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M. KA SHI WAR A 

§0 - INTRODUCTION 

0.1. Let X be a complex manifold of dimension n and let 7%> be a ho-
lonomic module over the ring DX of differential operators on X . 
Then the Rham complex DR(^) of 7K has constructible sheaves as 
its cohomology groups, and its local index ^(-l^dim H^DRQft)) 
at a point x can be expressed in terms of the characteristic cycle 
Ch(5p of YK (Kashiwara [3], Brylinski-Dubson-Kashiwara [1]). Recent­
ly Dubson [2] found a beautiful formula to describe this. 

THEOREM - 1 fi X Is a compact complex manifold, we have. 

Z(-1)1 dim H1(X;DR(m)) = (-1)nCh№).T*X . 
Here the last term means the intersection number of two 

n-cycles in T X . 

0.2. The purpose of this lecture is to generalize his result to 
the real case. 

Let X be a real analytic manifold of dimension n and F 
a constructible sheaf on X. First we shall define the characteris-
tic cycle SS (F ) of F as a TT co^-valued n-cycle in T X. Here oo^ de­
notes the orientation sheaf of X and TT : T X — X is the cotangent 
bundle to X. In order to define this, we use the micro-local theory 
of sheaves developped in Kashiwara-Schapira [4]. 

Secondly we prove the index theorem. 

THEOREM - Let ¥ be a constructible skeafi, and Cp : X ~> (R a C2-func­
tion. Set Yq, == {dCp(x) ; x£X>CT*X. We assume that {x£supp F ; 
Cp (x) ̂  t} Is compact fon, any t and that SSFOY^^ compact. Then 
dim H-'CXjF) < 00 AOK any j and we have 

Z (-1)jdim №> (X;F) « M)n(n+1)/2 ŝ(F)#Y(f m 

The proof uses the micro-local version of Morse's theory. 
Similarly to the Morse function, we deform (jp a little in a generic 
position so that Yep intersects SSF transversally. Then we consider 
HJ ({x ; <f(x) < t} ; F) and vary t . Then the cohomology groups 
change at points t £ (jp (TT (YcpH SSF)) , and the obstruction can be cal­
culated locally and coincides with the intersection number of Y<p 
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INDEX THEOREM FOR CONSTRUCTIBLE SHEAVES 

and SS (F) at p £ SSF HY^ with t = <pTr(p). 

§1 - SUBANALYTIC CHAINS 

1.1. For a topological manifold X, let us denote by cô  the orien­
tation sheaf of X. If X is oriented then Wx =Zx and this isomor­
phism changes the signature when we take the opposite orientation 
of X. 

1.2. If X is a differentiable manifold of dimension n and if 9 is 
a nowhere vanishing n-form on X, then we shall denote by sgn0 the 
section of o)̂  given by the orientation that 6 determines. Hence 
we have 
(1.2.1) sgn<pe = sgn<f sgn e 
where sgn<p = ±1 if ± <jp> 0. 

1.3. From now on, we assume that X is a real analytic manifold. 
For an integer r, let us denote by Er(X) the set of pairs (Y,s) 
of a subanalytic locally closed r-dimensional real analytic sub-
manifold Y of X and a section s of ojy. We define the equivalence 
relation °o on E (X) as follows : (Y.|,s.j) ̂  (Y2,S2) if and only if 
there exists a subanalytic locally closed r-dimensional real ana­
lytic submanifold Y such that Y C Y^OY2> s-]jy = s 21Y anc* SUPP S1 = 
supp s2 = supp s^HY. 

We denote by Cr(X) the set of equivalence classes in Er(X) 
and an equivalence class is called AubanatytZc r-ckaZn. Remark that 
its support is not assumed to be compact. 

We can define the boundary operator 
3 : Cr(X) —•Cr.1(X), 

so that 93 = 0. 

1.4. One can see easily that Cr : U 1—vCr(U) is a fine sheaf on X 
and we have the exact sequence 
(1.4.1) X n n-1 —>co—o 

This follows for example from the fact that any subanalytic 
set admits a subanalytic triangulation. 
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M. KASHIWARA 

1.5. For a sheaf F on X, we set Cr(F) = Cr®F. By (1.4.1), a)x<g>F 
is quasi-isomorphic to the complex of soft sheaves 
(1.5.1) C n ^ — Cn-1^ - . . . . . . . — M F ) ' 

We set 
(1.5.2) Cr(X;F) = r(X;Cr(F)) 
and call its elements F-valued bub analytic. r-chalns. We have iso­
morphisms 
(1.5.3) Hinf r(X;F) d=f Hr(C.(X;F)) = Hn"r (X;F®^X) . 
(1.5.4) Hr(X;F) = H^"r(X;F®oJx).= H^"r(X;F®oJx). = H^"r(X;F®oJx). 

1.6. Assume further that F is locally constant. For a subanalytic 
r-dimensional real analytic submanifold Y of X and for a section 
s of Fgjajy over Y, the pair (Y,s) determines an F-valued subanaly­
tic r-chain. 

1.7. The following criterion for a chain to be a cycle is evident. 

LEMMA 1.1 - Let a be a tub analytic r-ckaln, <f : X —>IRr be a real 
analytic map. We assume that 

r 
[I) Supp a —^IR I* a finite map, 
[ID Supp̂ »a —vlRr Is an Immersion, 
[III] the Intersection number oX a and ¥ ^ (t) Is constant In t £ IRr \9(Supp 3a). 
Then a Is a cycle, I.e. 3a - 0. 

§2 - SYMPLECTIC GEOMETRY 

2.1. Let X be an n-dimensional real analytic manifold of dimension 
n and ir : T*X —>X the cotangent bundle to X. Let 6̂  denote the ca­
nonical 1-form on T*X. Then (d6Y)n is nowhere vanishing and this 

* 
gives the orientation of T X. 
2.2. Now, let Y be a real analytic submanifold of X. Let TyX be the 
conormal bundle to Y. Then we have the canonical isomorphism 
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(2.2.1) = 2T*X • 
-1 

TT (0X = 2T*X • 

Since the choice of signature is important in the future 
arguments, we shall write this explicitely. Let (x.j , ... , Xr) be 
a local coordinate system of X such that Y is given by x̂  = ... 
= x = 0 , and let (x1, ... , x , , ... , Ç ) be the coordinates r I n l n 
of T*X such that 0V = Y Ç - dx. . Then the section (-1)r sgn (dÇ- ... 
d̂ r dxr+1 . . . dxn) ® sgn (dx̂  . . . dxn) of u)T*x & TT GO^ does not 
depend on the choice of coordinates and it determines the isomor­
phism (2.2.1). 

2.3. Let A be a subanalytic conic locally closed Lagrangian sub-
variety of T*X such that the projection A —*X has a constant rank. 
Then we have O ) ^ ® T T " CO-^ ~ Ẑ . In fact, locally, A is an open subset 
of TyX for a real analytic submanifold Y of X and we can apply 2.2. 
Therefore A defines the IT oo^-valued n-chain in T X (see 1.6), 
which we shall denote by [ A ] . 

§3 - CHARACTERISTIC CYCLE 

3.1. Let us fix a commutative field k once for all, and vector 
spaces mean vector spaces over k. Let X be a real analytic manifold 
of dimension n. Let D(X) be the derived category of the abelian 
category of sheaves of vector spaces on X. 

An object F of D(X) is called conAtiuctlblz if the following 
conditions are satisfied. 
(3.1.1) HJ(F) = 0 except for finitely many j's. 
(3.1.2) There exists a subanalytic locally finite decomposition 
X = U Xa of X such that HJ (F) | x is a locally constant sheaf of 
finite rank for any j and any a? 

We denote by DDC(X) the full subcategory of D (X) consisting 
of constructible complexes. 

3.2. For the notion of micro-support and its properties, we refer 
to [4]. We just mention the following properties. 
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For F € Ob(D+(X)), we can define the micro-support SS(F) of 

F as a closed conic subset of T*X. 

PROPOSITION 3.1 - Let F £ Ob (D+ (X)), <p a C1- function on X and let 
t1 = t2 ̂ be two ̂eCL/̂  wumbe^u . A44ume that <p Supp F->IR ¿4 proper 

and that d<p(x) £ SSF {or any x £ X w>Ufi t1 < <p(x) < t?. Tfiew. the 
restriction homomorphlsm 

Hj({x;(p(x) < t2};F) HJ ({x;<p(x)< t-};F) 

Is an Isomorphism {or any j. 

PROPOSITION 3.2, - If F £ Ob (D̂  (X) ) , *fien SSF ¿4 a c£o^ed subana­

lytic Lagranglan subset of T*X. 

3.3. A morphism u : F —> F ' in D+(X) is called an isomorphism at 

p e T*X, if, for a distinguished triangle F F' — F" F[1], we 

have p ̂  SSF" . We denote by D+(X;p) the category obtained by lo­

calizing D+(X) by the isomorphisms at p (see [4]). 

In particular, if Y is a C1-function such that d<f>(Tr(p)) = p 
<p(Tr(p)) = 0, then F H-* R -, (R+) (F) ̂  ̂  is a functor from D+(X;p). 

Here IR+ signifies the set of non-negative numbers. 

PROPOSITION 3.3 - Let F £ Ob (D£(X)) and Y a real analytic submani­
fold. If SSF C TyX on a neighborhood of p£TyX, then we have 

F = VY in D+(X;p) 

where y Is a bounded complex of finite-dimensional vector spaces 

and Vy Is the constant sheaf on Y with V as fiber. 

3.4 Let F be an object of DbC(X) . Then A = SSF is a subanalytic 

Lagrangian subvariety. Hence there exists a locally finite family 

{A^} of real analytic subsets of T*X satisfying the following con­

ditions . 

(3.3.1) Aa is subanalytic and connected. 

(3.3.2) There exists a real analytic submanifold Y^ of X such that 

A is an open subset of Ty X. 

(3.3.3) A C U A . 

(3.3.4) AaH T = Ç> if a f 3 . 

Then by proposition 3.3, for p £ A^ there exists a bounded 
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INDEX THEOREM FOR CONSTRUCTIBLE SHEAVES 

complex Va of finite-dimensional vector spaces such that F = ya 
in D+(X;p). Then X (V ) = Z(-1)Jdim Ĥ (va) is locally constant in 
p and hence determined by a. We set m^ = x(v*a)« 

DEFINITION 3.4 - We define the _ 1 -valued n-chaln SS(F) by 
(3.3.5) SS(F) = L-a[Aa] 

Ol 
It is almost obvious that this chain does not depend on the 

choice of (Aa}. We shall call this the characteristic cycle of F. 
Later we shall show that SS(F) is in fact an n-cycle. 

§4. INDEX THEOREM 

4.1, Let X be a real analytic manifold of dimension n. For a real 
valued C -function Y on X we set 
(4.1.1) Y<£ = { d<Kx) ; x£X } C T*X mssm 
(4.1.2) Xt = {-d<f(x) ; x£X }C T*X. 

Then Y<pand Y<b are isomorphic to X and hence we can regard 
them as TT oô -valued n-cycles in T*X. 

4.2. Now, we state the following three main theorems, whose proof 
is given in the next three sections. 

THEOREM 4.1 - for F £. Ob {JT (X) ) , SS (F) Is an n-cycle, I.e., 3SS (F) 
= 0. 

THEOREM 4.2 - Let <f be a C2- function and F € Ob (D^ (X) ) . We assume 
(4.2.1) Ton any t€(R, (x£Supp F; <p (x) < t } Is compact. 
(4.2.2) YcpHSSF Is compact. 
Then, dim Ĥ  (X;F) < 00 for any j and we have 

x(X;F)di£E (-1)J" dim Ĥ  (X;F) = (_l)n(ii+1)/2 SS(F).Ŷ . 

THEOREM 4.3 - Let and F be as In the preceding. We assume(4.2.1) 
and the followlna condition. 
(4.2.3) YaYM SSF Is compact . 
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Then dim hJ(X;F) < oo for any j and we have 
XC(X;F) dSf I > 1 ) 3 dim Ĥ (X;F) 

= (-1) n(n+1)/2 SS(F).Y| . 

Remark that Theorem 4.1, Tr'̂ faĵ ) ®TT"1(^x) = ^t*X ANCL T*IE 
condition (4.2.2) or (4.2.3) permit us to define the intersection 
number SS(F).Y^ or SS(F ) . y | . 

§5 - PROOF OF MAIN THEOREMS (I) 

5.1 We shall prove first the local version of Theorem 4.2 in a 
generic case. Let F be an object of Dbc(X) , and we choose {A } 
and {Ya} as in 3.4. Let x0 be a point of X and <jp a C -function 
on X such that 
(5.1.1) Cjp(xo) = 0 , 
(5.1.2) d<p(x0) 6 Aa and Y<p intersects transversally A^ at 
p = d<p(x0) . 

PROPOSITION 5.1 - Linden, these conditions we have 
x№r i (F) ) = M)n(n+1)/2 (SS(F).Y(t>)p . 

Here the last term means the Intersection number of SS (F) 
and Yep at p = d<p(xQ ) . 

PROOF - We shall take a local coordinate system (x̂  , ... , xR) 
of X such that Ya is given by x̂  = ... = x̂  = 0 and x0 = 0. 
Then we have 

and 
V t y X) = { (x,0 ; x1 = = xr = Çr+1 = ... = Çn } 

Tp (YP)= { (x,0 ; 3 k 
A 2 9 
ax axk (0) xk } . 

The transversality condition (5.1.2) implies that the Hessian 
matrix , 32cP 

3̂x. 3x, l k 
(0)) cj ,k<n is non-degenerate. Hence by Morse's 

lemma, after a change of local coordinates, we may assume that 
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a j<r 
a.x2 J 3 

for aj E R \ {o} 

Let V be a bounded complex of vector spaces such that 
F = VY 

a 
in D+(X;p) Then as stated in 3.3, we have 

(5.1.3) Rrr -1 + (F)x = ̂ - 1 Alv )x 

Let us note the following lemma. 

LEMMA 5.2 - Let Q(x) be a non-degenerate quadratic form on (R , 
q the number of negative eigenvalues of Q . Then for any vector 
spaces V , we have 

0 1 № ) 
(fRN;V L 

- »J-1 
Q (r+) 

(V )A V for j=q 
0 for ĵ q 

Hence we have, by denoting q = .tt {j ; a.< 0} , 
Hk(Rr (F) ) = H* +(VY ) 

_ f W _Ya Xo 
= Hk"q(V) 

Therefore we obtain 
(5.1.4) xCRr , +(F) ) = (-DQX(V) = (-1)H ma . 

On the other hand, we have 
(SS(F).Yf)p = (-DQX(V) = (-1)H ma . 

and we can easily verify 
ÜT* X].Y ) 

a r ̂  
= fi;)n(n+1)/2 + q 

This completes the proof of Proposition 5.1. Q.E.D. 

5.2. Now we assume the condition (4.2.1) and the following condi­
tions : 
(5.2.1) SSF O Y<PCy Aa 
(5.2.2) SSF and Y<p intersect transver9ally. 
(5.2.3) $ (SSF H Y^) < OO 

PROPOSITION 5.3 - Under these conditions we have dim H (X ; F) < » 
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and X(X;F) = (-1) n(n+1)/2 SSF.Ycp 

PROOF - Set Q = (x;<p(x) < t} and Z = (x;(jp(x) < t} and 
(f7r(Yq> O SSF) = (tlf ... , t } with tl < ... < tN We also set 
t « = - oo t =00 

LN+1 
Mj = Mtj and Mj = Mtj Then by Proposi­

tion 3.1 , we have 
Hk(̂ j + 1 ; F) = Hk(Qt ; F) for t > t > t and 0 < j ^ N. 

Taking the inductive limit with respect to t we obtain 
(5.2.4) Hk(fi,+1 ; F) • Hk(Z. ; F) 

Then by the following well-known lemma, we have 
dim Hk(ft. 1 ; F) = dim Hk(Z. ; F) < <*> 

LEMMA - If K is a compact set and if U is an open neighborhood of 
K , then the image of Hk(U;F) Hk(K;F) is finite.dimensional. 

Since RN+1=- X and Z0 = 0 (5.2.4) implies 
(5.2.5) x(X;F) N 

3=1 
CxCZj ;F) x(Mj .F)) 

Now we have a distinguished triangle 
R r ( z . \ n . ;RT x\Rj (F)) Rr(Ẑ . ;F) RT(Qj ;F) 

Hence we obtain 
(5.2.6) X(Z- ;F) - x(^- ;F) = x(Rrcz.\ a. ;Rrx i f ) ) ) 

J J j 
By the definition of the micro-support, we have 

supp RrY\o (F)I 1(tj) C Tr(Y(v,nSSF) . 

Hence we obtain 
(5.2.7) Rr(Zj\o. ; Rrxv (F)) 

RT x\Mj (F) x 

x e TT(Y(pO SSF)OCp' (t.) 
The identities (5.2.5), (5.2.6) and (5.2.7) imply 
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x(X;F) - x(RTXNQ.(F)x) 

x È 7T(Y«,n SSF) 
Cp(x)=t, 

Thus Proposition 5.3 follows from Proposition 5.1. Q.E.D. 

§6 - PROOF OF MAIN THEOREMS (II) 

6.1. We shall prove Theorem 4.1. We give only an outline of the 
proof. 
Since SS(F®k|Q|) = SS (F) x Q j(R , it is sufficient to show that 
SS(F) is a cycle outside the zero section. 

The support of B = 3iSS(F) is an (n-1 )-dimensional subanalytic 
subset contained in U 3A . Taking a smooth point p of supp BxT̂ X, 

Oi Ot A 
we shall derive the contradiction by the use of Lemma 1.1 and Pro­
position 5.3 . 
6.2. Let us take a local coordinate system (x̂ , ... ,xn) of X 
such that p = (0,?o) and that the map (x,£)j—from T*X to 
Rn gives a local embedding from supp B into IRn and a finite map 
from SSF into Rn . 

Set <P(x,y) = I x2 + xy and <J> (x) = <f(x,y) . 
Then we have 

SSFOYr/> O {x; |x|= e } =0 for |y| S e and 0 < e « 1 . 

Therefore, if |y|« e and if 
Yy 

satisfies the conditions 

(5.2.1) - (5.2.3), then we have, by Proposition 5.3 

X({x ; |x|< e }; F) = M)n(n+1)/2 SS (F) 
Yy 

In particular, SS(F) 
Ty 

does not depend on y , 

The relation Ç = gradx(f = x + y gives the projection 

g : T*X->IRn by g(x,C) = Ç - x . Since g~1(y) 
y g"'(y).SS(F) is constant in y . 

Therefore We can apply Lemma 1.1 to see 9SS(F) = 0 . 
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§7 - PROOF OF MAIN THEOREMS (III) 

7.1. In order to prove Theorem 4.2, we shall note the following 

LEMMA 7.1. (i) Let A be an n-dimensional subanalytic conic real 

analytic submanlfold of T*X. Then {<f ; Y<p and A Intersect trans-

versally } Is dense In the space C°°(X) of C°- functions on X with 
2 

respect to the C -topology. 

(ii) Let Z be an (n-1)-dimensional subanalytic conic subset 

of T*X. Then {rf ; Y^HZ = 0 } ¿6 a dense subset of C°°(X). 

They can be shown by using Baire's category theorem similar­
ly to the proof of the existence theorem of Morse's function. 

Let <p and F satisfy the conditions in Theorem 4.2. Then 
there exists a function Cp' close to (p which satisfies the con­
ditions (5.2.1) - (5.2.3). Hence Proposition 5.3 can be applied to 

see x(X;F) = (l)n(n+1)/2 SS(F).Ŷ f 

Since Yep and Y(pi are homotopic, we have 

SS (F).Ŷ  = SSCFD.Ŷ , 

This shows Theorem 4.2. 

7.2. Theorem 4.3 can be proven in a similar argument or by re­
ducing to Theorem 4.2 by the use of the Poincaré duality and the 
following proposition, which can be shown easily. 

PROPOSITION 7.2 For F £ Ob(D°(X)) ,we have 

SS(lR>(omk(F,k )) a*(SS(F)) 

where a Is the antipodal map of T X . 

§8 - APPLICATIONS 

8.1. The following theorem follows immediately from Theorem 4.2. 

204 



INDEX THEOREM FOR CONSTRUCTIBLE SHEAVES 

THEOREM 8.1 - Let X be a compact complex manifold, and F € ObfD (̂X)). 
Then 

x(X;F) = M)n(n+1)/2 SS(F).T*X . 

8.2. When X is a complex manifold and lYl is a holonomic module 
over the ring i)^ of differential operators. Then SS(DR(?tt)) coin­
cides with the characteristic variety Ch (7ft) of 77T and SS(DR(m)) 
coincides with the characteristic cycle Ch(?£) of № . Hence the 
results in this paper can be easily applied to holonomic modules. 

8.3. Let <f> be a real -valued real analytic function defined on 
X and x0 <£ X . 
(8.3.1) <f (x) > 0 for x t X \{x0) . 

LEMMA 8.2. Vor any subanalytic closed conic Lagranglan set A , 
dyfxo) Is an Isolated point of A O Y . 

PROOF - Otherwise there exists a real analytic path x = x(t) such 
that x(0) = x0 ; x(t) ̂  xG for t 0 and d<f(x(t)) £ A . Since 
A is Lagrangian, 9 = d<f(x(t)) = 0 . Hence <f(x(t)) is a constant 
function, which is a contradiction. Q.E.D. 

Along with this lemma, the following theorem follows immedia­
tely from Theorems 8.2 and 8.3. 

THEOREM 8.3- Let F € Ob (D̂ (X)) and let Cp satisfy (8.3.1). Then 
we have 
(8.3.1) X(FX ) = M)n(n+1)/2 (SS(F).Y(?)Xo 
(8.3.2) X»r(x0} (X;F)) 

(1)n(n+1)/2 (SS(F).Ŷ )Xo 

Here (.) means the Intersection number of two cycles at 
X O e T * X = X C T * X , 

8.4. A 1-valued function CP on X is called constructlble if 
there exists a subanalytic stratification X = U X of X such 
that 

Y|xa 
is constant. We define the U -1 w x -valued n-cycle 

(8.4.1) c(<f>) = 
a 
f(xa)ss (Qv ) 
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Then it is immediate that this does not depend on the choice 
of stratification. 

Let us denote by C(X) the space of 2-valued constructible 
functions on X . Let K(D̂ (X)) be the additive group generated 

•L C 
by Ob(D°(X)) with the relation [F] = [F'] + [F1 '] 

for distinguished triangles F'-,*F->FTT-*F,[1] 
For F £ Ob ; D ^ X ) we define the constructible function 

XCF) by X 3 x X(FX) Then this passes through the quotient 
and we obtain the commutative diagram 

(8.4.2) 

K ( D N X ) ) X C(X) 

C 
(T*X ; TT o)x) Z 

n 

SS 

Here Z (T*X n v 
-1 . denotes the space of -1 

TT o,x -valued 

subanalytic n-cycles. 

EXAMPLE 8.5. 

(i) Let Y be a closed r-codimensional submanifold of X 
and XY the characteristic function of Y . Then 

c(xY) = [T*X] 

(ii) Set X = R Z+-= {x ; ±x > 0} , Zo = (0} . 
We define the 1-cycles a± and B+-by 

a+ = {(x,Ç) ? = 0, ±x > 0} with sgn dx sgn dx 

3± = Kx,D x = 0. ±ç > 0} with sgn dÇ sgn dx 

Then we have 
c(xz ) =a+ ß+ 

c(xz_) = a_ + 3+ and 

c(x-0) = - ß+ - ß -

(iii) Set X = IRN q(x) = x21 E 2 
X2 - ... -

2 x n (n > 2) 
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dx' = dx2A A dx dx = dx. A dx' , 

Z± = (x£X ; q(x) ̂  0, ±x1 ̂  0} , 

Zo = {x6X ; q(x) < 0} , 

and U = Int Z ( e = ± , 0) . 

We define the n-cycles in TX by 

a£= {(x,0 ; x£U£ ,Ç = 0} with sgn dx&sgn dx , 

3 P = {(x,0 ; x = o,?eu } with sgn d£ sgn dx , 

for E = -+, 0 and 

Y E1, E2 = {(x,ç) ; e1x1 > 0, E2 R 1 <o C-/x. = 
J 3 

-5l/x1 

for j £ 2, q(x) = 0} 

with sgn (dÇ A dx') sgn dx , for e, , ̂  = ±1 . 

Then we have 

c(xz±) = a - y + _ — » — ( - ) X , 

c(xu±) = a+ + Y+ + ß 

c(x7 ) 
£ o 

= <*o - Y+ - Y_ J+ - 3+ - $_ and 

c ( xLL) = ao + Y + + + Y -- - C-)n ß+ - (-)n 6. 

§9 - VARIATIONS OF MAIN THEOREMS 

9.1. Let f be a real analytic function on X . We define, for 
F € Ob(D(X)) , 

(9.1.1) y£(F) = IRr£-1(R+)(F)|f-1(0) 
Let F eOb(D^CX)) and ti an open subset of f"1(0) 

We assume 

(9.1.2) ti H supp F is relatively compact. 

(9.1.3) SSF H Y£ H TT'1 (9ft) = 0 . 

Then we have the following 

THEOREM 9.1 - Under these conditions we have dim H [ti ; yf(F)) < CO 
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and 
x (M ; µ f(F)) = (-1) 

n(n+1)/2 
(SSF H fì) , (Yf H Q) 

This theorem can be shown by deforming f to a generic 
position with respect to SSF . 

9.2. Let F and F1 be two objects of D*(X) and Y a C -func­
tion on T*X We assume the following 

(9.2.1) Q = {p £ "TX ; Cjp(p) < 0} is relatively compact in T X . 

(9.2.2) C (SS(F'),SS(F)) p -fWp) for any p £ <p~ (0) 

Here C 
P 

means the normal cone (see [4]) and H(p means 
the Hamiltonian vector field of Y We set 

SS(F) E = e - e Ĥ3 (SSF) 

and SS(F) e = e - e H<p (SSF) 

Then (8.6.2) implies for 0 < e « 1 

(SS (F) en fì) H (SS(F') H fì) = 0 . 

THEOREM 9.2 - Undent these conditions we have 

and 
dim Hk(ft ; uhom(F,F')) < » 

X(fl ; yhom(F,F')) = (-1) n(n+1)/2 (SS(F') Ofì) (SS (F) Enn) 

For the definition of yhom , we refer to [4] . This theorem 
can be shown by reducing to Theorem 9.1 with the aid of contact 
transformations. 

If we assume instead of (9.2.2) 

(9.2.3) C (SS(F'),SSF) V P ) for any P e <p~ (o) 

Then we have 

THEOREM 9.3 - Under (9.2.1) and (9.2.3) we have 

and 
dim HKC (M : yhom (F ,F ' ) ) < 00 

Y ( M ; uhom (F,F ' )) = 1-1) nfn+11/2 (SS(F') nß) (SS(F) - e M R). 

Remark that if we take as F the constant sheaf kx , then 
we can recover Theorems 4.2 and 4.3. 
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Corrections to "Microlocal study of Sheaves", M.Kashiwara,P.Schapira. 
Astérisque 128, 1985. 
l;p.48 ,1.-6 ; p.85,1.-8,-9 ; p.86, 1.-2 ; p.191, 1.-8,-5 : 

read "... IL CD J * " 
2)p.40,l.-3 : p.47, 1.-9 : 

read "... convex proper cone of..." 
3)p.40, 1.-2 : read "..ftPCInt(A°a),F )..." 
4)p.47,l.-6 : read "...flint Zoa..." 
5)p. 189,1.4 : read "... is punctually endowed..." 
6)p.119,1. 4, 1.6 : read " a ̂  3 " " a C -function" 
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