Projective geometry of elliptic curves
Astérisque, no. 137 (1986) , 156 p.
@book{AST_1986__137__1_0,
     author = {Hulek, Klaus},
     title = {Projective geometry of elliptic curves},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {137},
     year = {1986},
     zbl = {0602.14024},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1986__137__1_0/}
}
TY  - BOOK
AU  - Hulek, Klaus
TI  - Projective geometry of elliptic curves
T3  - Astérisque
PY  - 1986
IS  - 137
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1986__137__1_0/
LA  - en
ID  - AST_1986__137__1_0
ER  - 
%0 Book
%A Hulek, Klaus
%T Projective geometry of elliptic curves
%S Astérisque
%D 1986
%N 137
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1986__137__1_0/
%G en
%F AST_1986__137__1_0
Hulek, Klaus. Projective geometry of elliptic curves. Astérisque, no. 137 (1986), 156 p. http://numdam.org/item/AST_1986__137__1_0/

[1] Atiyah, M. F.: Vector bundles over an elliptic curve. Proc. London Math. Soc. 7, 414-452 (1957). | Zbl | DOI

[2] Beauville, A.: Surfaces algébriques complexes. Astérisque Vol. 54 (1978). | Zbl | Numdam

[3] Bianchi, L.: Ueber die Normalformen dritter und fünfter Stufe des elliptischen Integrals erster Gattung. Math. Ann. 17, 234-262 (1980). | EuDML | DOI

[4] Buchsbaum, D. A., Eisenbud, D.: Algebra structures for finite free resolutions and some structure theorems for ideals of codimension 3. Amer. J. Math. 99, 447-485 (1977). | Zbl | DOI

[5] Eisenbud, D., Van De Ven, A.: On the normal bundle of smooth rational space curves. Math. Ann. 256, 453-463 (1981). | Zbl | EuDML | DOI

[6] Ellingsrud, G., Laksov, D.: The normal bundle of elliptic space curves of degree 5. 18th Scand. Congress of Math. Proc. 1980. Ed. E. Balslev, pp. 258-287, Birkhäuser, Boston, 1981. | Zbl

[7] Griffiths, P., Harris, J.: Principles of Algebraic Geometry. John Wiley and Sons, New York, 1978. | Zbl

[8] Hartshorne, R.: Algebraic Geometry. Springer Verlag, New York, Heidelberg, Berlin 1977. | Zbl | DOI

[9] Horrocks, G., Mumford, D.: A rank 2 vector bundle on P4 with 15,000 symmetries. Topology 12, 63-81 (1973). | Zbl | DOI

[10] Hulek, K., Sacchiero, G.: On the normal bundle of elliptic space curves. Archiv der Math. 40, 61-68 (1983). | Zbl | DOI

[11] Hulek, К.: Projective geometry of elliptic curves. Lecture Notes in Math. Vol. 997, 228-266 (1983) (Proceedings of the Ravello Conference on Open Problems in Algebraic Geometry). | Zbl | DOI

[12] Hulek, K.: On the normal bundle of space curves. Seminario Especial de Topologia 5, 87-111 (1984) UNAM, Mexico.

[13] Hurwitz, A.: Ueber endliche Gruppen linearer Substitutionen, welche in der Theorie der elliptischen Transcendenten auftreten. Math. Ann. 27, 183-233 (1886). | EuDML | JFM | DOI

[14] Igusa, J.: Theta Functions. Springer Verlag, Berlin, Heidelberg, New York, 1982. | Zbl

[15] Mumford, D.: Varieties defined by quadratic equations. In Questions on Algebraic Varieties. CIME Lecture Notes. Edizioni Cremonése, Rome 1970. | Zbl

[16] Segre, C. : Remarques sur les transformations uniformes des courbes elliptiques en elles-mèmes. Math. Ann. 27, 296-314 (1886) . | JFM | EuDML | DOI

[17] Van De Ven, A. : Le fibré normal d'une courbe dans 3 ne se décompose pas toujours. C.R. Acad. Sci. Paris 289A, 111-113 (1979). | Zbl

[18] Barth, W., Hulek, K., Moore, R.: Shioda's modular surface S(5) and the Horrocks-Mumford bundle. To appear in: Proceedings of the International Conference on Algebraic Vector Bundles over Algebraic Varieties. Bombay 1984. | Zbl

[19] Barth, W., Hulek, K.: Projective models of Shioda modular surfaces. manuscr. math. 50, 73-132 (1985). | Zbl | EuDML | DOI

[20] Hulek, K., Van De Ven, A.: The Ferrand construction and the Horrocks-Mumford bundle. manuscr. math. 50, 313-335 (1985). | Zbl | EuDML | DOI

[21] Hulek, K., Lange, H.: Examples of abelian surfaces in 4 . To appear in Journ. Reine Angew. Math.. | Zbl | EuDML

[22] Ramanan, S.: Ample divisors on abelian surfaces. To appear. | Zbl | DOI