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Circular Symmetry and Stationary-Phase Approximation 

M.F Atiyah 

§ 1. Introduction 

Stationary-phase approximation applies to the computation of 

oscillatory integrals of the form j e ^ ^ ^ d x and it asserts that 

for large t the dominant terms come from the critical points of 

the phase function f(x). Many interesting examples are known 

where this approximation actually yields the exact answer. Recently 

a simple general symmetry principle has been found by Duistermaat 

and Heckman [6] which gives a geometrical explanation for such 

exactness. In the first part of this lecture I will explain the 

result of Duistermaat-Heckman. I will go on to outline a brilliant 

observation of the physicist E. Witten suggesting that an infinite-

dimensional version of this result should lead rather directly to 

the index theorem for the Dirac operator. Such interactions between 

mathematics and physics played a prominent part in the work of 

Laurent Schwartz. 

§ 2. The Duistermaat-Heckman Formula 

We start with the following general situation. Let M be a 

compact symplectic 2n-dimensional manifold with fundamental 2-form 
n 

GO and its associated Liouville volume form . Assume that we 

have an action of the circle S1 on M preserving oo with associ­

ated Hamiltonian function H. This means that the 1-form dH 

corresponds, under the duality defined by u , to the vector field 

which generates the circle action on M. For simplicity let us 

also assume, for the moment, that the circle action has only isolated 

fixed points P. At each such point the circle action on the 
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tangent space is described by n plane rotations, characterized by 
P 

integers m_.(j=l,...,n). If we fix an orientation of M then we 
p 

shall pick the signs of the m_. to be consistent with the orienta­

tion of M. We are now in a position to state the Duistermaat-

Heckman exact integration formula: 

(2.1) 
M 

-tH 
e 

n 
0) c c I 

P 

e"tH(P) 
tn (n 

D 
m v 

v 
v 

In this formula t is a real or complex parameter. If it is 

taken purely imaginary the integral over M is oscillatory, the 

points P are the stationary points of H and the right-hand side 

is given by stationary-phase approximation. Thus (2.1) asserts 

that, when the phase function H is the Hamiltonian of a circular 

symmetry, stationary-phase approximation is exact. 

By taking Fourier transforms it is easy to see that (2.1) is 

essentially equivalent to the assertion that the direct image of the 

Liouville measure under the map H : M -> R is piece-wise polynomial. 

General considerations show that it must be piece-wise smooth with 

breaks at the critical values H(P), but the exactness of (2.1) 

produces the piece-wise polynomial. 

The proof of [6] consists in showing that, for non-critical 

values of A € R, the induced symplectic form WY on the reduced 

manifold MY = H 1(A)/S1, varies linearly in X as a cohomology 

class. This shows that (2.1) is essentially a cohomological theorem 

- in the same way as Cauchy1s residue theorem is cohomological In 

fact an alternative derivation of (2.1) is given in [2] which 

emphasizes more clearly this cohomological aspect. 

Although we have, for simplicity, stated only the simplest form 

of the Duistermaat-Heckman result, the generalizations are important 
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and not too difficult. In the first place the circle S can be 

replaced by a torus. Thus the vector field dual to the Hamiltonian 

need not be periodic - it is enough if it is almost periodic (with 

finitely many 'periods'). Also the assumption that the fixed points 

are isolated can be dropped. In general the fixed points of a torus 

action consist of sub-manifolds. The right-hand side of (2.1) now 

becomes a sum over the components X of the fixed-point set, and the 

contribution of X is an integral of the form 

(2.2) 
X 

-tH(X) a) e e 
k 
n (tm.-ia.) 

3 3 

Here H(X) is the constant value taken by H on X. The m_. are 

the rotation numbers normal to X (2k = codim X) , and the a_. are 

symbolic differential 2-forms (or cohomology classes) so that the 

total Chern class of the normal bundle N to X is given by 

k 
n 

j = l 
(l + o 

J 
) . 

Note that N has a complex structure once we orient the rotation 

planes of the action of Ŝ ". The expression eW is to be expanded 

as a formal power series in co, then the denominator is to be 

expanded by the binomial theorem in powers of the a , and finally 

we have to pick the differential forms of degree 2n - 2k = dim X 

to evaluate on X. This form of the fixed point contribution is 

given correctly in [7] and also in C 2 ] , 

Finally we can allow the symplectic form GO to become degener­

ate, although now we must be more careful about orientation. 

Typlically (J1 = o on a submanifold Y c M of codimension 1 and 

the dual cohomology class [Y] e H^(M,Z2) represents the first 

Steifel-Whitney class of M and is the obstruction to orientability. 
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Thus we must now assume that this class is zero so that M is 

orientable. This can also be expressed analytically by picking a 

Riemannian metric p on M with Riemannian volume dp. This is 

related to the symplectic volume by the formula 

(2.3) 
n 

to­

r i ! 
= Pf (cop)dp 

where oo^ is the skew-adjoint endomorphism of the tangent space 

associated to co by the metric p , and Pf is the Pfaffian. Note 

that Pf is invariant under S0(2n) but changes sign under 0(2n), 

so that Pf(a) ) is a function not on M but on its orientable 

double cover M. The orientability of M (or triviality of M M) 

is therefore equivalent to being able to define Pf(u)^) as a smooth 

function on M. Recalling that the Pfaffian is defined as the 

square root of the determinant (of a skew-adjoint endomorphism) we 

see that M is orientable if and only if det(co ) has a smooth 
P 

square-root. This remark will be useful when we come to the 

infinite-dimensional case considered by Witten. 

§3. The loop space 

Witten's idea was to apply the Duistermaat-Heckman theorem to 

the infinite-dimensional manifold 

M = Map(S ,X) 

of smooth maps of the circle into a finite-dimensional compact 

orientable manifold X. It is well-known that Wiener integration 

on such a manifold of loops is related to the heat equation on X 

(once we have chosen a Riemannian metric on X ) , so one might hope 

to get interesting results about X by such a procedure. 
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Let us therefore consider the geometry of M. I shall discuss 

this quite heuristically so that analytical questions will be ignored 

A point of M is, by definition, a smooth map <j> : S*̂" -> X, and 

the tangent space T to M at à can be identified with the space 

of sections of the vector bundle cj)*(TX), the tangent bundle TX 

of X pulled back to S"̂  by (p. The metric on X defines a 

metric on cj>*(TX) and hence, by integration over , we get an 

inner product on the space of sections. This defines a pre-Hilbert 

space structure on TO . Next we introduce the Levi-Civita connect­
ed 

ion V on X. This induces a connection on the bundle Q* (TX) 

and hence (evaluating along the tangent field d/dt of S"S a co-

variant derivative operator V . This is a skew-adjoint operator 

on the space of sections T^ and hence, using the inner product, it 

defines a skew bilinear form on T . As we now vary the point 

(J) c M we get an exterior differential 2-form OJ on M. One can now 

verify the following: 

Lemma 1. 03 is closed. 

Remark. This lemma depends on the fact that we took the Levi-Civitc 

connection. If we had taken an arbitrary orthogonal connection on 

X then the corresponding G O would not have been closed. In fact 

dco is then the integral over S1 of the skew part of the torsion 

of the connection. There is in fact another definition of co 

which explains more directly why it is closed. We shall return to 

this later in §5. 

Clearly a) is degenerate precisely at those cf> for which AQ 

has a zero-eigenvalue, i.e. a tangent vector to X which is co-

variant constant along the loop $ . For example G O is degenerate 

at any closed geodesic <p. As in the finite-dimensional case we 
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may call M 'orientable' if Det VQ has a smooth square-root. Of 

course, for this to make sense, we have first to define the determin­

ant of the (ordinary) differential operator V^. However it is 

well-known how to make sense or 'regularize' such a determinant. A 

very general procedure (valid for elliptic partial differential 

operators) is to use Zeta-function methods as in [ 1 1 ] . However, in 

the present case, of an ordinary differential operator, more 

elementary methods comparing V with VQ (for a constant loop o) 

also work. 

If TQ denotes the parallel transport round $, one finds the 

following simple formula for computing the regularized determinant 

of V : 

LEMMA 2 . Det VA = 
d) 

det (1 - T ; . 

Remark. We have written a capital "D" in the first determinant 

and a small 'd' in the second to emphasize that the first is that 

of an operator while the second is that of a finite-dimensional 

matrix. 

The verification of Lemma 2 depends on the fact that we can 

2xplicitly compute all the eigenvalues of V^. When dim X is odd 

ooth sides of Lemma 2 vanish, so assume dim X = 2m and let the 

Bigenvalues of T^ be exp (±2iTia ̂ ) , j=l,...,m. Then the eigen­

values of V. are 

±in±ia_j , n = 0 , 1 , 2 , . . . ; j=2 ,...,m. 

The determinant of V. is formally therefore the infinite product 
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CO 
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This is regularized by "renormalizing" the divergent first factor to 

be a finite constant C^m. In fact the zeta-function approach of 

[11] to infinite determinants gives the value 

C = e x p ( - 2 c * ( 0 ) ) 

where c (s) is the Riemann zeta-function. On the other hand 

det (1 - T ) = 
m 
IT 

3 = 1 

(1 - e 
2ira_ 

J) (1 - e 
-2iTÌa. 

d 

sd 
m 
n 

j=l 
(2Sinira • ) 

2 

which leads to Lemma 2 in virtue of the fact that 

C ' (0) = -\ log 2TT . 

To understand whether M is 'orientable1 we therefore have to 

see under what circumstances the function det(l - T^) on M has 

a smooth square-root. Now consider det(l - T) as a function of 

T € SO(2m). This function does not have a smooth square-root: in 

fact one has to go to the double cover Spin(2m) to extract this 

root. Homologically this reflects the fact that the subspace 

Y c SO(2m) consisting of matrices with 1 as an eigenvalue 

represents the generator of Ĥ " (SO (2m) , ) • More explicitly in 

terms of characters we have the following identity: 

LEMMA 3. /det(l - T) = X s d 
d 

d X(S T ) as characters of Spin (2m), 
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where S1 are the two half-spin representations. 

Returning to our loop manifold M = Map(S1,X) we see that if 

X is a spin manifold so that all T € Spin (2m) then, from Lemmas 

2 and 3 , Det VP has a smooth square-root so that M is 

1 orientable'. 

Remark. In purely homological terms the 1orientability1 of M can 

be understood as follows. We have the natural evaluation map 

f : S1 x M -> X. 

Pulling back by f* and then integrating over Ŝ " induces a 

homomo r ph i sir. 

a : H2(X,Z2) + H1(M,Z2) . 

The image of the second Stiefel-Whitney class o o ^ of X is then 

the obstruction to orientability of M. In particular 

(*) X Spin M orientable 

as we have just seen by a more explicit argument. Note also that 

the identification of the class ^ ( u ) ^ ) with the class arising from 

trying to extract the square root of Det V ^ 7 which we deduced 

from Lemmas 2 and 3 , is essentially a special case of the index 

theorem for families of real elliptic operators [ 5 ] . Finally, if 

X is simply-connected, one can show that a is injective so that 

(*) is an equivalence. 

Although our closed 2-form u> on M is degenerate we can 

still define the Hamiltonian function H associated to the obvious 

action of the circle on M (rotating loops). Recall now that the 

Energy of a loop <P is defined by 
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E U ) = h 

s1 

EU)EU) 

Computing the derivative of E in the direction of a tangent vec­

tor EU)EU) we get 

( d E , U = 

S1 

< d(j) dt 
EU) 

which establishes 

LEMMA 4. H = E. 

We have now found all the geometrical ingredients on M in 

order to formally investigate the infinite-dimensional version of 

the Duistermaat-Heckman theorem. In the next section we shall, 

following Witten, see how this is to be carried out. 

§ 4. Relation to the index of the Dirac operator 

We begin by recalling that the fundamental solution of the 

heat equation on the Riemannian manifold X can be described by < 

path integral. In particular, for the trace, one gets 

(4.1) Tre2rTA = 

M 

-tE ÒJ ,± 

where d<j> denotes the (formal part of) Wiener measure on M, and 

A is the Laplace operator on X: the variable T = t ^ arises 

by reparametrizing path length. 

Suppose now we were to believe, naively, that we could apply 

the Duistermaat-Heckman theorem to the action of S"̂~ on M. The 

fixed-points of the action are just the constant point-loops and so 

are parametrized by X c M. We would then get a formula for the 

— tH 

integral of e over M in terms of some explicit integral (as 

in (2.2)) over X. In view of Lemma 4 and (4.1) this would give 
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a formula for the trace of the heat kernel as an explicit integral 

over X. Of course this trace is given by an integral over X but 

this integral is very global in nature while the formula of the type 

(2.2) is inherently local. Thus the Duistermaat-Heckman formula 

would appear to fail, since it would lead to a result which is much 

too strong and known to be false. 

Witten points out however that this argument is based on the 

implicit assumption that the Wiener measure d(J) is the same as the 

'Liouville measure1 of the symplectic manifold M. Now even in 

finite dimensions we have to be careful to distinguish these measures. 

Thus if M is a 2n-dimensional symplectic manifold with a 

Riemannian metric p we have two different natural measures on M, 
n 

the Liouville measure ^-r- and the Riemannian measure d p . These 
n! 

differ by the Pfaffian of the skew-adjoint operator L O^ as 

expressed by (2.3). This continues to hold when co can degenerate 

so long as M is orientable so that Pf(w ) is a well-defined 

smooth function. Returning now to the infinite-dimensional case 

of our loop space we recognize that the Wiener measure d# should 

be viewed as the 'Riemannian1 measure, so that the 'Liouville' 
measure should be 

p f ( v ) a* 

where Pf is the regularized Pfaffian. Using Lemmas 2 and 3 this 

can be rewritten as 

{TrS (T.) 
4> 

- TrS (T J }dcb 
d) 

where S± denote the two half-spin representations of Spin (2m). 

Thus, according to Witten, the correct analogue of the 

Duistermaat-Heckman integral over M is 
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(4.2) 
M 

-tE ((b) r m S+(T .) 
4> 

- Tr s (T ) }d<j> , 

and it is this which should be given by the explicit formula, of 

the type (2.2), over X. 

Before going on to examine this integral over X we shall 

make a couple of observations about (2.2). In the first place, 

the appearance of Pfaffian factors is well-known to physicists and 

is interpreted as the result of a "Fermionic" integration. Thus 

Witten interprets (4.2) as computing a "super-symmetric" trace. 

For an explanation of this idea the reader should consult [12], 

although that treats the de Rham complex rather than the Dirac 

operator. 

The second observation about (4.2) is that formally it is 

what we would expect to replace (4.1) in computing 

(4.3) Tr e -2T T T A - Tr € -2T T T A 

+ 

where A are Laplace-type operators acting, not on scalars, but 

on the vector bundles S+ and S of spinors on X. Next we 

recall that the Dirac operator acts on spinors, interchanging S+ and S 

D : S+ -> S 

and one can define the two Dirac Laplacians A and A by 

(4.4) A + = D*D A = DD* . 

If we assume that these are the operators in (4.3) then, by an 

elementary and well-known argument all non-zero eigenvalues 

cancel, and (4.3) reduces to the spinor index: 
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(4.5) index D = dim (Ker D) - dim(Ker D * ) . 

Thus (4.2) should give index D, for all t, and the integral on X 

which is supposed to generalize the Duistermaat-Heckman theorem will 

give us an explicit formula for this index. 

We turn now to computing this integral formula on X. The 

first thing we need is to analyze the normal bundle of X c M. At 

any point x e X the tangent space to M consists of all functions 

on S1 with values in T . The constant functions give the  
x ^ 

directions along X. Thus the normal vectors correspond to Fourier 

series (with values in T^) having no constant term. Hence the 

normal bundle N to X in M can be decomposed as an infinite 
direct sum 

N = T1 © T2 ® 

where each T^ is the complexified tangent bundle T of X on 

which the circle s1 acts with rotation number p. Now the Chern 

class of the complexification of T can be factorized symbolically 

as 

m 
n 

j = l 
(1 + c u ) (1 - Ou) . 

Hence the denominator in (2.2), with t = 1, becomes 

m 
n 

j=l 

oo 

n 
p=l 

. 2 , (p + a 2 j ) 

and this is formally 

oc 

n 
p=l 

2 
P 

m m 
n 

j = l 

Sinh u à . 
D Tra . 1 

Replacing the first divergent factor as before by its renormalized 

value (2"n")m we get 
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(4.6) ( 2 T r ) m 
m 
n 
3=1 

s m h fra •  1 
7T 06 . 

3 
On the other hand since point loops have zero energy, H(X)=0, 

and OJ = 0 on X because the constants are null-vectors for 

when <P is a constant loop. Hence the numerator in (2.2) is 

just 1. Thus we need to pick out the term from the expansion of 

the inverse of (4.6) of order m in the a., and this is the same 

as that of 

(4.7) 
m 
n 

j=l 

a . / 2 
1 

sinh a./2 3 
The integral of (4.5) over X is, by definition, denoted tradition­

ally by A(X): it is a combination of Pontrjagin numbers. Finally 

therefore we see that the Duistermaat-Heckman formula, for the 

infinite-dimensional loop space M, ought to reduce to 

index D = A(X) 

which is the index theorem [3] [4] for the Dirac operator. 

Remark. We put t = 1 because the index was independent of t. 

This checks with the behaviour of the fixed-point contribution, 
CO 

provided we interpret II t as t° ^ where C(s) is the 
P=l 

Riemann zeta function. Since C(O) = -\ we get a total factor of 

tm and this cancels with a factor t m arising from replacing 
a . by a . /t. 
3 1 3 

'§5. Comments 

Of course the discussion in §4 leading to the index formula of 

the Diract operator was purely heuristic. In particular it is not 

clear why we should use the Dirac Laplacians of (4.4) to interpret 
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the path integral (4.2). There is always an ambiguity about 

lower order terms when one quantizes a classical system. For 

example one could envisage adding a constant c to the operators 

A + and A . Clearly this would multiply the difference of the 

traces in (4.3) by exp(-2ircx) so that the new expression would 

not be independent of T. Thus the Dirac Laplacians appear to be 

distinguished in this respect: this is an aspect of the 'super-

symmetry' expressed by (4.4). 

More fundamentally the proof of [6] and also its homological 

variant given in [2] does not, as it stands, extend to infinite-

dimensions. Naturally any such extension has to be compatible 

with the various renormalizations of infinite determinants involved. 

Witten's supersymmetric treatment has been further elaborated 

by Alvarez-Gaume [1] and while this claims to yield a proof of the 

index theorem the arguments are of a type more familiar in the 

physics literature. A more direct mathematical account has been 

given by Getzler [8] in which the presentation is purely classical 

but algebraic features of the supersymmetry have been exploited. 

The proof of the index theorem along these lines is basically 

very close to the heat equation proof given in [3]. There is 

however one noteworthy difference. In the supersymmetric approach 

as developed in [8], the explicit local form of the A-integrand 

appears directly from the algebra while in [3] an indirect invariance 

theory argument is given. It would be instructive to compare these 

two treatments more carefully. The direct approach in [8] is 

perhaps closer to the original direct argument of Patodi [9]. 
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At this point it may perhaps be appropriate to add a few 

remarks concerning the (degenerate) symplectic structure we have 

used on the loop space M. The 2-form co of §3 has an 

alternative description as the differential of a 1-form 

(5.1) GO = d6 

where 8 is the 1-form dual (via the metric) to the vector field 

given by the action of the circle. The simplest way to verify 

(5.1) (which of course implies Lemma 1) is to embed X isometric-

ally in a Euclidean space RN, then M(X) c M(RN) and it is 

sufficient to verify (5.1) for RN which is elementary. Now the 

symplectic structure given by the 2-form in (5.1) can equivalently 

be described as that induced from the canonical symplectic 

structure on the cotangent bundle T*M via the embedding given 

by the cross-section 

(5.2) 6 : M -> T*M. 

Note that T*M can also be described as the function space 

MaptS1,T*X). 

Using the Liouville measure on M, rather than the Riemannian 

measure means essentially that we are integrating over the sub-

manifold 6(M) c T*M. This fits in with the Fermionic point of 

view, since the Fermions should be thought of as in the fibre 

direction of T*M. 
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Finally it should be pointed out that there are other 

infinite-dimensional examples in which the Duistermaat-Heckman 

principle appears to hold, but which are not supersymmetric. A 

notable example is given by the based loops space QG of a compact 

Lie group G. This is an infinite-dimensional Kahler manifold 

[10] so that in this case the Riemannian measure coincides with the 

Liouville measure. There is thus no Pfaffian and no Fermionic 

integration. The fixed points of the circle action now correspond 

to the closed geodesies or the closed one-parameter subgroups, and 

explicit calculations appear to check with the Duistermaat-Heckman 

formula. 

It appears therefore that the task of fully understanding the 

infinite-dimensional case remains as a challenging problem. 
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