Asterisque

MASAKI KASHIWARA
Index theorem for constructible sheaves

Astérisque, tome 130 (1985), p. 193-209
<http://www.numdam.org/item?id=AST_1985__130__193_0>

© Société mathématique de France, 1985, tous droits réservés.

L’acces aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique I’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AST_1985__130__193_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

INDEX THEOREM FOR

CONSTRUCTIBLE SHEAVES

by
Masaki KASHIWARA

RIMS, Kyoto University
and

1'Université de Paris VI.

193



M. KASHIWARA

§0 - INTRODUCTION

0.1. Let X be a complex manifold of dimension n and let M be a ho-
lonomic module over the ring ‘QX of differential operators on X
Then the Rham complex DR(M) of 7 has constructible sheaves as

its cohomology groups, and its local index Z:(-1)idim ﬁi(DR(@Q)X

at a point x can be expressed in terms of the characteristic cycle
Ch(M) of M (Kashiwara [3], Brylinski-Dubson-Kashiwara [1]). Recent-
ly Dubson [2] found a beautiful formula to describe this.

THEOREM - 14 X {5 a compact complex mandifold, we have
Y -1 dim BHYX;DRMM) = (- Ch (W . TIX .

Here the last term means the intersection number of two

n-cycles in "X .

0.2. The purpose of this lecture is to generalize his result to
the real case.

Let X be a real analytic manifold of dimension n and F
a constructible sheaf on X. First we shall define the characteris-

(apd -
tic cycle SS(F) of F as a 1w -valued n-cycle in T"X. Here wy de-

X
notes the orientation sheaf of X and m : T'X— X is the cotangent
bundle to X. In order to define this, we use the micro-local theory
of sheaves developped in Kashiwara-Schapira [4].

Secondly we prove the index theorem.

THEOREM - Let T be a constructible sheaf, and @ : X—»R a C’-func-
tion. Set Y¢p = {de(x) ; xeX}YCT*X. We assume that {x €supp F;
Gp(x).g t} {5 compact for any t and that SSF(\KPLA compact. Then
dim HJ(X;F) < ® forn any j and we have
T(-1)7 dim W (GF) = (-1)

The proof uses the micro-local version of Mose's theory.

n(n+1)/2 gé(F)'YW

Similarly to the Morse function, we deform @ a little in a generic
position so that Y intersects SSF transversally. Then we consider
H ((x ; ®(x) <t} ; F) and vary t . Then the cohomology groups
change at points t € ¢NW(Y?IXSSF)), and the obstruction can be cal-
culated locally and coincides with the intersection number of Y¢
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INDEX THEOREM FOR CONSTRUCTIBLE SHEAVES

and SS(F) at p €SSFNY, with t =@ (p).

§1 - SUBANALYTIC CHAINS

1.1. For a topological manifold X, let us denote by Wy the orien-
tation sheaf of X. If X is oriented then wy = ZX and this isomor-
phism changes the signature when we take the opposite orientation
of X.

1.2. If X is a differentiable manifold of dimension n and if 6 is
a nowhere vanishing n-form on X, then we shall denote by sgng the
section of Wy given by the orientation that 6 determines. Hence

we have

(1.2.1) sgn @6 = sgn®P sgnb

where sgn® = +1 if +@> 0.

1.3. From now on, we assume that X is a real analytic manifold.
For an integer r, let us denote by ET(X) the set of pairs (Y,s)
of a subanalytic locally closed r-dimensional real analytic sub-
manifold Y of X and a section s of Wy - We define the equivalence
relation ~ on Er(X) as follows : (Y1,s1) N (Yz,sz) if and only if
there exists a subanalytic locally closed r-dimensional real ana-

lytic submanifold Y such that Y C.Y1f\Y2, S]lY = soly and supp sy =

supp s, = supp s;NY.

We denote by Cr(X) the set of equivalence classes in Er(X)
and an equivalence class is called subanalytic r-chain. Remark that
its support is not assumed to be compact.

We can define the boundary operator

30 C () —Cp 100,
so that 93 = 0.

1.4. One can see easily that Cr : U k—>Cr(U) is a fine sheaf on X
and we have the exact sequence

(1.4.1) 0 — uy > C HC = ... = Cy—0

This follows for example from the fact that any subanalytic
set admits a subanalytic triangulation.
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1.5. For a sheaf F on X, we set Cr(F) = Cr®F. By (1.4.1), wX®F

is quasi-isomorphic to the complex of soft sheaves

(1.5.1) Cn(F)'—’ Cn—1(F) —_- e —y CO(F).

We set
(1.5.2) C,(X3F) = I'(X;CL(F))
and call its elements F-vafued subanalyitic r-chains. We have iso-
morphisms

inf )

(1.5.3) H™ OGE) =0 HO(CLOGE) = HY T OGF@uy)
(1.5.4) Ho (GF) gzp Ho (T (XGC.(F))) = H’;‘T(X;Femx).

1.6. Assume further that F is locally constant. For a subanalytic
r-dimensional real analytic submanifold Y of X and for a section
s of Fﬁng over Y, the pair (Y,s) determines an F-valued subanaly-

tic r-chain.
1.7. The following criterion for a chain to be a cycle is evident.

LEMMA 1.1 - Let a be a subanafytic r-chain, @ : X -»>R" be a neat
analytic map. We assume that

(L) Supp o —R" {5 a finite map,

[{4) Supp?do —RY s an Lmmension,

(L4L) the intensection number of o and @ ' (t) is constant in
teRY \ @ (Supp dad.

Then o 45 a cycle, L.e. da = 0.

§2 - SYMPLECTIC GEOMETRY

2.1. Let X be an n-dimensional real analytic manifold of dimension
nand 7 : T'X —X the cotangent bundle to X. Let by denote the ca-
nonical 1-form on T*X. Then (dex)n is nowhere vanishing and this

gives the orientation of T*X.

2.2. Now, let Y be a real analytic submanifold of X. Let T;X be the
conormal bundle to Y. Then we have the canonical isomorphism
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(2.2.1) wT;X®Tr-1uJX7—' Zrex

Since the choice of signature is important in the future
arguments, we shall write this explicitely. Let (x4, ... , xn) be
a local coordinate system of X such that Y is given by Xy =

=X, = 0, and let (x1, R 61, cee gn) be the coordinates
of T*X such that GX = [_Ej dxj. Then the section (-1)r sgn (d&1

de . dx g ... dx ) ® sgn (dx; ... dx_ ) of wT§X 69'n'1wx does not

depend on the choice of coordinates and it determines the isomor-
phism (2.2.1).

2.3. Let A be a subanalytic conic locally closed Lagrangian sub-
variety of T*X such that the projection A —»X has a constant rank.
Then we have wAQDH—1wX = Z,. In fact, locally, A is an open subset
of T;x for a real analytic submanifold Y of X and we can apply 2.2.
Therefore A defines the ﬂ'1wX-valued n-chain in T*X (see 1.6),
which we shall denote by [A].

§3 - CHARACTERISTIC CYCLE

3.1. Let us fix a commutative field k once for all, and vector
spaces mean vector spaces over k. Let X be a real analytic manifold
of dimension n. Let D(X) be the derived category of the abelian
category of sheaves of vector spaces on X.

An object F of D(X) is called constructible if the following
conditions are satisfied.
(3.1.1) HI(F) =0 except for finitely many j's.
(3.1.2) There exists a sgbanalytic locally finite decomposition
X = L)Xa of X such that HJ(F)]X is a locally constant sheaf of
finite rank for any j and any al

We denote by DE(X) the full subcategory of D(X) consisting
of constructible complexes.

3.2. For the notion of micro-support and its properties, we refer
to [4]. We just mention the following properties.
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For F € 0b(D+(X)), we can define the micro-support SS(F) of
F as a closed conic subset of T*X.

PROPOSITION 3.1 - Let F € Ob(D' (X)), ® a C'- function on X and Lot
ty 2ty be two real numbens. Assume that ¢ Supp FR s propen
and that d?(X)¢.SSF for any x € X with t; £ P(x) < t,. Then the
rnestriction homomorphdism )

B (05 00) < 6,15F) — B ({900 < t};F)
i85 an Lsomorphism forn any j.

PROPOSITION 3.2. - 14 F € Ob(DE(X)), Zhen SSF 4is a closed subana-
Lytic Laghangian subset of T™X.

3.3. A morphism u : F—F' in D+(X) is called an isomorphism at
P E T*X, if, for a distinguished triangle FLF'SF" L F[1], we
have p ¢ SSF" . We denote by D+(X;p) the category obtained by lo-
calizing D+(X) by the isomorphisms at p (see [4]).

In particular, if @ is a C1—function such that d@(n(p)) = p
Q(ﬂ(p)l = 0, then F +— R qu”(R+)(F)n(p) is a functor from D+(X;p).
Here R signifies the set of non-negative numbers.

PROPOSITION 3.3 - Let F € Ob(DE(X)) and Y a neal analytic submandi-

gold. 14 SSF C T;X on a neighborhood 05;)6T§X, then we have
F2V, in D (X;p)

whene V 48 a bounded complex of finite-dimensional vector spaces

and Vy 44 the constant sheaf on Y with V as {dibenx.

3.4 Let F be an object of DE(X). Then A = SSF is a subanalytic
Lagrangian subvariety. Hence there exists a locally finite family
{Aa} of real analytic subsets of T*X satisfying the following con-
ditions.

(3.3.1) A, is subanalytic and connected.

(3.3.2) There exists a real analytic submanifold Ya of X such that
o

(3.3.3) ACUT,.

(3.3.4) A NT,=¢ ifate

A is an open subset of T;;X.

Then by proposition 3.3, for p € A, there exists a bounded
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complex Va of finite-dimensional vector spaces such that F ¥ ZgYa
in D+(X;p). Then X(Va) = z:(-1)3dim HJ(VQ) is locally constant in
p and hence determined by a. We set m, = X(Va)‘

-1 ~
DEFINITION 3.4 - We define the m 'wy—uaﬂued n-chain SS(F) by
(3.3.5) SS(F) =¥ m [A_]

N %; atta

It is almost obvious that this chain does not depend on the
choice of {Au}' We shall call this the charactendistic cycfe of F.
~y
Later we shall show that SS(F) is in fact an n-cycle.

§4. INDEX THEOREM

4.1, Let X be a real analytic manifold of dimension n. For a real
valued Cz-function @ on X we set
(4.1.1)  Ye = { dp(x) ; x€X } C T"X and
(4.1.2)  Yg = {-d¢(x) ; x€X } C T*X.
Then Ypand Y% are isomorphic to X and hence we can regard

them as m wy-valued n-cycles in T"X.

4.2. Now, we state the following three main theorems, whose proof

is given in the next three sections.

THEOREM 4.1 - For F € Ob(DD(X)), SS(F) 4s an n-cyele, 4.c., 358(F)
- 0.

THEOREM 4.2 - Let @ be a C’-function and F € Ob (DE(X)).U)Q assume
(4.2.1) For any t€R, {x€Supp F; P(x) <t } is8 compact.
(4.2.2) Yo N SSF {s compact.

Then, dim Hj(X;F) < ® gorn any j and we have

XOGE) 42,3 (-1 dim 0 0GRy = (1R (FT/Z

SS(F).YQ.

THEOREM 4.3 - Let @ and F be as in the preceding. We assume (4.2.1)
and the follLowing condition.
(4.2.3) Y(?,ﬂ SSF  is compact.
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Then dim H%(X;F) < o forn any j and we have

Xc(GE) 43¢ ¥ (=17 dim HL(X;F)

- (-1)n(n+1)/2

SS (F) .Y(?,

Remark that Theorem 4.1, n_1(wX) Gxﬂ'1(wx) z Zpxy and the
condition (4.2.2) or (4.2.3) permit us to define the intersection
~ ~
number SS(F).Ye or SS(F).Y$

§5 - PROOF OF MAIN THEOREMS (I)

5.1 We shall prove first the local version of Theorem 4.2 in a
generic case. Let F be an object of DE(X) , and we choose {Au}
and {Ya} as in 3.4. Let xo be a point of X and ¢ a.CZ—function
on X such that

(5.1.1)  @(xe) =0 ,
(5.1.2) dP(xo.) € Aa and Y@ intersects transversally Aa at
p = dP(xo).

PROPOSITION 5.1 - Unden these conditions we have

X (RT ) = (P2 S ) g,

- (F)

e Tmty  Txe
Hene the Last team means the intensection numbern of §§(F)

and Yo at p = dP(xs)

PROOF - We shall take a local coordinate system (x1 s eee xn)

of X such that Ya is given by Xp = ... = X0= 0 and xo = 0.

Then we have

* = . = = = = =
Tp(TY X) = { (x,8) 5 x4 ces X 12 e £}

a
and

2
- . - 37
T, (V) = { (x,8) 5 & % —(0) x, }

The transversality condition (5.1.2) implies that the Hessian

2
matrix (—3—31—(0))

is non-degenerate. Hence by Morse's
xiaxk

r<j,kgn

lemma, after a change of local coordinates, we may assume that
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®l, = 2.a.x} for a. € R\O0}
o j>rJ J J

Let V be a bounded complex of vector spaces such that
F? Vy in D" (X;p) . Then as stated in 3.3, we have

o
(5.1.3) RI s (F), = RI-1 e (yYa)Xo

Let us note the following lemma.

LEMMA 5.2 - Let Q(x) be a non-degenerate quadratic form on R™ s
q the number of negative eigenvalues of Q . Then for any vector
spaces V , we have

-y - ‘o
ﬁQ'1 . (VRn)0 { \ for j=q
0 for j#q

Hence we have, by denoting q = =t {j; a.< 0} ,

k e - uk-q
H™ (RT LEY ) = (v = H W)
¢ 'R

k
Xo E(‘;‘1‘R+ —Ya)Xo
Therefore we obtain

(5.1.4) X®E L (F) ) - CHYW = GDYmg

On the other hand, we have

~ *
SS(F).Y, = T, X1.Y ,
(SS(F).Yp), = my (ITy X1.Y)
and we can easily verify

([T; X]'np)p - (_1)n(n+1)/2 +q
a

This completes the proof of Proposition 5.1. Q.E.D.

5.2. Now we assume the condition (4.2.1) and the following condi-
tions

(5.2.1) ssr-ﬂY(PclaJ A,
(5.2.2) SSF and Y¢ intersect transversally.
(5.2.3) #(SSF(\Y,P) < o

PROPOSITION 5.3 - Unden these conditions we have dim Hk(X;F) < ®
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and o
XOGF) = (-1 1/Z 58p vy
PROOF - Set Q = {x;9¢(x) <t} and Z, = {x;9(x) £t} , and
e (Yo N SSF) = {t1, cee tN} with t; < ... < ty - We also set
to = -2, Ty = % Qj = Qt. and Zj = Zt. . Then by Proposi-
tion 3.1 , we have J J
k X ~ .k . .
H (Qj+1 ; F) = H (Qt ; F) for tj+1 >t > tj and 0 £ j < N.
Taking the inductive limit with respect to t we obtain
(5.2.4) G,y 5 B) 2002 5 P

Then by the following well-known lemma, we have

. k .
dim H (Qj+1 ; F) = dim Hk(Zj ; F) < =

LEMMA - If K is a compact set and if U is an open neighborhood of
K , then the image of Hk(U;F)-—+ Hk(K;F) is finite-dimensional.

Since QV+1 =X and Z, = ¥, (5.2.4) implies
' N
(5.2.5) X(X;F) = _Z1(x(zj SF) - x(2; 5F)
1=

Now we have a distinguished triangle
RT(Z.\ Q. ;RT F RT(Z. ;F RT (Q. ;F
(257 95 5RTy g (1) = RT(Z; )~ RI(3; 3F)

Hence we obtain

(5.2.6) X (Z-

J

sF) - x(Q5 5F) = x(RI(Z5\ 9 ;'RFX\QJ_ (F)))

By the definition of the micro-support, we have
supp lRFX\Qj (F)[(P_1(t ) C 1T(Y<Pn SSF)
Hence we obtain
(5.2.7) th(zJ. \ 95 s 'RFX\QJ. (F)) =
b [RFX\QJ_(F)X .
x € TN SSHING ' (t))

The identities (5.2.5), (5.2.6) and (5.2.7) imply
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X(XGF) = ) xRy, (F)x)
Px) =tj

Thus Proposition 5.3 follows from Proposition 5.1. Q.E.D.

§6 - PROOF OF MAIN THEOREMS (II)

6.1. We shall prove Theorem 4.1. We give only an outline of the
proof.

~ ~ * . . P
Since SS(FQDk{O}) = SS(F))(T{O}R , it is sufficient to show that
gé(F) is a cycle outside the zero section.

The support of B = a§§(F) is an (n-1)-dimensional subanalytic
subset contained in %JaAa . Taking a smooth point p of supp B\I;X,
we shall derive the contradiction by the use of Lemma 1.1 and Pro-

position 5.3

6.2. Let us take a local coordinate system (x1, ce ,xn) of X
such that p = (0,£,) and that the map (x,&)+—>& from T*X to
n

R" gives a local embedding from supp B into R and a finite map
from SSF into R"
Set @(x,y) = % X% + xy and Qy(x)

Then we have

1l

@ (x,y)

SSFNY, N{x; |x|=¢} =@ for |y|] < € and 0 < e<< 1

¢
Therefore, if |y|<< € and if ﬂp satisfies the conditions
y
(5.2.1) - (5.2.3), then we have, by Proposition 5.3
fad
x(Gx s [xl< e} B = (M2 S5y
Yy

In particular, gé(F).ﬂ? does not depend on vy
y

The relation & = gradx(-(’y = x +y gives the projection
g T*X — R® by g(x,&) = & - x . Since g-1(y) =

np ,
g ' (y).SS(F) is constant in y

y

Therefore We can apply Lemma 1.1 to see 8§§(F) =0

203



M. KASHIWARA

§7 - PROOF OF MAIN THEOREMS (III)
7.1. In order to prove Theorem 4.2, we shall note the following

LEMMA 7.1. (i) Let A be an n-dimensional subanalytic conic neal
analytic submanifold of T"X. Then {&; Yo and N intensect trans-
vensally } is dense in the space c”(x) o4 Cw—ﬁunctionA on X with
nespect to the Cz-topologg.

(ii) Let Z be an (n-1)-dimensional subanalytic conic subset
0f T*X. Then {%; YeNZ =B} is a dense subset of c®(x)

They can be shown by using Baire's category theorem similar-
ly to the proof of the existence theorem of Morse's function.

Let ¢ and F satisfy the conditions in Theorem 4.2. Then
there exists a function (' close to ¢ which satisfies the con-
ditions (5.2.1) - (5.2.3). Hence Proposition 5.3 can be applied to

-~
see x(X;F) = (-1t @OT1/2 S5(F) .Y,
Since Y@ and Y?, are homotopic, we have

~ ~J
SS(F).YW = SS(F) .Yy
This shows Theorem 4.2.
7.2. Theorem 4.3 can be proven in a similar argument or by re-
ducing to Theorem 4.2 by the use of the Poincaré duality and the

following proposition, which can be shown easily.

PROPOSITION 7.2 - Fon F € Ob(DE(X)) ,we have
~ *
SS (R Mom, (F,ky)) = a’ (SS(F))

whene a 45 the antipodal map of T*X .

§8 - APPLICATIONS

8.1. The following theorem follows immediately from Theorem 4.2.

204



INDEX THEOREM FOR CONSTRUCTIBLE SHEAVES

THEOREM 8.1 - Let X be a compact complex mandifold, and F &€ Ob(DE(X)L

Then -~

XOGE) = (-nRmr1/2 SS(F) . TYX .

8.2. When X 1is a complex manifold and M 1is a holonomic module
over the ring ‘QX of differential operators. Then SS(DR(M)) coin-
cides with the characteristic variety Ch(M) of M and §§(DR(@Q)
coincides with the characteristic cycle Ch(m) of M . Hence the

results in this paper can be easily applied to holonomic modules.

8.3. Let ¢ be a real -valued real analytic function defined on
X and Xxo & X
(8.3.1) @ (x) >0 for x € X\{xo}

LEMMA 8.2. For any subanalytic closed conic Lagrangian set N ,
d¢(xoe) 44 an isolated point of AN Y? .

PROOF - Otherwise there exists a real analytic path x = x(t) such
that x(0) = xo ; x(t) # xo for t # 0 and de(x(t)) € A . Since
A is Lagrangian, 6 = d¥(x(t)) = 0 . Hence ¢ (x(t)) 1is a constant

function, which is a contradiction. Q.E.D.

Along with this lemma, the following theorem follows immedia-
tely from Theorems 8.2 and 8.3.

THEOREM 8.3 - Let F € Ob(DD(X)) and Let @ satisfy (8.3.1). Then
we have

(8.3.1) x(Ey ) = (-1)

(8.3.2) XRI L (GF) = (-1)

n(n+1)/2 (gé(F)'Y@)xo ,

n(n+1)/2 3¢ a
(SS(F).Y?)XO
_Hene (.) means the intensection numbern of two cycles at
xo € TygX ¥ X CTX .

8.4. A Z-valued function ¢ on X is called constructible if
there exists a subanalytic stratification X = LJXQ of X such

that QIX is constant. We define the n‘1wx-valued n-cycle
[0}

(8.4.1) C(P) = 2.PX )85y )
a [0
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Then it is immediate that this does not depend on the choice
of stratification.

Let us denote by C(X) the space of Z-valued constructible
functions on X . Let K(DE(X)) be the additive group generated
by Ob(DE(X)) with the relation

[F] = [F'] + [F'']
for distinguished triangles F'—F — F''— F'[1]
For F &€ Ob(Dg(X) we define the constructible function

x(F) by X 3 xt—»-x(FX) . Then this passes through the quotient
and we obtain the commutative diagram

K(02(x)) —X > c(x)

(8.4.2) §§\N ,Af

Here Zn(T*X o wX) denotes the space of n'1wx-valued

subanalytic n-cycles.
EXAMPLE 8.5.

(i) Let Y be a closed r-codimensional submanifold of X
and Xy the characteristic function of Y . Then

clxy) = [TyX]

(ii) Set X =R , Z, = {x ; *#x > 0}

+

’ Zo = {0}
We define the 1-cycles a, and B, by

a, = {(x,8) 5 ¢
B, {(x,8 ; x

1
o
I+
~
\

0} with sgn dx ® sgn dx ,

i

"
o

.
I+
™y
\Y

0} with sgn d& ® sgn dx
Then we have
clxy ) = o, + B,
+
C(XZ ) = o_ + 8, and

c(xz, )

|
'
>
+
'
™

(iii) Set X =R, q(x) = xX - x5 - ... - x2 (03> 2)

206



INDEX THEOREM FOR CONSTRUCTIBLE SHEAVES

dx' = deA RPN dx o, dx = dx1A dx' ,

Z, = {(x€X ; q(x)

Zo = {x€X ; q(x) <0},

Y%

0, X4 > 0},

A

I+

and U€=IntZE (e=

We define the n-cycles in "X by

a, = {(x,8) ; xéU’3 ,€ = 0} with sgn dx@sgn dx ,

B€= {(x,8) ; x = O,geUe} with sgn dg@®sgn dx ,
for €=+ , 0 , and

Y &5 = {(x,8) 5 x>0, &, >0, ij/xj = -E,/x

for j > 2, q(x) = 0}
with sgn(d£1A dx")®sgn dx , for g 5 = 1

Then we have

+

clxy, ) =a, - v, .+ ()", ,

-
+1
+

clxg,) = v ve _* B

1
Q
o
1
=
1
=
1
w
1
™
®
=]
o

C(XZO)

clxy) = * v, * v, o (T8, - ()

§9 - VARIATIONS OF MAIN THEOREMS

9.1. Let f be a real analytic function on X . We define, for
Fe ob(D(X)) ,

(9.1.1) bg(F) = RT -1 gy (F) =1 g
Let F E,Ob(DE(X)) and Q an open subset of f’

We assume

'(0)

(9.1.2) Q Nsupp F 1is relatively compact.
(9.1.3) SSEQY . '(0) = &

Then we have the following

THEOREM 9.1 - Unden these conditions we have dim Hk(Q ; uf(F)) <
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and ~
X2 ug®) = "N/ (&g v, 0w

This theorem can be shown by deforming f to a generic
position with respect to SSF .

9.2. Let F and F' be two objects of DE(X) and @ a C1—func-
tion on T*X . We assume the following

(9.2.1) @ = {pe T"X ; @(p) <0} is relatively compact in T™X .
(9.2.2) C,(SS(F'),SS(F)) b -Hey(p) for any p € ¢ ' (0)

Here Cp means the normal cone (see [4]1), and H@ means
the Hamiltonian vector field of ¢ . We set

sS(F) € = e £He(ssp)

and  SS(F) €= e~ € He(Ssp)

Then (8.6.2) implies for 0 < << 1
(SS(F) "Ny N (SSFHYN a) =@ .

THEOREM 9.2 - Unden these conditions we have
dim Hk(Q ; whom(F,F')) < =«

d 5% S5
an n(n+1)/2 S5y nw). (85 EA0)

x(Q ; whom(F,F')) = (-1)

For the definition of uphom , we refer to [4] . This theorem
can be shown by reducing to Theorem 9.1 with the aid of contact
transformations.

If we assume instead of (9.2.2)
' -1
(9.2.3)  C,(SS(F'),SSF) 3 Ho(p) for any p € ¢ (0)

Then we have

THEOREM 9.3 - Under (9.2.1) and (9.2.3) we have
dim HE(Q ; vhom(F,F')) < o«

d
- XC(Q ; whom (F,F')) = (_1)n(n+1)/2

(S3(F)YN). (SS(F)” “na).

Remark that if we take as F the constant sheaf kX , then
we can recover Theorems 4.2 and 4.3.
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1)p.48 ,1.-6 ; p.85,1.-8,-9 ; p.86, 1.-2 ; p.191, 1.-8,-5

T !
read "... ®@uw Z_x_"
~—TMX

2)p.40,1.-3 : p.47, 1.-9

read "... convex proper cone of..."
3)p.40, 1.-2 : read ".RI(Int(A°%),F )..."
4)p.47,1.-6 : read "... N Int z°a, v
5)p.189,1.4 : read "... is punctually endowed..."
6)p.119,1. 4, 1.6 : read " a23 " , " a Cz—function"
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