
Astérisque

WILFRIED SCHMID
Boundary value problems for group invariant
differential equations

Astérisque, tome S131 (1985), p. 311-321
<http://www.numdam.org/item?id=AST_1985__S131__311_0>

© Société mathématique de France, 1985, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1985__S131__311_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Société Mathématique de France 
Astérisque, hors série, 1985, p. 311-321 

BOUNDARY VALUE PROBLEMS FOR GROUP INVARIANT 

DIFFERENTIAL EQUATIONS 

BY 

Wilfried SCHMID (*) 

I shall begin this note by recalling several statements about boundary 
values of solutions of certain linear differential equations, some of them well-
known or almost obvious, some not so well-known; common to all of them 
is the presence of a semisimple Lie group which acts transitively on the 
underlying manifold and preserves the differential equations. I shall then 
argue that these statements are special instances of a general phenomenon 
in representation theory. 

A power series n>0 anzn is the Taylor series of an analytic function f(z) 
on the unit disk A if and only if its coefficients satisfy the bound \an\ < Crn 

for every r > 1, with C = C(r) depending on r. Almost as a matter of defini­
tion, the function f(z) has hyperfunction boundary values on the unit circle 
5 1 , represented by the Fourier series • n>0 aneine. To make this concrete, 
one should observe that every real analytic function <p(etd) on S 1 extends 
complex analytically to some open anulus p < \z\ < p~x; consequently, the 
Fourier coefficients cn of <p are bounded by B(r)r~lnl, for some r > 1 — e.g., 
any r between p and 1. The constants B(r) determine an inductive limit 
topology on the space of real analytic functions C^lS1). Dually a formal 
series naneine. represents a hyperfunction, i.e., a continuous linear func­
tional on C ^ S 1 ) , whenever \cn\ < C(r)r'n' for every r > 1. In particular, 
the assignment 

/(*) = 
n>0 

anzn 

n>0 
aneine 
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defines a linear isomorphism 

(i) O(A) -----> 

n 

cne
tne E C-w (S1) cn = 0 for all n < 0} ; 

here O(A) denotes the space of holomorphic functions on A, and C~UJ{S1) 
the space of hyperfunctions on S 1 . This map becomes a topological isomor­
phism when O(A) is given the topology of uniform convergence on compacta 
and C~UJ(S1) the strong dual topology. 

The isomorphism (1) has a direct analogue in the context of Cartan do­
mains. If D is such a domain, with automorphism group G, the isotropy 
subgroup K at the origin acts transitively on the Shilov boundary S. The 
restrictions to S of the polynomial functions on D can be characterized 
among all K-finite ( x) functions by the vanishing of certain Fourier coeffi­
cients [21]. / let H~UJ{S) denote the closure of the polynomials in C _ W ( 5 ) , 
the space of hyperfunctions on £, endowed with its natural Fréchet topol­
ogy; equivalently, H~UJ{S) consists of those hyperfunctions which satisfy the 
same vanishing conditions on the Fourier coefficients. Then, just as in the 
case of the unit disk, the restriction of polynomials from D to S extends to 
a topological isomorphism 

(2) 0{D) H-U{S) 

between the space of holomorphic functions O (D), topologized by locally uni­
form convergence, and H~UJ{S), with the topology inherited from C~U{S). 

Maxwell's equations and the other zero rest mass equations of mathe­
matical physics are invariant under the conformai group of the Minkowski 
inner product [4]. Consequently they extend to conformally compactified 
Minkowski space 

M = U{2) x U{2)/U{2). 

The complexification 

Mc = U{i)/U{2) x U{2) 

of M contains two open [7(2, 2)-orbits M+, M_, both Cartan domains, which 
have M as common Shilov boundary. According to a theorem of WELLS [23], 
every hyperfunction solution of the zero rest mass equations on M, of a given 
helicity n > 0, can be expressed uniquely as a difference /_{_ — /_ , of boundary 
values /_ of holomorphic solutions of the complexified equations on M+ 
and M_, respectively. Equivalently, there exists a topological isomorphism 

(3) An{M+) © An{M_) ^ H~U{M) 

(1) a function is said to be if-finite if it lies in a finite dimensional, X-invariant subspace. 
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between the direct sum of the spaces of "future analytic" solutions on M+ 
and "past analytic" solutions on M_, and the space H~M(M) of hyperfunc­
tion solutions on M. The Penrose transform identifies the left hand side of 
(3) with the cohomology Hj,(CP3,0{-2n - 2)) of the (-2n - 2)nd power 
of the hyperplane bundle over CP3, with support along the unique closed 
C/(2,2)-orbit P c CP3 [17,18]. Hence 

(4) H2

P(CP3,0(-2n-2))^H-«(M), 
as topological vector spaces, which is an alternative statement of Wells 
theorem. 

The isomorphism (1) can be generalized in a different direction. Taking 
real parts in and then complexifying, one obtains a topological isomorphism 
between C _ U ; ( 5 1 ) and the space of complex valued harmonic functions on A. 
With this example as motivation, HELGASON [11] formulated a conjecture, 
which was later established by six Japanese authors [13]. To explain the 
conjecture, I consider a non-compact Riemannian symmetric space X. The 
linear differential operators on X which are invariant under the group of 
isometries G constitute a commutative algebra D(X) [10]. I fix a character 
X of this algebra, and let C°°(X)X denote the corresponding space of joint 
eigenfunctions, 

(5) C°°(x)x = {fec°°(x) I Df = X{D)f, for D E D(X)}. 

The minimal boundary B of X, which parametrizes the asymptotic directions 
of geodesies, is a compact homogeneous space for G [15]. According to 
Helgason's conjecture, there exists a homogeneous line bundle ( 2) Lx —• B 
and a G-invariant "Poisson transform" 

PX:C~{LX)^C°°{X)X, 
which extends to a topological isomorphism 

(6) PX:C-"(LX)^C°°(X)X 

from the space of sections of Lx with hyperfunction coefficients, in its natural 
topology, to C°°(X) X , endowed with the C°° topology. In the special case 
of the unit disk and the trivial character x> (4) reduces to the familiar 
isomorphism between C~U(S1) and the space of harmonic functions on A. 

Certain representations of a semisimple Lie group G can be realized 
geometrically as sheaf cohomology groups Hp(G/V,0(L\)) of homogeneous 

(2) i.e., a line bundle to which the action of G lifts. 
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holomorphic line bundles L\ over a quotient G/V by a compact centralizer 
of a torus, equipped with a G-invariant complex structure [20]. For both 
technical and esthetic reasons, one would like to know that the 8 operator 
between the spaces of L^-valued C°° (0,p)-forms, 

(7) d : AP(G/V,LX) — A?+1{G/V,LX), 

has closed range in the G°° topology. To my knowledge, there are no useful 
criteria of a general nature which would imply the closure of the range for 
this topology. However, in the situation of homogeneous complex manifolds 
G/V as above, one can establish a topological isomorphism 

(8) HP{G/V,0(Lx)) ^H-"{S,U) 

from the Dolbeault cohomology group Hp(G/V,0(L\)) into an appropri­
ately defined space of hyperfunction sections H~0J(S^U) of a homogeneous 
C°° vector bundle U —• S over a compact quotient of G. Since H~UJ{S, U) 
is a Frechet space, this implies the closed range property for the d operator. 

The list of examples could be continued : there exist both non-elliptic and 
elliptic systems of invariant differential equations on homogeneous spaces, 
whose solutions have hyperfunction boundary values. Roughly speaking, any 
system with a semisimple symmetry group falls into this category, if it is 
"sufficiently determined". 

To show how the isomorphisms (1-4, 6, 8) fit into a common pattern, I 
must recall HARISH-CHANDRA'S construction of the infinitesimal represen­
tation attached to a global representation of a semisimple Lie group G. It 
will be convenient to assume that G has finite center and a finite component 
group. I fix the choice of a maximal compact subgroup K C G, and denote 
the complexified Lie algebras by the lower case, boldfaced letters g,k. By a 
"representation" of G, I shall mean a continuous representation on a com­
plete, locally convex Hausdorff space, of finite length — i.e., not containing 
an infinite chain of closed G-invariant subspaces — and "admissible", in the 
sense that any irreducible representation of K occurs in it only finitely of­
ten. This latter assumption is automatically satisfied by irreducible unitary 
representations of G [8,9]; one does not know at present whether it is also 
satisfied by all irreducible Banach representations. 

If (7r, VV) is a representation of G, the space V of all if-finite vectors ( 3) 
in the representation space Vn consists entirely of G°° vectors : for every 
v G V, g —• ir(g)v is a G°° map from G into VK [7]. Moreover, Vn contains 
V as a dense subspace. The Lie algebra g acts on V by differentiation, 
hence V becomes a module for the universal enveloping algebra 17(g). In 

(3) equivalently, the linear span of the finite dimensional, X-invariant subspaces. 
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addition to g, K acts on V, but G does not. The original assumptions about 
7r, in particular admissibility and finite length, have the following algebraic 
consequences : 

(9) 

a) V is finitely generated over Í7(g) ; 
b) as íí-module, y is a direct sum of irreducibles, each occuring 

with finite multiplicity; 
c) the actions of g and K are compatible. 

By definition, V is the Harish-Chandra module attached to the global rep-
resentaion IT. Unitary representations are completely determined by their 
Harish-Chandra modules [9]. On the other hand, the Harish-Chandra mod­
ule of a non-unitary representation n reflects only those properties which do 
not depend on the choice of a topology. The group G = 517(1,1), for exam­
ple, operates not only on the space O(A), but also on the related spaces of 
holomorphic functions with continuous, or JLp, or C°° boundary values. Each 
of these carries a natural locally convex topology, which makes the action 
of G continuous. The resulting representations all have the same Harish-
Chandra module : holomorphic functions that transform finitely under the 
action of the maximal compact subgroup K = U(l), i.e. polynomial func­
tions, lie in the intersection of these spaces. 

The passage from global representations to Harish-Chandra modules can 
be reversed. According to PRICHEPIONOK [19] and CASSELMAN [2], every 
simultaneous g- and lf-module V arises as the space of if-finite vectors of 
a representation [n^Vn), provided only V satisfies the algebraic conditions 
(9a-c). If V and (n,Vn) are related in this manner, I call the latter a 
globalization of the Harish-Chandra module V.Globalizations are far from 
unique, unless dimV < oo; the example of S17(l,l) acting on O(A) is 
quite typical of this phenomenon. Certain canonical globalizations do exist, 
however, and I shall describe these next. 

The if-finite vectors in the algebraic dual V* of a Harish-Chandra module 
V constitute another Harish-Chandra module, the dual module, which I 
denote by V. If (7r, Vn) is any globalization of V, all linear functions v' £ V 
extend continuously from V to V^. One may therefore identify V with a 
subspace of the continuous dual V£ of Vw. Each pair of vectors v G V, 
v' G V determines a "matrix coefficient" 

(10) fv,V'{g) = W,n{g)v) (9eG) 

These functions are real analytic, since they satisfy certain elliptic differential 
equations [9], and have Taylor series at the identity which can be calculated 
solely in terms of the g-action on In particular, the matrix coefficients 
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fvy are invariants of the Harish-Chandra module V, despite their definition 
in terms of a particular globalization. 

Now let {v^v^,... ,v'n} be a finite set of [/(g)-generators for V . The 
assignment 

(n«) V * {fv^'i 5 fv,v'2 5 * ' ' 5 fv,v'n) 

describes an inclusion 

(116) V -+G°°(G) n , 

which is g-and if-equivariant with respect to the right actions on G°°(G). 
Via this inclusion, G°°(G) n induces a topology on V. The completion of V in 
the induced topology — alternatively, but less invariantly, the closure of the 
image in G°°(G) n — is a globalization of V. I shall refer to it as the maximal 
globalization ( 4) and denote it by Vm ax. Any two generating sets for V are 
related by a matrix with entries in 17(g). Since 17(g) acts continuously on 
G°°(G), neither the induced topology on V nor the completion V"m a x depend 
on the initial choice of generators. In this sense, Vmax is canonically attached 
to V. A variation on this argument shows that 

(12) v > V 
v v max 

is a functor from the category of Harish-Chandra modules to the category of 
global representations of G. If (7r, V̂ ) is any other globalization, the identity 
on V extends uniquely to a continuous, g- and if-equivariant inclusion from 

into Vmax? essentially because the definition (10) of the matrix entries 
fV)Vt makes sense also for vectors u G V r The existence of these inclusions 
justifies the terminology "maximal globalization". 

The continuous dual of (V)max equipped with the strong dual topology, 
constitutes another canonical and functorial globalization, the minimal glob­
alization, Vmin- Just as Vmax can be realized as a closed subspace of C°°(G), 
Vmin can t>e constructed as a quotient of C£°(G)N. It injects continuously 
and equivariantly into any other globalization. Dualizing again, one gets back 
to Vmax • the topological vector spaces Vmax5 Vmin inherit the property of be­
ing reflexive from C°°(G) and C£°(G). A different, but equivalent definition 
of a minimal globalization appears in papers of LITVINOV and ZHELOBENKO ; 
PRICHEPIONOK [19] uses it to prove the existence of globalizations. 

Harish-Chandra modules possess globalizations of Banach spaces and even 
on Hilbert spaces [2], though not, in general, unitary globalizations. To any 

VTT 

( 4) WA LLACH [22] attaches a different meaning to the terms "maximal globalization" and 
"minimal globalization". 
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Banach globalization (n^VV), one can associate certain other globalizations, 
as follows. The subspace V" of analytic vectors — i.e., of those v G VTT for 
which g —» n(g)v is a real analytic map — injects naturally into (7^(0,1^), 
the space of V -̂valued real analytic functions on G. All If-finite vectors in 
a Banach representation are analytic [9,16], hence V C V£. The topology 
which C W ( G , VTT) induces on Vw turns the latter into a globalization of V. In 
the case of a reflexive Banach space, at least, one can introduce a space of 
hyperfunction vectors V~^, namely the strong dual of the space of analytic 
vectors for the Banach dual V'tt of V^. This, too, is a globalization, as are the 
analogously defined spaces of C°° and distribution vectors V£°, V~°°. 

To illustrate these ideas, I return to the example of G — SU(1,1), acting on 
0(A). As was remarked already, the corresponding Harish-Chandra module 
V consists precisely of the polynomial functions. Evaluation at the origin 
defines a functional v', which spans the dual module V over ?7(g) : if a 
polynomial and all its infinitesimal translates vanish at the origin, then it 
vanishes identically. Since K = U(l) acts trivially on t/, the functions in the 
image of the map (11), constructed in terms of the generating set { i / } C V, 
drop to functions on K \ G = A, and hence this map factors through the 
inclusion of V into <7°°(A). On 0(A), the C°° topology agrees with the 
topology of locally uniform convergence, which now implies the equality 
V m a x = O(A). The Hardy spaces HP(S1), 1 < p < oo, provide Banach 
globalizations of V. One can check directly that the space of analytic vectors 
coincides with HU(S1), the space of real analytic functions on S 1 whose 
negative Fourier coefficients vanish — regardless of p. Its strong conjugate-
linear dual, the space H~(Aj(S1) of hyperfunctions with vanishing negative 
Fourier coefficients, is therefore the space of hyperfunction vectors for the 
Banach globalizations HP(S1), 1 < p < oo. In view of these remarks, the 
isomorphism (1) identifies the intrinsically defined maximal globalization 
Vmax with the extrinsically defined spaces of hyperfunction vectors of certain 
Banach globalizations. 

As might be expected, the isomorphism in the preceeding example is 
merely a special case of a property of Harish-Chandra modules for an 
arbitrary semisimple Lie group G. To make this precise, I consider a Banach 
representation (7r,Vn) of G, which globalizes a particular Harish-Chandra 
module V. Then : 

THEOREM. — The natural inclusion of the minimal globalization Vm[n 

into the space of analytic vectors V£ is an isomorphism of topological vector 
spaces. Dually} if Vtt is a reflexive Banach space, the space of hyperfunction 
vectors V~u is topologically isomorphic to the maximal globalization y m a x . 

Before giving and idea of the proof, I shall discuss various consequences; 
in particular, I want to indicate how (1-4,6,8) can be deduced from this 
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theorem. For the isomorphism (1), I have already done so, and (2) can be 
treated by the same type of argument. To infer WELLs'theorem (3,4), it 
suffices to establish (3) on the level of the if-finite vectors : the Frechet spaces 
An(M^) coincide with the maximal globalizations of their own Harish-
Chandra modules, for reasons similar to those in the case of 0 (A) , and 
H~UJ(M) may be viewed as the space of hyperfunction vectors for the 
representation on the Hilbert space of (weak) L2 solutions. To prove the 
if-finite version of (3) is essentially an algebraic problem; the preceeding 
theorem — or even its specialization to the situation (2) — then provides 
the analytic information implicit in (3). The details of this chain of reasoning 
can be found in the thesis of DUNNE [6], who also extends WELLs'theorem 
to a more general setting. 

As for Helgason's conjecture, the left hand side of (6) is the space of 
hyperfunction vectors corresponding to the G-module of all L2 sections 
of L x , whereas the right hand side, by virtue of its definition (5) as a 
closed subspace of C°°(G/K), is a maximal globalization. Here, too, the 
theorem above reduces an analytic problem to an algebraic one, namely 
the proof that the map (6) restricts to an isomorphism of the underlying 
Harish-Chandra modules. This algebraic analogue was first established by 
HELGASON [11]; a result of MILICIC [14] makes it possible to simplify the 
argument considerably. The isomorphism (8), finally, depends on a corollary 
of the theorem. I shall return to it later. 

The solutions of any G-invariant system of linear differential equations 
constitute a topological G-module. Under appropriate conditions on the 
system — i.e., it must be "sufficiently determined" —, the solution space will 
have finite length and be admissible. The space V of all if-finite solutions 
then becomes a Harish-Chandra module, which can be embedded into an 
induced module V\ [2]. By definition, V\ consists of if-finite functions on 
a compact homogeneous space of G. Its completion in the hyperfunction 
topology contains any globalization of V, hence the full space of solutions. 
In this sense, all solutions have hyperfunction boundary values, subject only 
to a mild restriction on the original system of equations. 

The theorem has applications beyond those already mentioned. By con­
struction, the maximal globalization of a Harish-Chandra module is isomor­
phic to the closure of the image of the map (11). When this statement is 
dualized and combined with the theorem, one obtains the following slightly 
surprising conclusion, which bears a superficial resemblance to results of 
DIXMIER-MALLIAVIN [5] and ARNAL [1]. 

COROLLARY 1. — Let (71-, V^) be a Banach representation, V its Harish-
Chandra module. 

{vuv2, ...,vn} CV 
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a set of U(g)-generators. Then 

R 7T 
l<i<n IG 

fi{gMg)vidg\fieC?{G)}. 

According to a theorem of CASSELMAN and WALLACH, which has been 
announced in [22], the space of C°° vectors for a Banach representation 
depends only on the underlying Harish-Chandra module, and not on the 
particular globalization. The analogous assertion about the space of analytic 
vectors follows from their result, and is also an immediate consequence of 
the theorem above : 

COROLLARY 2. — Any two Banach globalizations of a Harish-Chandra 
module have topologically isomorphic spaces of analytic vectors. 

From the definitions, it is not at all obvious whether the minimal and 
maximal globalizations are topologically exact functors ( 5 ) , but the theorem, 
together with the preceeding corollary, settles this natural question. Any 
short exact sequence of Harish-Chandra modules 0 —• V —* V —» V" —• 0 
can be lifted to an exact sequence of Banach C-modules — for example, one 
may lift V and complete V , V" in the induced topologies. The process of 
taking analytic vectors is exact, hence : 

COROLLARY 3 . — The functors V —> Vm3iX, V —• Vm[n are exact in 
the topological sense. 

I can now sketch a proof of the isomorphism (8). For certain values of 
the parameter the cohomology of the line bundle LM occurs in only one 
dimension and is well understood [20]; in these cases, (8) follows directly 
from the definition of the maximal globalization. Any other homogeneous 
line bundle L\ can be reached from the L^s by a succession of the opera­
tions of tensoring with holomorphically trivial vector bundles, taking sub-
and quotient bundles. The corollary ensures that such operations preserve 
the isomorphism (8), and thus implies the validity of (8) for arbitrary ho­
mogeneous line bundles. 

To conclude this note, I shall describe the proof of the main theorem in 
broad outline. Details will appear elsewhere. 

A simple, but ingenious argument of WALLACH [22] shows that it suffices 
to treat the case of a Harish-Chandra module V induced from a — pos­
sibly reducible — finite dimensional representation of a minimal parabolic 
subgroup P, and its globalization as a space of vector valued L2 functions 

(5) The exactness, in the algebraic sense, of the minimal globalization is a formal conse­
quence of its definition, but does not imply topological exactness. 
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on G/P. In this situation, the assertion of the theorem amounts to a par­
ticular lower bound on the matrix coefficients, in terms of the eigenvalues 
of the Casimir operator of K, acting on the left. For representations in the 
spherical principal series of groups of real rank one, the matrix coefficients 
are closely related to the hypergeometric function. HELGASON [12] used this 
fact to establish such lower bounds, which then imply his conjecture in the 
rank one case. The matrix coefficients of representations of a general group 
G cannot be expressed as elementary functions, but they do satisfy certain 
ordinary differential equations with regular singular points, which have been 
studied by CASSELMAN-MILICIC [3]. Upper bounds on the solutions are rel­
atively easy to get, and they imply lower bounds because the determinant 
of the fundamental matrix can be written down explicitly. 
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