
f , h e T(x) be liftings of g,f ,h respectively. Let A = {x G ^ ; 
|g*(x) | = 1}, thus A = {x G 3Ff.lg ; g(x) 7^0} . We may assume that the 
poles of f and h do not belong to A . Consider the function 

(6.3.2) G(x) :=h*(x) ('V* ' )1/(q-1)expu (f (x) ̂  - f (xq) ) 0 (f (x) ) . 
h*(x^ " 

(Formally G(x) := (n4/x ; )1/(q-1)expir (f* (x) - f* (xq) ) ) . We claim 
h*(x) 

that G belongs to the Washnitzer-Monsky1s dagger space JC (A) . As 
h€EK(x), h(x)q = h(xq) so | l-h*(xq)/h*(x)ql a „ „ < 1 and further 

gau s s 
the poles of h*(xq)/h*(x)q do not belong to A . This proves that 
(h*(xq)/h*(x)q)1/(q 1] belongs to xf(A), because (l+u)1/iq'1) has 
radius of convergence 1. 

As f e k(x), |f*(x)q - f*(xq) lgauss < 1 and further the poles 
of f*(x)q - f*(xq) do not belong to A, this proves that expir (f* (x) q-
f (x̂ 1) ) e K (A) because exp u has radius of convergence 1. As 6 
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has radius of convergence > 1 and as If |#,ai„e,tB = l with the poles 
gau s s 

of f* outside A, 0 (f*(x) ) e 3C+(A) . 
The mapping. As gek[x], if £ e X (A), the mapping 

(6.3.3) x i > ( * q e ) (x) = |^ ± 5(z) 

is defined on a neighborhood A£ of A and defines an element ty^E, of 
Xf (A) . (cf. [Dw 1]), and if £ (x) = y(xq) then ^ £ = y. So is a 
left inverse of the q-th power map <j> : £ (x) i—> £ (x 1) . 

The Monsky-Reich trace formula. Consider the endomorphism of 
Xf (A) 

*a°G : C I > * (GO . 

This is a nuclear operator (cf. [Mo]) and by the Monsky-Reich trace 
formula ( [Mo] and [Re] ) we have 

r-1 
(6.3.4) (qr-l)TrU oG)r= I G(x)G(xq) . . .G(xq ) 

q a 
x - =x. xe A 

(Here we use the fact that O ^ A ) . (Remark : Reich proves the trace 
formula in the case of many variables under the assumption that the 
term of highest degree of g is square-free, which means that in the 
case of one variable one can consider only a polynomial g of degree 
1. But it is easily seen that, in the case of one variable, the 
proof of Reich is still valid under the assumption that the zeroes 
of g are simple and this is obviously not a restriction). 

Dwork's expression of an L-function as a determinant. 

(6.3.5) Sr(g;f,h;t) = (qr - 1) Tr (<|>qoG) r . 

r-1 
For r £ 3N let G (x) = G(x)G(xq) . . .G(xq ), clearly an element 
+ r r 

of "X (A) • We assert that if x£Af xq = x then 
r—1 

(6.3.6) Gr(x) = (Teich h(x))(q ) / ( q ~ 1 ) . e r(Teich f(x)) . 
q 

Since we are dealing with a product we way consider two basic cases 
separately. 
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Case 1. h* = 1 (so h = l ) . 
Formally, 

( 6 . 3 . 7 ) Gr(x) = exP7r(f*(x) -f*(xq )) , 

a formula which may not be used for the calculation of Gr(x) by 
composition of the function u J—> expiru with the function 

r r 
x i—> f*(x) -f*(xq ). On the other hand G (x)p = exp Ptt (f * (x) -f* (xq )) 

r 
and there we may use composition . Thus if XGA, x = xq then 
Gr(x)^= 1 , i.e. Gr(x) is a p root of unity. On the other hand we 
may rewrite our formal expression in the form 

( 6 . 3 . 7 . 1 ) Gr(x) = e r(f*(x) )expir (f*(x)qr - f*(xqr) ) 
q 

Indeed observe that for x and y near O, one has 
6q(x)/eg(y) = expir(x-y) expiT(yq-xq) 

Let R be the radius of convergence of 6Q (R > 1) . The functions on 
both sides of this equation are analytic functions in x and y in the 
set { (x,y) G <Cp ; |x| < R |y| < R | x-y | < 1 } . Therefore by analytic 
continuation the previous relation is true everywhere in this set. 

We use this property of the function 6Q to rewrite Gr(x) . 
r-1 i q i+1 r-1 i 

G (x) = n expTrCf* (xq ) - f*(xq )) n e (f*(xq )) 
i=0 i=0 q 

= exPTT(rj;1(f*(xql)q-f*(xq:L+1)))0 ( f ^ x n V erT(f*(xql))/erT(f*(x)ql) 
i=0 qr i=0 q q 

* r"1 * ni(î * i+1 r-1 Ä i i 
= e (f*(x)) exp7r( I (f*(xq ) -f*(xq )) + I (f*(xq )-f*(x)q ) 

q i=C i=0 

+ Y ( f ^ i + 1 - f * < x < À q ) 
i=0 

= e r(f*(x))exp7T(f*(x)qr - f*(xq3r)) . 
q 

From ( 6 . 3 . 7 . 1 ) we may compute for all x G A 
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(6.3.8) Gr(x) = 1 + tt (f (x) +. . .+ f (x)p ) mod TT . 

r th 
In particular then for xq = x, xeA, G (x) is a p root of unity 

2 

whose congruence class mod ir is known. This suffices to verify 

(6.3.6) in this case. 

Case 2. f* = O (so f = O) . 

In this case we have formally 

(6.3.9) 
* crr * l/(q-l) 

Gr(x) = (h*(xq )/h*(x)) 

which means that for xG A, 

(6.3.9.1) Gr(x)q 1 = h*(xqr)/h*(x) 

(6.3.9.2) Gr(x) = h^(x)(qr~1)/(q"1) mod p. 

These two equations show that if xG A, xq =x then Gr(x) is a q-l̂ *1 

root of unity whose congruence class is precisely that given by 

(6.3.6) . 

From (6.3.1), (6.3.4), (6.3.6) we deduce (6.3.5). 

For the nuclear operator oG one can define the determinant 

det(l-ti/; oG) and one has the relation 

(6.3.10) det(l-tù ©G) = exp(- I TrU oG)rtr/r) . 
q r>l q 

Relations (6.7.5) and (6.3.10) together with the definition of 

the L-function give 

(6.3.11) L(g;f,h;t) = det(l-tip oG)/det (1-qtij; <>G) . 
q " 

Cohomological interpretation. 

Let F : = h*(x)"1/(q""1) exp7rf*(x) and define 

(6.3.12) D s = F " l o X 4 ° F • 

Formally a : = ̂ g°G = F"1o\p^oF . As operators on "K (A) , D and a com­

mute up to a factor q : 
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(6.3.13) a oD = qdoa . 

We have te commutative diagram with exact rows 

(6.3.14) 

0 > Ker D > JC(A) JCT(A) > 5fT(A)/D5CT(A) > O 

a a — 
q q a a 

4f w * v 

O > Ker D > Xf(A) 3C+(A) > f (A)/D3C+(A) » o 

But Ker D^{0> only if nx = 1 for all X G Z and h(x) =h1(x)q with 

hXG 3F*lg<x) . 

When Ker D = {0} then by 5.4.3 

dimîC+(A)/D?C+(A) = - x (D;5C+(A) ) = J n - 2 
X G Z X 

and then from C6.3.11) and (6.3.12) we deduce 

L(g;f,h;t) = det(1-ta)/det(l-tqa) = det(l-ta) , 

4-

As a is a surjective map on X'(A), because it has a right in­

verse G lo<l>q, the quotient map a is surjective and hence invertible, 
so det (1-ta) is a polynomial of degree £ nx~2 and tnis proves the 
theorem 6.2. x G Z 

If Ker D^{0}, let u be a basis of Ker D . Then one has 

G(x) = um(xq)/u(x) with eu as defined in theorem 6.2, and thus 

au = cou . So if a1 is the restriction of a to Ker D, one has 

L(g;f,h,t) = det(1-ta)/det(l-tqa) = det(1-ta)/det(1-ta.) = 

= det(l-ta)/(l-qa)t) . 

Further, as previously, a is an invertible map and 

dim5C+(A)/DJf+(A) = -X (D ;5C+ (A) ) + 1 = ( £ 1) - 2 + 1 = Card Z-l . 
x G Z 

This ends the verification of theorem 6.2 when g(0) =0 . 

We now explain how the general case reduces to the case where 

g(O) =0. Let c € k . It follows directly from the definition of § 6.1 

that 
L(g ;f ,h ;t) = L(g;f,h;t) 

where gc(x) = g(x+c), f(x) = f(x+c) and hc(x) = h(x+c). So, if 
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g(c) = O then gc(O) = O and the theorem 6.2 is verified. Now let 
c €. k such that g(c) ^ O. One deduces easily form the definition 
that 

L((x-c)g;f,h;t) = ( l-u> (c ) t ) L (g ; f , h ; t ) 
where 

(d(C) := Teich(h(c) ) 0g(Teich f(c)) 
(with notations of § 6.1, o>(c) = x(c)ipQ(c)) . 

Further notice that nc =1 because f is regular at c . We know 
that L((x-c)g;f,h;t) satisfies theorem 6.2. To prove that L(g;f,h;t) 
also satisfies theorem 6.2 it is enough to show that o>(c) 1 is a 
root if L(g;f,h;t). 

Suppose that there exists c1 G k such that u)(c) ^ o)(cl). Then 
one has 

L(g;f,h;t) = L((x-c)g;f,h;t)/(1-w(c)t) 
= L( (x-c')g;f ,h;t)/(l-ü)(c')t) 

and therefore w(c) cannot be a pole of L(g;f,h;t). 
If may happen that g is never 0 in k (even if g is not a cons­

tant) and o)(c) is constant for all c e k (even if nx ̂  1 for some xe Z 
or h(x) is not of the form ch1(x)q *) . So consider kr the extension 
of k of degree r and let for c e k define 

o>r (c) : = Teich (h(c) ) (q ~1)/(q 1} e (Teich f (c) ) 
a 

Consider the L-function associated to kr 
oo 

L (g;f ,h;t) := exp( I S ^ (g;f ,h;t) trs/rs) 
r s=l rs 

It follows from the definition that 
Lr(g;f,h;t) = n L(g;f,h; t1/r), 

vr=l 
the product being over all rth roots of unity. 

If we have not : n = 1 for all xe z and h(x) = c h^(x)q 1 with 
h1 e k(x) , then for r big enough, r > rQ, u)r is not constant on kr , 
therefore it follows from the previous discussion that Lr(g;f,h;t) 
is a polynomial of predicted degree. If L(g;f,h;t) is not a poly­
nomial, it is a rational function with one pole 
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L(g;f,h;t) = 
6 
n (w-b,t)/(l-u>(0) t) 

i=l 
and 7* w(O) for all i . If Lr is a polynomial, then there must be 

th 
an r root of unity, v, such that w(0)\> = b^ for some i, 1< i^ 6 . 
Let r run through 6+1 distinct primes each greater than rQ . By the 
pigeon-hole principle there exists an integer i such that 
u)(0)v' = b^ a)(0)v" , where v' (resp. v") is a r'-th (resp. r"-th) root 
of unity rf and r" being distinct prime numbers. It is clear that 
v« = v" = l and 03(0) = b_. , contrary to hypothesis. 

Consider now the case nx = 1 for all xG z and h(x) = c h1(x)q 1 
for some k(x) . Let gQ : = xg . We are in the situation where 
Ker D {0>, and we have seen that G(x) = am (xq) /u (x) where u is a 
basis of Ker D . Therefore a(l) = ip (G) = u) which shows that OJ is an 
eigenvalue of a and therefore of a . As 

L(g ;f,h,t) = det ( 1-ta ) /det ( 1-qoot ) 
we see that (1-tot) divides L(g~;f,h;t) and therefore 

(l-qo)t)L(g;f ,h;t) = ( 1-qcut ) L (gQ ; f, h ; t ) / ( l-qwt ) 

= det (l-ta)/(l-o)t) 
is a polynomial. 

§ 7. ESTIMATE OF THE p-ADIC MAGNITUDE OF THE ROOTS OF THE L-FUNCTIONS. 

We have seen in the previous paragraph that, thanks to Dwork's 
theory. 

L(g;f,h;t) = det(l-ta) 
where a was a linear mapping in some finite dimensional space. If we 
write L(g;f,h;t) = n (l-a)̂ t) , then the are the eigenvalues of our 
mapping a . The purpose of this paragraph is to obtain an estimate 
of the magnitude of the coefficient of the matrix of a in a suitable 
basis. From this estimate we shall deduce, by a well-known procedure, 
an estimate of the p-adic magnitude of the . With the notation of 
§ 6 we shall consider onlv the case : 

g(x) =x, h(x) = 1, f (x) = 
d' 
I u.x1 with d, d»>l, p/d, p/d', 

L=-d 1 
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u_d#O, u_d#O, 

7.1. Notations. (We change slightly the notations of § 6). 

We consider f(x) 
d' _ . 

= l u ^ e F m [ x ^ ] with d, d'>l, p|d, 
i=-d p 

p/d1 and u_, 7*0, u,, ̂  O . We consider a lifting f*(x) = 
d1 
I u.x1 

i=-d 

with u^=Teich(ui) . We shall write f*a(x) = 
d1 
v p i L u -x . 

i=-d 

Let A be the unit circumference C(0,1). Then 3C+(A) can be iden­

tified with the space of Laurent series G <£ [[x,—]] which converge 
P x 

in an unspecified annulus e < Ixl < 1/e with e < 1 . Then for 
4-oo 

Ç = I anxn G 3CT (A) 
n = —oo 

(<K) (x) = i I E ( z ) = I a xn . 

zp=x 

Let F : = expTrf^(x) and define D : = F " ^ x ^ <>F = x ^ + 7rxf+(x) . 

It is clear that D is injective in (A) and therefore by proposition 
+ f 

5.4.3 D5C (A) has codimension d+d' in oC (A) . By theorem 5.6 a 

complementary subspace of DC^tx,^] in ^pfx,^] will be a comple­

mentary subspace of D5Ĉ  (A) . One sees easily that B={x^"} A . 
x ̂ CL — 1 

form a basis of such a complementary subspace. 
Let G(x) : = expir (f (x)-f (xp) ) , G G JC (A) . Consider the map­

ping a : =ip©G of "K* (A) into itself. We define the matrix r = ( Y ^ J ) , 

- d ^ i < d ' - l , -d< j < d1 - 1, of the quotient mapping a in JC (A) /DJC (A) 

related to the basis B by 

(7.1.1] 
i d,"JL -i + a (x ) = I y. .xJ mod UK (A) , -d « i « d 1 - 1 . 

j — d 1D 

The main purpose of this section is to give estimates for the 

p-adic magnitude of the coefficients y.. . 

We shall use the usual additive valuation on Qp ord, normalized 

bv the condition ord p = l . [ 1 will denote the "intecrral part". 
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7.2. THEOREM. Assume that p > 5 . Then 

(7.2.1) 
f ord y = 0 ord y . r t > 0 if i ^ O - d ^ i ^ d ' - l 

J O O -L f kJ 

\ ord y_d _d = 1 ord Y i _ d > 1 - d + l ^ i ^ d ' - l . 

For 1 < k < d'-l, define pk = s^d' + q£ , O ̂  s£ , 1 q£ ,< d'-l . Then 

(7.2.2) 

r°rd X ' k = P = t " [ k ^ ] F T 

sk 
°rd Yi,k > p^î "d« 1 <9k 

S 1 

I ord Yi/k > ^ q £ < i * d " - l . 

For 1 ̂  k ̂  d-1 define pk = skd + qk , O < sk , 1 < qk ̂  d-1 . Then 

(7.2.3) 

sk 

°rd *i.-k > p=T -qk< Kd'-l 

sk 

ord Yi#_k > pzr -qk< K d ' - l 

sk 

( ord Yi.-k > D ^ T i < -qk . 

7.3. Before proving this theorem we give some consequences. 

As (p,d') = 1, we see that q£. ̂  q \ for k ^ j . (and likewise 

^ ̂  • f°r j ) . Therefore in the expansion of d e t ( r ) , the dominant 

K 3 d'-l d-1 
term is y~ 0 Y ^ _^ n y . , n y . , the other terms having 

u,o -a, a k=1 qk,x k=1 -qk,-* 

greater valuation. Therefore using lemma 7.11 one gets 

ord(det D = V t k ^ - ] ^ + Y [kglpi j - + 1 = 

= (d ' - l )(p-i) , (d-1)(p-1) . . _ d+d' 
2 (p - l ) + 2(p-1) 1 ~ 2 

7.3.1. It is well known that there is a functional equation relating 

the inverse roots of L(g;f,h;t) with those of L(g;-f/h"1,t). Speci­

fically these inverse roots may be paired so that the products of 

each pair is q . (In § 8 we give a demonstration of this functional 

equation based upon Dwork's dual theory). Letting e (resp. e') denote 
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the coefficient of the term of highest degree of the first (resp. 

2nd) L-function, we conclude that the product ee' is a certain powei 

of q . Now e lies in ^(^(q-x)p^ and e* is "**ts imaqe under complex 

conjugation, i.e. e and e* are conjugate over © but not necessarily 

over . If however m divides q-1 and h is the (q-l)/m power of an 

element of 3F (x) then e lies in Q(y ) and so in particular if h=l 

then m=l and e and e' are elements of $(vn) conjugate over CD . This 

field has precisely one p-adic valuation and so regardless of our 

imbedding into <C , |e| and |e*| coincide if h=l, and so |e| is 
P 

known. In the case of gauss sums the L-functions are polynomials of 

degree 1. In this case h 7* 1 and |e| needs not coincide with |e' | . 

7.3.2. For the application to L-series we are interested in fact in 
m-1 m-1 

the mapping aCT 0...0 a whose quotient mapping has matrix r . . . r 
in the basis B . Then the estimates of theorem 7.2 together with the 

results of [Ma] and [Ka 2] on semi-linear mappings yield the follo­

wing result : 

a 
7.4. THEOREM. The Newton polygon of the eigenvalue of r . . . r is 

above the Newtion polygon with slopes 
0, [k^J^L- for l^k^d'-l. [kd]^=T for Kk<<d-1, m 

and their endpoints meet. 

(The fact that the endpoints meet is just the result on the 

estimates of det r mentioned previously). 

7.5. If p = 1 mod d1 (or d1 = 1) and p = 1 mod d (or d = 1), then 

q¿ - к, sk = [k£] = к [Ci], qk = к, sk = [kf] = к E z i 

so in that case we can show using the result of Sp , that the two 
polygons coincide. Precisely : 

THEOREM. If pE l mod d1 (or d» = 1) and p = 1 mod d (or d = 1) (and 
m-1 

p 5) then the eigenvalues (wi), -d^i<d'-l, of ra . . . r can be  
arranged so that 
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ord(wi) = m i/d1 
ord(wi)= m i/d 

Os< i^d'-l 
1 ̂  i ̂  d . 

7.6. We note that in the case f (x) =x + x , Sperber has obtained 
more precise results (unpublished). He shows that for p = 1 mod, 
p> 2(d+l) the Newton polygon of the eigenvalues lies above the Newton 
polygon with slopes { 0 , ̂ , . . . , 1} which is precisely the Newton 
polygon for the eigenvalues when p = 1 mod d . 

The fact that for p ? 1 mod d the Newton polygon of the eigen­
values lies above the other Newton polygon is illustrated by the 

— 3 
example f (x) = x + x . Then for ps 2 mod 3, p >> 0, Sperber shows 
(unpublished) that the eigenvalues have valuations 

0 , ^ 3 ) ^ , ( 2 ^ 1 - 3 , ^ . 1 . 

7.7. We turn now to the proof of theorem 7.2. 
Define the coefficients a . bv the relations 

(7.7.1) xn = I a .x3 mod DJC (A) n e TL . 
j=-d n'3 

LEMMA. For n >d' 

(7.7.2) 
ord a ^ . > -( [~r]-l)/(p-l) - d < j < 0 

> - t^A/tp-i) 0« j< d'-l . 

For n > d 

(7.7.3) 
ord a_^. > -[n~d+I3/(p-D - d « j < 0 

> -( t^p] -l)/(p-l) 0<j«d'-l . 

Proof : For n>d' 

D(xn-d') = (n-d')xn-d' 
|d' „xn-i mod wt(A) 
±=i and thus 

(7.7.4) xn = ± xn-A- + d|d' „xn-i mod wt(A) 
±=i 
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where * is used to indicate that we have a coefficient which is a 
p-adic integer. Therefore 

* d+d' 
n,] tt n-d' ,3 i£1 n - 1,3 

and 

(7.7.5) ord a^ . >min(ord(a„ .)-l/(p-l), min ord(a^ . .)) . 
n,j n-d ,3 l^i^d+d1 

So the inequalities (7.7.2) are easily proved by induction once they 
have been proven for d',$ n <2d'. But then they are easily deduced 
from (7.7.5) noting that for -d^ i, j < d' a. • = 1 if i = j and a. . = O 
if i * i . 

For n > d 
D(x"n+d) = (-n+d)x-n+d+w dJ ju.x^-n+d 

j=-d 3 and thus 

(7.7.6) .„ _ * x-n+d + d+f 1 „x-n+l 

therefore # d+d'-l 
a-n,j = 7 a-n+d,j + I *a-n+i,j 

(7.7.7) ord a „ . >min(ord(a .)-l/(p-l), min ord(a . . .)) -n,3 -n+a,3 l^Kd+d'-l "n+1'] 

and then inequalities (7.7.3) are proven in the same way as inequa­
lities (7.7.2). 

7.8. We shall write 
d' +°o 

G(x) = EXPTT (f*(x) - f*a(xp) ) = n expir (u.x. - u?xip) = £ hnxn . 
i=-d n=-°° 

LEMMA. For n ̂  O 

°rd hn > 3T ^ • °rd h-n * 3 ^ • 
P P 

Proof : We recall ( [DW 1] § 21) that the function 6 (x) := expir (x-xp) 
2 

converges for ord x> -(p-l)/p and satisfies ord 8(x) = O . There-
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fore for i > O, expiT (uix1 - u?xlp) = 9 (i^x1) converges for 

ord x > -(p-l)/ip2, while 6(u_.x "*") converges for ord x < (p-l)/ip2 . 

2 2 Therefore G(x) converges for -(p-l)/d'p < ord x < (p-1)/dp and 

besides ord G(x) = 0 . This implies, by Cauchy1s inequalities. 

infn^Q(ord hn-n(p-l)/d'p2) > 0, infn<Q(ord hR + n(p-1 )/dp2) > 0 

which proves the lemma. 

7.9. We shall need more precise estimates. 

For the rational number a, let ]a[ denote the smallest integer 

>. a . Thus ] a [ = [ a ] if a is an integer, otherwise ] a [ = [ a ] + 1 . 

LEMMA. Assume p > 5 . 

For O ̂  n ̂  3 p d 1 ord hR > ] p̂r [^èj •. 

For O ̂  n ̂  3 p d ord h_n >, ] ̂  [^èj •. 

If n = sd' ,0<$s< p-1, ord hn = ~j = ~r ^èj • 

If n = sd, O ̂  s ̂  p-1, ord h_n =^èj •= g ^ y . 

Proof : Recall that the Artin-Hasse series 

E(x) = exp( I xpS/ps) 
s=0 

belongs to % [ [x]] . Therefore 

e (x) = E(irx) 
°° s 2 
n exp(- (TTX)p /pS) = E(TTX) mod xp . 

s=2 

If we write 9(x) = £ c .x-3 , we obtain 
j>0 3 

ord c_. ^ j/(p-D , j < p2-l 

ord c. = j/(p-l) , j < p - l 

2 

and we have seen in the previous lemma ord c^ £j(p-l)/p for all j . 

We have +°° d' . 
I h x11 = n I c.tu/)3 0(uo) 

n = — n k=-d j^O D K ° 
k^O 
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and so 

hn = e(uQ) I cj_a...cjdi u ^ . - . u ^ ' 

the sum being taken over all families (Jk) _̂ <]c$<j» such that 
d' k^O 

Y kj, = n . Let us write when 0 < n ̂  3pd' 
k=-d K -1 a* 

I kj, = -s , I kj, = n + s . 
k=-d K k=l K 

d' 

Therefore £ j^^n/d1 and we have = only if cl'j^, = n, s=0 and ik = O 

for k < d ' . The hypothesis p > 5 implies p-l>3p/(p-l) and so if J k > p 2 

one has ord c . > J K (p-1) /p2 >. (p-1) > 3p (p-1) > ] -p- [ ̂ Z J • 

If for all k ^ 1 j , > p 2 - l then 

dr jk d» d1 n 1 
ord( n c. u, ) >, I ord c. >. I jk/(p-l) ^ I x r t ^ r r 

k=l ^k K k=l 3k k=l K d p i 

so ord h >, -pr ——r- . 
n ^ d* p-1 

If n = sd1, 

ord(csu|() = s/(p-l) = nqn 1/p-1 

tfhile if ( . . . , j-., ) ? (0,...0,s) 

ord(c. ...c. u ~d...u^') > ( I jk)/(p-l) > £r ==y 
D-d Dd' a a k=l a p i 

which implies 
j i. n 1 ord h - tt — r • n d* p-1 

The case of h_ with 0 n 3pd is treated in the same way. 

7.10. Proof of theorem 7.2. 

+ oo +« d'-l , 
a(x1) = I K X ^ t x ) ) = I h x n = I h I an kxK mod D5CT (A) 

and so 
_|-oo + o o + 0 O 

(7.10.1) ylfk-l^ VA-^Vi^, V i V ^ h-n̂ia-n,k-
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We consider first the case CXk^d'-l • We first estimate 

ord • Let 

pk = s¿d' + q¿ O ^ s¿ , O >< q¿. >< d' - 1 . 

(7.IO.2) 

' if i = q¿/ kp-i=s¿d' and ord \p_± = s¿/(p-l) (lemma 7.9) 

if q'k<i<d'-l, = s¿ and ord h^±>s¿/(p-l) 

ь if -d4<i<(¿, , ì^r£l>K+l and ord h, >s¿/(p-l) . 

We shall now show that for n^d1 or n<-d ord(h .a , ) >s£/(p-l) 

if i > q£ and ord(hnp-ian fc) > s£/(p-l) if i q£ and this will end the 

proof of (7.2.2) 

i) consider the case d* ̂  n^ 3d1 and np-i^ 3d*p . By lemma 7.7 

and 7.9, recalling that k >0 , 

(7.10.3) ord (h .an k) * <]*ЧК±[ - I SârD=rLT • 

Observe that for two rational number u and v 

(7. IO. 4) ]u [ - [ v] > ]u-v[ 

(7.10.5) ]u+v [ > ]u [ + [ v ] . 

Thus we deduce from (7.10.3) 

ord(h .a .) >> ]"<P-^-t-k-i[-J^r np-i n,k ^ d* p-1 
^ (] (n-k)<(p-l)-i[ + jk^,, 1 

Now observe that ] (n""k>^P D "i [ >, 0 is equivalent to 

(n-k) (p-1) - i > -d' and this is satisfied because i< d' and n - k > O 

So for all i 

ord(h .a , ) > 
np-i n,k ' d' p-1 

Now observe that ] n(P *l+k 1 [ > [ | E ] = is equivalent to 

n(p-l) + k - i > kp-q£. and this is satisfied if i^ q£ because then 

(n-k) (p-1) > 0 >i - q* . Thus for i < q* 

ord(h . a . ) > [£?]~T np—i n,Jc a p~l 
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ii) Consider the case d1 ̂  3d1 and np - i > 3pd* . By lemmas 7.7 
and 7.8 
ord(h_np_ia_n/h) >]^Е^т - «^1-Dpèra^l-Dp^T 

> 3 Ezk - [ 3d'-k.^_ p^l _ _3_ = 3(P2-3P+1) 
3 P 1 d1 'p-1 " 3 p p-1 p2_p 

2 
and for p >5 one has 3 (p ~3P+1> > 1 >, [ ̂ H]-i^ . so for all i 

ord(h .a , ) > [ 4 ? ] - ^ np-i nk' d1 p-1 

iii) Consider the case n > 3d'. By lemmas 7.7 and 7.8 

ora<h_np_ia_nfk)>B§±^- a^l-Dp^Ta^l-Dp^T 

> np-d' p-1 _ _n_ _1_ > n(p(p-l)2-p2)-d,(p-1)2 
- d- p2 " d- p-1 - d'p2(p-l) 

> 3(p3-3p2+p)-(p-l)2 = 3p3-lQp2+5p-l 

p2(p-D P2(P-1) 

and for p > 5 one has 3p -lOp +5p-l „ x > (to, 1 _ 

P2(P-D a P 1 

iv) Consider the case n < -d . We write -n instead of n . For 

-n < -2d 

ord(h_np_ia_n,k) > B § ± ^ - a ^ l - D p ^ T 

np-d p-1 ,n-l 1 _ n(n(p-l)2-p2+d(p2-(p-l)2)+p2 
' d p2 - (p-l-1}P-l " ^ 2 ^ , , 

2(p(p-l)2-p2)+p2-(p-l)2 = 2p3-6p2+4p-l 

P 2 ( P - D P 2 ( P - D 

and for p 5. 5 one has 2p 6p +4p 1 > ^ 
P^(p-l) 

For -2d < -n < -d and np+ i < 3 dp, by lemmas 7.7 and 7.9 and 

(7.10.4) 

ord(h m .a n .) > jSEtil-L- - ([S-i]-i) 1 
-np-i -n,n ^ a p-1 d p-1 

> ]Hi£=l)±i[-JL. > i . 
a p-1 
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For -2d < -n < -d and np+ i > 3dp, by lemmas 7.7 and 7.8 
ord(h_np_ia_n/h) >]^Е^т - «^1-Dpèra^l-Dp^T p p-1 

^ 3dp E^l _2_ = , 3 _J_ 
d p2 - p-1 " p p-1 

and 3 - (3/p) - 2/(p-l) > 1 for p > 5 . 

This ends the verification of (7.2.2). In the same way we prove 

(7.2.3) for O^k^d-1 . Observe that (7.2.2) for k = 0 together with 

(7.2.3) for k = 0 aives the first half of (7.2.1). 

It remains to estimate ord(yi _d) . One has by lemma 7.9 

ord(h_np_ia_n/h) >]^Е^т - «^1-Dpèr 1 if -d + 1< i< d'-l 

and 

ord(h_dp_d) = i l Ç l i ^ = 1 . 

And then the same computations as previously shown will show that 

ord(h ^_.an _.,) > 1 for n^d' or n < -d and all ie [-d,d'-l], ending 
np 111, Q. 

the verification of the second half of (7.2.1). 

7.11. LEMMA. Let p, d e be such that (p,d) =1 . Then 

(7.11.1) d - 1 
s j = i [к a . 

(d-1)(p-1) 
2 

Proof : We prove the formula by induction on d . Observe that tri­
vially for d = 1, S = O . 

Pr J-Write p = sd + q with s > O, 0 < q < d . We have (q,d) =1 and 
d- i ^ d - i d - i n , , 

p 'a k=l a k=l k=l a ¿ q'a 

So we consider the case l ^ q < d and (q,d) =1. For l<k^d-l, one has 

[k 3] = j for 

(7.11.2) j § 4 к < (j+l)| . 

But as (q,d) =1 and j < q, j | is not an integer and (j+1)— is not 
an integer either except for j =q-1 . Therefore (7.11.2) can be 
written 
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(7.11.3) [j f] < k < + 

except for j = q-1 where we have k < d-1 . We obtain 

S0 d = diX [k|] = V + - + (q-1) ((d-1) - (q-l)§ ) = 
q'u k=l 4 i = l - q -

4-1 л 
= (q-lXd-D- I j§ = (q-D (d-1) -S- . 

As q < d we can use our induction hypothesis for sd,q and thus we 
obtain 

c _ n M n (d-1) (q-1) _ (d-1) (p-1) S - - (q-1) (d-1) j-a 

and therefore 
c - d-1, ... , . _ (d-1) (p-1) Sq,d - —(ds+q-1) g"^ -

§ 8. DUAL THEORY. 

We shall give the proof of the functional equation of L(g;f,h;t) 
(cf. 7.3.1). We follow the exposition of the functional equation?of 
a special case given by Dwork in [Dw 1] . For details we refer to 
that article. 

8.1. The Frobenius map. 
Let T be the maximal unramified extension of ©p . Let a be the 

unique automorphism of T which lifts the Frobenius automorphism of 
**plg / x t—> xp . If f GT(x), then f° is the rational function ob­
tained by applying a to the coefficients of f . 

Let S be a finite subset of T with O, «> e S and such that for 
all c, c' e S - { » } , c^c1 implies |c-c' | = 1 . Let f e T(x) with its 
poles in S and I F I =1 such that for all c e S if d_ : = -ord„ f ^ J_ 1 gauss c c 
then dc =-ordc f, dQ > 1 and p/dQ . Let heT(x) with, its poles and 
zeros in S . We shall write F(x) : = h(x) ^q_1^ expirf (x). Let A be 
the union of residue classes not containing points in S . 

We introduce the differential operator 
D„ = F"1O X ~ - O F = X ^ - + TTxf1 hi[Kl . By 5.4 we know that 
F dx dx q-1 h(x) J 

248 



INDEX OF P-ADIC DIFFERENTIAL OPERATORS 

= JC+(A)/D„3C+(A) is a vector space of dimension 6 = 7 (d +1) -2 . 
~F F ces c 
By 5.6 we know that we can choose représentants of Wp in L(c). We 
shall choose as basis of Wp : 

(8.1.1) B = {x1,0^i^doo-l ; x"i,l^i<d ; (x-c) ~1, l^i<d +1, cGS-{Of~}}. 

Recall that q = pm. For 1 « j < m define 

Fa3(x) := ha3(x)-q/P:,(c3-1) exp f°3 (x) , 

and Fa =F . Let G. (x) : = Fa (x)/Fa (xP) , 0< j « m-1 . By writing 
_ _m-l m 1/(q-1) 

G0(x) = h(x)(h°(xp)p /h(x)p ) 8(f) exPTT(f (x)p-fö(xp)) , and 

G_.(X) = (N JL* } M,J + 1) e(F° ) EXP7T(FÖ ( X ) P - F A (XP))) 
ha (X)P 

t o3 
for j >1, one sees that G^ e JC (A ) and thus one can define IJJOG.. 

t aj t a j + 1 a j + 1 "X aj acting from W (A ) into K (A ). (Formally IJJOG. = (F ) oî oF . 

If D .is the differential operator associated to F : 
F 

D . = x -3— + (F )/F one sees that l dx " 
Fa 

(i/;oG.)oD . = pD .o(V°G.) . 

Therefore one can define a mapping on the quotient space (the 
Frobenius mar>) 

a . : W W 
F°3 v 3 V 3 + 1 

/here a . ( Ç ) = (^oG.)Ç mod D . 3T (A ) . 
Fa FaD 

In §§ 8.2-8.5, for simplicity of notation, we restrict our-
selve to the case j = 0 (and write G instead of GQ), but it is clear 
that everything remains true in the general case. 

8.2. Analytic dual theory. 
We introduce the notation for ce S - {»] 
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and for c = °° 

T = x - c c 

T = 1/x . 
oo ' For c G S we define 

R1 = ring of Laurent series in T with coefficients in <C which c c p 
represent functions analytic on an annulus O < ec < |Tc| < 1 with 
unspecified e . 

Rc = subring of Taylor series in Tc converging for |TC| < 1 , 
with the further condition, when c = 00, that these series have non 

constant term (they are O at 00) . 

We set 

R(S) = <S ê > e R• = R'(s) . 
cG S c cG S C 

We note that for each c G S , X (A) c R' , and we imbed X (A) 
A c 

diagonally in R1 
Xf (A) 3 n I > (n,n,...) G R' . 

We define Pc (principal part at c) on R^ by 

P_ : ê' > Xf(A) 

0° 
Y a. T^ « > 

3=-oo 

I a i Tc c ^ °° 
j=-oo J C 

I I a i Ti c =00 
j=_co -J 

We have a natural projection of ê1 into 3C+(A) 

Y. : R1 > 3C+(A) 

Ç - « « C ' C G S ^ > * Pc Çc • 

C e o 
We set 

Y_ = I " Y. 

a mapping of R1 into R . The mapping y annihilates X (A) and so 

R' = R ® Xf (A) 

with y_ (resp. y+) as the projection on the first (resp. the second) 

summand. 
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We define the residue map for (c€S) 

A 

Res^ : R' > <u 
c c p 

+°° 
Y a T3 

. L n c 
3=-°° 

f -a.̂  if c = 00 

( if c ̂  00 . 

We pair R' with itself by 

<ç,n> = 
£(c€SResc$cnc 

This pairing restricts to a perfect pairing of R with (A) . If L 
A -f- %t 

is an endomorphism of R' stable on K (A) and if L is an endomorphism 

of R1 dual to L under <,> , then (y_oL )|R is the unique endomor­

phism of R1 adjoint to L|?C+(A) under the induced pairing of R with 

7C+(A) . 

In particular consider the endomorphism Dp = F l o X ^ o F as 

componentwise mapping of R1 into itself, its dual endomorphism in 

R' is -F o ~ o x F""1 = - — o x -$- o x F"1 = -D , and therefore the 

adjoint to DF|̂ C (A) in R is DF ~ D _1 . We shall denote by KF 
* xF 

the kernel of Dp in R . We claim that dim Kp = dim Wp and therefore 

K can be identified with the dual space of Wp under the pairing <,>. 

Let V be the space spanned by the basis B (8.1.1), imbedded 

diagonally in R1 . As observed already dim V = dim W__, . 

Further for ç e R, D*£ = O is eauivalent to D . Ç E V . So all 
F " xF"1 

we have to prove is that D , defines a bijection of K onto V, 
xF * 

i.e. that for each n e V, there exists ç e R , such that D , £ = n 
c c xF-i c 

for all ces. Indeed we are exactly in the situation discussed in § 5.4.2 b) : in the generic disk of the circumference |T | = r , r<l 
dc+1 

the solution F(x)/x has radius of convergence r if c ? 00 (and 
dœ-l d +1 
r °° if c = »). Therefore the differential operator T D , if 

do 
c 0, 00 (T D if c=0, T D , if c = 00) has index 0 as 

xF xF 
endomorphism of the space of analytic elements on the ball lTcl ^ r r 
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and therefore defines a surjective map from Rc onto itself, and thus 

-<dc+1) -
D defines a surjective map from Rc onto Tc Rc if c^O, 

Xf" "do^ - ( d - - D . 
oo(onto R if c-O, onto T R , if c = °°) which is all we 

wanted to prove. 

8.3. The dual of the Frobenius map. 

The mapping ip of K (A) into K (A ) may be extended to a mapping 
of 6' (S) into R1 (Sa) . The mapping <f> of 3C+(Aa) into JCf (A) extends to 
a maoDing of R'(Sa) into £' (S) bv 

C = (C ) » > (C a(xP)) = <K-
C C G S c c e s 

* 1 Under the pairing <,> of R' with itself, $ is the dual of \p ° ~^zy 

( [DW 1] , theorem 4.3) . x 

Under the pairing <,>, the dual to the map ipoG : ?C+(A) —>JCf (Aa) 

is the map u> : = y_ xp-1 Go<f> of R(Sa) into R(S) . Further w maps K ^ 

# F 
into KF and putting aF : = u>|K q, we conclude that ap is the dual of 

F 
a„ . ( [DW 1] lemma 4.4.3). 

8.4. The symplectic structure. 

We have seen in 8.2 that D . defines a bijection from K_ onto 
xF"1 ~F 

V, and in 8.1 that the natural map of 3C+(A) onto W defines a 
xF"1 

bijection of V onto W - . Taking the composition of these two maps 
xF 

we obtain a bijection D_ from K„ onto W -
F -F -xF-l 

Ô_ : K_ - ^ Ì > V _ £ ^ - > W 
r r xF 1 

We claim that the following diagram commutes with a factor p 
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KF *—> W -1 
F XF 1 A A 

* -1 
aF a -1 
* XF 

"F »Fo "xCF0)"1 

Explicitly 

(8.4.1) A # - i a 
D oa = p a oD 
e * xF 1 Fa 

as map of K into W , . 
-Fa ~xF-1 

But a = ijiox1"^ 1 , a"1 , = xP_1Go<J> (the indicating 
xF"1 XF 

that we reduce to the quotient space). So we have to verify 

(F/x)ox ~ O X F _ 1 O Y _ X P 1Go(() = pxP^Gocfro (F° /x) ox^oX(Fa)"1 modD _1K+(A). 
xF 

As for all ÇGR1 y. CG5C+(A)f D _ y C € D . 3C+(A) and so we are 
xF 1 xF"1 reduced to the verification 

D oXP"1Go4> = pxP^Go^oD , 
xF"*1 x(Fa) 1 

and this reduces to the well-known property 

p*ox ab " x Â° * • 

8.5. Estimate of the magnitude of the determinant of the Frobenius 
matrix. 
In this paragraph we assume h =1. 
We now choose bases in our different spaces. In W , W , 

F xF"1 
(resp. W , W .) we choose the basis image of the basis B 

~Fa ""x (Fa) 
(8.1.1) (resp. Ba). We shall denote rp the matrix of ap related to 
these bases, and likewise we define r . 

YF 
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In KF (resp. K a) viewed as the dual space of (WF) (resp. W a) 
F ^ F 

we choose the dual basis. Then the matrix of aF will be the transpose 

r£ Of T„ . 

A A 
Denote A_ and A _ the matrices of D_, and D „ associated to these F pa F pa 

bases. We deduce from (8.4.1) the relation 

(8.5.1) det A det = p6 det r"1 , det A 
F F xF"1 Fa 

where 6 = £ (d +1) - 2 is the dimension of all these vector spaces, 
c e s c 

Now observe that the coefficients of Ap depend rationally over Q^(^) 

upon the coefficients of f, and thus if we replace f by f° we see 

that det A = (detA_)a, so the quotient of these two determinants 
F° t 

is a unit. Also it is known that det r = det r . 
R R 

Observe that x is an invertible element of X (A) and we have the 

commutative diagram 

. mult by x . 
3CT(A) > K (A) 

D -1 D -1 F xF 

. mult by x"1 . 
Xr (A) > 3CT(A) 

so we have, going to the quotient space, a natural isomorphism 

-1 
W - i — > ÎÎ - i • 
F xF 

Likewise we have the commutative diagram 

Xf(A) — > Xf(A) 

-1 X"P -1 
)oG îpox G 

V -x ^ 
Xf(A ) > 5C+(A ) 

from which we deduce the commutative diagram 
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x"1 W _! > H _ ! F xF 

-1 A -1 F xF 
— O V 

W . - - > W 
~~(Fa ) "xiF0)"1 

Taking bases, we see again that Matrix(x ) = Matrix(x ) and 
therefore |det r , | = det|r , | . 

F"1 XF 
Now F(x) = expirf (x) and F 1 (x) = exp—RRF(x) . So we go from F 

to F-1 changing TT into -IT . The equation x̂ ""1 + p is irreducible over 
T and hence TT — > -TT defines an isomorphism of T(TR) over T . Since 
T is complete this isomorphism is an isometrv 

Idet r , I = det I r_ | 
F 

Eventually (8.5.1) gives 
det r F | 2 = | p6 | 

or 
I det rF| = p"6/2 . 

8.6. Functional equation for the L-function. 
We consider again the general case. 
Let m e 3N* and let q = pm. Consider the L-function introduced 

in § 6 L(g;f,h;t). We shall denote by f (resp. h) a lifting of f 
m m 

(resp. h) in characteristic O such that f° = f (resp. hCT = h). Let 
m 

A be the union of residue classes where g ¥ 0. Then Aa = A . 
As the additive (resp. the multiplicative) character takes its 

values in u (resp. in y , ) , the complex conjugate of S (g;f,h) is 
sr(g?~f'n 1) and thus the complex conjugate of L(g;f,h;t) is 
L(a;-f,h-1;t) . 

In § 6.3 it has been proven that 

(8.6.1] L(g;f,h;t) = det(l-ta) 
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with a = a , o . . . o a o a,, (where F and a „ are defined in 
ITL—1 _,0 R R 

F ° § 8.1). 
m 

We observe that F = F . It is clear that to replace (f,h) by 
(-f/h""1) is equivalent to replacing F by F 1. Therefore 
(8.6.2) L(g;-f,h"1;t) = det(l-tB) 

with 3 = ot _ , , o. . . o a 
m-1 -1 „-1 

(Fa ) 
Write (8.4.1) in the from 

(8.6.3) ft * £-1 -1 

THEN ONE D E D U C E S 

(8.6.4) A * * £-1 -1 -1 
Dp.a . . . . . a ^ j O D j . = q a . . . . . . _ 

F° XF x(F° ) 
= q x . a - ^ c . o a 1 _x . x 1 

F (F° ) 
with x and x"1 as defined in 8.5. This can also be written 

(8.6.5 D„ o (a) o D" 1 = q x o (B)""1 o x""1 

and therefore bv (8.6.1) and (8.6.2) 
L(g;f,h;t) = L(g;-f,h-1;1/qt).M 

where M is an monomial in t chosen so as to make the right side a 
polynomial in t with constant term 1. Precisely M = q t /deta 
(6 as in § 8.5). 

In particular 
detct det3 = q6 

and therefore 
I DETAIL = Q6/2 . 

In the case h = 1 one sees as in § 8.5 that |deta| = |det$| 
(p-adic valuation) and so |deta| = q . W e thus recover the result 
of § 8.5. We gave the proof of § 8.5 because it is valid even if 
f is different of f for all m . 
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§ 9. THE GENERALIZED ADOLPHSON INDEX THEOREM. 

In this section we abstract the technique of Aldolphson [Ad ] so 

as to make it applicable to systems with irregular singular points. 

We use the notation of Adolphson but avoid characterization of sin­

gular points until the very end. 

Let A be a kxk matrix with coefficients in ft(X). Let 

ftn [x ] = vector space of polynomials of degree < n 

ftn[(x-a) 1] = vector space of polynomials of degree < n in — — . 
x—a 

For a G ft, r G M, r > 0, let F(a,r) be the set of all functions 
+ c 

holomorphic on D(a,r ) and vanishing at infinity i.e. 
F(a,r) = { £ G (x-a)""1 ft [ [ (x-a) ~"1 ] ] | ç converges for |x-a| > r} . 

F„ (a,r) = {E, + £„1E, G F(a,r) , E„ G ftn [x 1 } . 

We define 

F(°°,r) = { ç e fi ï [x ] ] I ç converges for | x | < r } . 

We choose P G ft [x ] such that the matrix P.A has polynomial entries. 

A polynomial having this property will be said to be suitable for A . 
k k 1 Choose N > 0, such that (D-A) maps F(a,r) into FN(a,r) . This N 

may be chosen independent of a G ft. For example it is enough if 

N > deg(P.a±j) - 1 

N > deg P - 2 

N £ 0 . 

Such an N will be said to be suitable for A . We define (for a G ft) 

a vx-a x-a 11 ' 

Gn = r—r—r- (-̂ - ft[-i-] + ftn[x])k a P(x) x-a x-a 
also 

Gœ = (ft [x])k 
Gn = r—r—r- (ft [x])k 

(so n as element of 3N 

plays no role here). 
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9.1. Global Theory. 
Let {a1#...,a } be a set of points in Q and {r^r^,...,^,^} 

a set of positive real numbers. Let F = F(roo,r1,...,rn) be the 
space of functions holomorphic in the region 

n + S = D(OrrJ - u D(a. ,r. ) 
c=l 

We assume that each D(a^,rt) lies in D(0,rw) and that the disks 
D(a . , r t ) are pairwise disjoint. By the p-adic Mittag-Leffler theorem 

n 
F = F(~,r ) <t> © F(a.,r.) . 

i=l 1 1 Let 

$ = µ[r—r—r- (-^- ft[-i-] 
Finally we assume that each disk D(a^,r^) contains at most one zero 
of P. If it does contain a zero of P then we assume the zero to be 
a^ itself. We assume that no zero of P lies in the disk |x| > r at 
infinity. 

THEOREM. We assume 
H1 Ker(D-A,F(a±,r±)) c G& 

Ker (D-A,F(~ , rj ) c 
i = 1, . . . ,r 

H2 Ga/(D"A)Ga. - I FN(ai'ri)k/(D"A)F(ai,ri)k i = 1, . . . ,r 

G!/(D-A)Gtt * i F(-,rJk/ (D-A)P(- , r j k . 

We conclude that 

(9.1.1) Ker(D-A,Fk) c Ek 

(9 .1.2) | EK/ (D-A)Rk 2L f (D-A)Fk . 

Proof : 
Let 5 e Ker(D-A),Fk), 

5 = K1 + K2 +.. .+ Cn+ Za 

tfhere 5± <= F(a.,r.)k (resp. : Ctt e F(-,rJ ). Hence 
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-P(D-A)Ç1 = P(D-A)C2+...+ P(D-A)£oo . 

The right side is analytic on S u D(a,,r +) while the left side is, 
+ c 

aside from a pole at infinity, analytic on D(ai,ri) . Hence P(D-A)C1 

is a polynomial and so by hypothesis ^ / there exists ^ G Ga such 

that 1 (D-A)Ç1 = (D-A)^ -

But E- - ru G F(a,,r.) and so by H. lies in G0 . Thus E. G Ga and 1 1 1 1 1 a^ i a^ 

likewise for the other components E ̂  , . . . ,\ , E^. This completes the 

proof of (9.1.1). 

For the proof of (9.1.2) we observe that there is a natural 

mapping of the algebraic factor space on the left into the analytic 

factor space of the right. We assert that the mapping is injective. 
- l k k Let the n G P E , E G F and suppose 

n = (D-AH . 

Thus 

Pn = Pti +...+ Pn + Pti 
1 n 00 where 

Pn± G G i a± Pn± G G i a± 

Also 
Pn = Pti +...+ Pn + Pti 
1 n 00 

and 

P(D-A) (Ç, +. . .+ Ç + Ç ) = Pn, +...+ Pnœ . 
1 n 00 1 00 

Thus by a previous argument P(D-A)^1 - Pr^ is, aside from a pole at 

+ + c infinity, analytic on S u D(a. ,r. ) and on D(awr_) . Thus 

P(D-A)Ç1 = Pr^ mod ft [x ]k . 

Hence by H2 

(D-A)E1 = (D-A)^ , Z1 G Ga , 

and so by H!' ^ i " ^ ! G Ga / i-0- ^ 1 G Ga * Likewise for S2 ' ' * ' ' Ç n ' ' 

Thus E G E . This complete the proof of injectivity. 

1 k 
We now demonstrate surjectivity. Let n G p F , then 
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Pn = Pr^ + ...+ Pnn + Pn^ 

k k tfhere Pn± (resp. Pn^) e F(ajL,ri) (resp. : F(»,rœ) ). By H2 , for 

L = 1, . . . , n 
Pn. = P£. + Pq. + P(D-A)y. 

where 

pç± e Ga , pqi e fl[xk], y± e Fla^r.) 

and likewise 

Pn«, = PCœ + P(D-A) pœ 

where Hm e Ft»,^)1^, PÇTO G ß [x ]k . Thus 

Pn = P(C1+. ..+Çoo)+ Ptq^. .-+qn) + P(D-A) (y±+- . .+yn+yoo) . 

However 

P(€1+...+ÇW) + P(q1+.t.+qn) e E 
and so 

n e ^ EK + (D-A)Fk . 

This completes the proof of the theorem. 

9.2. Local Theory. 

The object of this section is to give criteria which permit us 

to conclude that the local hypotheses H1, H2 are satisfied. 

These local hypotheses may be verified point by point. For this 

reason we may restrict our attention to one point, say a1= O, =r . 

Local Comparison Theorem. 

Let A and B be kxk matrices with coefficients in fi(x). Let P, N 

be polynomial and integer suitable for both A and B. We assume D-A 

and D-B are locally equivalent on D(0,R) with R> r, i.e. 3V, a kxk 

matrix with coefficients holomorphic on D(0,R) such that det V has 

no zero in this disk except possibly at x = 0, and such that 

D-A = Vo(D-B)ov"1 

H (B) Ker(D-B,F(Ofr) C Gn 

H (B) G £ / (D-B)G0 % ± FN(0,r)k/ (D-B)F(Ofr)k . 

We conclude that H (A) and H2(A) are valid. 
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Note : and H2 as used here refer to just one point. 

Proof : For z analytic in D(0,R ) - D(0,r+) we have the Mittag-Leffler 
decomposition which we write 

z = y_r + y.z 

where y+z is analytic in D(0,R ) and y_z G F(0,r). To verify (A) 
let E ̂  F(0,r), (D-A)E = O. Then 

P ( D - B ) V E = O 
and so 

Y_ P(D-B)V 1E = O 
i.e. 

Y_ P(D—B) (y_V-1E + y V_1£) = 0 . 

Now P(D-B) is stable on k-tuples whose components are analytic on 
D(O.R ) and so 

Y_P(D-B)y v " 1 ^ = 0 . 
Thus 

y_P(D-B)Y_V~1E = O . 

Since P(D-B) maps F(0,r) into Fxl(0,r), it now follows that 

P(D-B) Y.V""1^ e (ftN[x]) k 
and so by H2(B), 

(D-BJY.V"1? = (D-B)EQ, EQ e G0 
and then by (B), 

Y_V_1E = Ex G G0 . 
We apply Y V and obtain 

Y_Vy_V XE = Y«VE1 G G0 . 
The left side is 

y_V(V~1E - y+V 1E) = y_E - Y_VY+V"1E 
= Y_E = E . 

We conclude £ G G0 as asserted. 
To verify H2(A) we first show that the natural mapping 

G£7(D-A)G0 > 1 FN(0,r)k/ (D-A)F(0,r)k 

is injective. 
Let then n G G^, E G F(0,r)k 
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i.e. 

n = (D-A)Ç 

V~1n = (D-B)V_1Ç 
and sc 

V 1Pn = PtD-Bjv"1^ . 

Applying y we obtain by a previous argument 

Y_V 1Pn = y_P(D-B)y_V~1^ . 

But Pn G GQ and so Y_V *Pn G GQ . The key point is that 

Y V"1^ G F(Q,r)k and so 

P(D-B)Y_V 1Ç G F(Q,r)k+ (fìN[x])k . 

Thus 

i.e 

P(D-B)Y_V 1Ç G Gq + (fìN[x])k 

(D-B) Y . V 1 ^ G GQ . 

We now use H2(B) to conclude that 3CQ G Gq such that 

(D-B)ÇQ = (D-B)(Y_(V 1 Ç ) ) 

Using H (B) we conclude that 

Y_(V"1Ç) = çx G G0 

We now apply Y V and compute 

Y_Vy_v""1e = Y_V^1 G G0 . 

rhe left side is 

Y_ VV"1^ = y_K = ç . 

This shows that £ G GQ which completes the proof of injectivity. 

To complete the proof of H2 (A) we must prove surjectivity. Let 

then n G FN(0,r)k, so by H2(B) there exists z G P. G^, £ G F(0,r)k 

such that 
z + P(D-B)Ç = Y_v"1n 

i.e. applying V on the left. 

Vz + P(D-A)V£ = VY_V 1n 

and so 

Y_Vz + Y__P (D-A) Y__VÇ = Y_VY_v"1n = n . 

Since Y_VZ G GQ 

262 



INDEX OF P-ADIC DIFFERENTIAL OPERATORS 

Y+P(D-A)Y_VÇ G ßN [ x r 

Y vç e F(O,r)k 

it is clear that 

n G + (D-A)F(Q,r) . 

This completes the proof of H2(A) . 

A similar local comparison theorem holds at infinity. We need 

not pause to give the proof. 

9.3. Local reduction theorem. 

We consider a system of linear differential equations, L, 

deduced from a first order scalar equation 

£ = D - 9 

(6 G ft(x)) by writting 

' Çl j fUl| ( K2 

L ! = • - - : 
x 

We choose P, N suitable for I and L . 

THEOREM. We assume that H^a) and H2(£) are satisfied (with k = 1) . 

We assert that H1(L) and H9(L) are satisfied. 

Proof : If 

L£ = 0, £ G F(0,r)k , 

then ?k the last component of £ lies in Ker(I,F(0,r)) and hence by 

H1(£) lies in GQ . We now use induction and assume G GQ and so 

PÄ5i = p è e è "tèi + "Ntxi-

By H9(£), there exists n G ~ n [~ ] such that 

A(Ç± - n) = 0 
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and hence again by H, U ) , £. - fi e ̂  n ]. This shows that £. e i 
J. 1 X X JL X X 

and so £ e GQ as asserted. This completes the proof of (L). To 

examine H~(L) we first verify that the natural man 
G£/LGQ > FN(0,r)K/LF(0,r)k 

is injective. Thus let £ e F(0,r)k, n e G^ 

n=l£ 
Hence 

u. + tÇl = n± + - çi+1 . 

^ 1 1 
which shows by H2(&) that there exists e — ft[—] such that 

*Uk-çk) = O 

and hence by H. (£) that ç. e — ft [—] . Again we use induction, assume 

£. e j ft [i ] and use 

u. + tÇl = n± + - çi+1 u. + tÇl = n± + - çi+1 .. 

and again conclude that G ̂  ^^x"! • This completes the proof of 

injectivity. 

For surjectivity let n e ̂  FN(0,r)k. We will find u e GQ , 

£ e F(0,r)k such that 

U + L£ = TI . 

For the last component the condition is 

uk + *çk - nk 

which by H0(£) may be satisfied with e F(0;r), 

u. + tÇl = n± + - çi+1 . 

We now use induction, for i component we need 

u. + tÇl = n± + - çi+1 . 

Since ni G ̂  FN(0,r) , ^ F(0,r) , we may by H2(&) choose 

ui G ̂ x fi^x^ + fiN ̂x ̂  and ̂ i G F(0,r) such that the indicated equa­

lity holds. This completes the proof of the theorem. 
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9.4. The Turrittin decomposition theorem asserts that a given linear 

system D-A is formally equivalent at x = 0 (i.e. the matrix V in 

§ 9.2 may have zero radius of convergence) to a direct sum of systems 

L (as in § 9.3) deduced from a scalar equation whose solution is 

xa exp A (x 1//k!) where A is a polynomial. If the differences of the 

exponents a are all p-adically non-Liouville then the equivalence is 

not jus formal (Baldassarri [Ba ]) . The radii of convergence of the 

transformation matrices, V, are not well understood. When the sin­

gularity is regular and A = O a recent result of Christol fCh ] gives 

informations on the radius of convergence of the transformation 

matrix V . 
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