Yu. V. Nesterenko

 Measures of algebraic independence of

 Measures of algebraic independence of numbers and functions

 numbers and functions}

Astérisque, tome 147-148 (1987), p. 141-149
http://www.numdam.org/item?id=AST_1987__147-148__141_0

© Société mathématique de France, 1987, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Measures of algebraic independence of numbers and functions

Yu. V. Nesterenko

The purpose of the present paper is to describe new results in transcendental number theory, which have been proved in the last few years with the help of the methods using the comm utative algebra. These results concern the estimates for the multiplicities of zeros of polynomials in a solution of a system differential equations and the estimates for the measure of algebraic independence of the values some functions. These estimates were proved just the same way.

In the case of numbers it may be describe in brief as follows. For any polynomial P with complex coefficients $H(P)$ will denote the maximum of the absolute values of coefficients of P and $\operatorname{deg} P$ - degree $P, t(P)=\operatorname{deg} P+2 n H(P)$. In general the problem may be put as follows. F or the given point $\bar{\omega}=\left(\omega_{0}, \ldots, \omega_{m}\right) \in \mathbb{C}^{m+1}$ we are searching for the lower estimate for $|P(\bar{w})|, P \not \equiv 0, P \in \mathbb{Z}\left[X_{0}, \ldots, X_{m}\right]$, in terms of the $H(P)$ and $\operatorname{deg} P$, or in term s of $t(P)$.

We shall use the notion of the rank for ideals. The rank of the prime ideal $p \subset \mathbb{Z}\left[X_{0}, \ldots, X_{m}\right]$ is the maximal length of any increasing chain of prime ideals terminating with P. The rank of any ideal \mathcal{G} is the minimal rank of prime ideals ρ, containing $\mathfrak{\Im}$. The rank of an ideal \mathfrak{J} will be denoted by $h(\mathfrak{I})$.

Any homogeneous unmixed ideal $\Im \subset \mathbb{Z}\left[\times_{0}, \ldots, X_{m}\right]$ may be characterized by numbers $N(\mathfrak{g})$, $H(\mathfrak{g})$, which are analogous to deg P, $H(P)$ for polynomials $P \in \mathbb{Z}\left[\times_{o}, \ldots, x_{m}\right]$. One may also define $|\Im(\bar{w})|$, analogous to $|P(\bar{w})|$. These numbers $N(\mathfrak{j}), H(\mathfrak{J}),|\mathfrak{s}(\bar{w})|$ have the properties concerning their behaviour under decomposition of the ideal into prim ary ideals almost analogous to the properties of the corresponding characteristics of P concerning the decomposition of P into irreducible factors. It allows to reduce the problem of obtaining the lower bound for $|\mathfrak{J}(\bar{\omega})|$ in term s of $N(\widetilde{\Im}), H(\mathfrak{J})$ to the same problem for prime ideals $p \subset \mathbb{Z}\left[X_{0}, \ldots, x_{m}\right], h(P)=h(\mathcal{S})$. An assertion holds, reducing the estimate for $|P(\bar{w})|$ to the analogous estimate for ideals of higher rank, which allows to prove the estimates by induction by rank from m to 1. For the principal ideal $\mathcal{J}=(\mathbb{P})$ its rank equals 1 and the quantities $|\Im(\bar{w})|$ and $|P(\bar{w})|$ are closely related, which
gives us possibility to obtain finally the lower estimate for $|P(\bar{w})|$ in terms of the characteristics of P.

For example, this method leads to the proof of the following theorem 1, concerning the values of functions, satisfying of functional equations of special kind. In 1929 K. Mahler studied transcendental functions satisfying such and more general equations and proved the algebraic independence of their values. These results were extended later by Mahler himself, J. Loxton and A. van der Poorten, K. Kubota, D. Masser and others. The estimates of transcendence measures were stated in the first by A. Galochkin [1]. Concerning this subject we mention the papers by W. Miller [9] and S. Molchanov [3], [4]. S. Molchanov and A. Yanchenko [2] obtain a good estimation of measure of algebraic independence of values of two functions in p-adic case.

THEOREM 1. Let $f_{1}(z), \ldots, f_{m}(z)$ be power series, convergent in a neighbourhood U of $z=0$, with coefficients from algebraic fields $K,[K: \mathbb{Q}]<\infty$, satisfying the functional equations $f_{i}\left(z^{d}\right)=a_{i}(z) f_{i}(z)+b_{i}(z), a_{i}(z), \quad b_{i}(z) \in K(z), \quad 1 \leq i \leq m$, where d is an integer, $d \geq 2$, and algebraically independent over $\mathbb{C}(z)$. Suppose that α is an algebraic num ber, $\alpha \in U, \quad 0<|\alpha|<1$, numbers $\alpha, \alpha^{d}, \alpha^{d^{2}}, \ldots$ differ from the singular points of $a_{i}(z), b_{i}(z)$. T hen for any numbers $s \geq 1, H \geq H_{o}(s, \alpha$, $f_{i}(z)$) and any polynomial $P \in \mathbb{Z}\left[X_{1}, \ldots, X_{m}\right], P \not \equiv 0, \operatorname{deg} P \leq s, H(P) \leq H$ the inequality

$$
\left|P\left(f_{1}(\alpha), \ldots, f_{m}(\alpha)\right)\right| \geq H^{-\gamma_{1} s^{m}}
$$

holds, w here $\gamma_{1}=\gamma_{1}\left(\alpha, f_{i}\right)>0$.
COROLLARY. L et α be algebraic number, $0<|\alpha|<1$, d be integer, $d \geq 2$, $\varphi(z)=\sum_{n=0}^{\infty} z^{d^{n}}$. Then for any polynomial $P \in \mathbb{Z}\left[x_{1}, \ldots, x_{d-1}\right], P \not \equiv 0$, the inequality

$$
\left|P\left(\varphi(\alpha), \varphi\left(\alpha^{2}\right), \ldots, \varphi\left(\alpha^{d-1}\right)\right)\right| \geq C . H(P)^{-\gamma} s^{d-1}
$$

holds, w here $\gamma_{2}=\gamma_{2}(\alpha, d)>0, C=C(\alpha, d, s)>0, s=\operatorname{deg} P$.
In order to establish the corollary it is sufficient to apply the theorem 1 to functions $\varphi\left(z^{i}\right), i=1, \ldots, d-1$.

Theorem 1 is deduced from the next statement, which gives the lower estimate for $|\mathfrak{J}(\bar{w})|$ with $\bar{w}=\left(1, f_{1}(\alpha), \ldots, f_{m}(\alpha)\right)$.

THEOREM 2. Suppose that the conditions of theorem 1 are satisfied, $\theta \geq 1$ and $H \geq 1$. Let \mathfrak{g} be a homogeneous unmixed ideal of $\mathbb{Z}\left[X_{o}, \ldots, X_{m}\right]$, such that $\Im \cap \mathbb{Z}=(0), r=m+1-h(\Im) \geq 1$,

$$
N(\Im) \leq \lambda^{m-r} \theta^{m-r+1}, \quad \ell n H(\Im) \leq \lambda^{m-r} \theta^{m-r} \ell n H,
$$

where $\lambda \geq \lambda_{0}\left(\alpha, K, f, \ldots, f_{m}\right)>0$. If H exceeds a boundary, depending on λ and θ, then

$$
\ell n|\Im(\bar{w})| \geq-\lambda^{r}\left(\theta \ell_{n} H(\mathfrak{Y})+N(\mathcal{Y}) \ell_{n} H\right) g^{r-1} .
$$

Let us deduce theorem 1 from theorem 2. If P is a polynomial from theorem 1, $Q=x_{o}^{\operatorname{deg} P} P\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{m}}{x_{0}}\right)$ - a homogenisation of $P, \mathcal{F}=(Q)$ - a principal ideal in $\mathbb{Z}\left[\times_{o}, \ldots, X_{m}\right]$, then one may prove that

$$
N(\mathfrak{Y})=\operatorname{deg} P \quad, \quad H(\Im) \leq H(P) e^{m^{2} \operatorname{deg} P}
$$

and

$$
\begin{equation*}
\left|P\left(f_{1}(\alpha), \ldots, f m(\alpha)\right)\right| \geq|\Im(\bar{\omega})| \cdot|\bar{\omega}|^{\operatorname{deg} P} \cdot(m+1)^{-2 m \operatorname{deg} P} \tag{1}
\end{equation*}
$$

From theorem 2 with $r=m, \theta=s$ and $\mathrm{He}^{\mathrm{m}^{2} \mathrm{~s}}$ instead of H it follows, that

$$
|g(\bar{w})| \geq-2 \lambda^{m}\left(\ell n H+m^{2} s\right) s^{m} \geq-3 \lambda^{m} s^{m} \ell n H \text {. }
$$

This inequalities and (1) prove theorem 1. Theorem 2 is proved by induction on r from 1 to m.

Second group of results concern the values of exponential function at transcendental points. A fter a classical result by Gelfond and Schneider many of interesting assertions were proved here by A. Shmelev, R. Tijdeman, D. Brownawell, G. Chudnovsky, M. Waldschmidt, E. Reyssat, P. Philippon and others. The last results by P. Philippon [11] on criteria of algebraic independence and algebraic independence of values of exponential function are worth to be mentioned.

THEOREM 3. Let α, β be algebraic numbers, $\alpha \neq 0,1$, degree of β equals to $d, d \geq 2$; let τ be a real number, $0<\tau<\frac{d+1}{2}$. Then there exists a constant $\gamma_{3}=$ $\gamma_{3}(\alpha, \beta)>0$ with the following property : for all P_{1}, \ldots, P_{N} in $\mathbb{Z}\left[\times_{1}, \ldots, X_{d-1}\right]$ of $t\left(P_{j}\right) \leq T$, which generate an ideal of rank $d-r, 0 \leq r<\tau$, we have

$$
\max _{1 \leq j \leq N}\left|P_{j}\left(\alpha^{\beta}, \alpha^{\beta^{2}}, \ldots, \alpha^{\beta^{d-1}}\right)\right| \geq \exp \left(-\gamma_{3} T^{(\alpha-r) \frac{\tau}{\tau-r}}\right) .
$$

From this theorem is follows, for example, that among the numbers

$$
\begin{equation*}
\alpha^{\beta}, \alpha^{\beta^{2}}, \ldots, \alpha^{\beta}{ }^{\alpha-1} \tag{2}
\end{equation*}
$$

there are at least $\left[\frac{d}{2}\right]$ algebraically independent over \mathbb{Q}. Indeed, let the number of algebraically independent among them equal to ℓ. Then prime ideal P, consisting of all polynomials in $\mathbb{Z}\left[\times_{1}, \ldots, X_{d-1}\right]$, which vanish at the point (2), has a rank $d-1-\ell$. Therefore the number $r=\ell+1$ is not less than $\frac{d+1}{2}$ and $\ell \geq\left[\frac{d}{2}\right]$. Theorem 3 follows from the next statement, which gives the lower estimate for $|\Im(\bar{\omega})|$.

THEOREM 4. L et $a_{1}, \ldots, a_{p}, b_{1}, \ldots, b_{q}$ be complex numbers, satisfying for any $\varepsilon>0$ and for any vectors $\bar{K}=\left(K_{1}, \ldots, K_{p}\right) \in \mathbb{Z}^{p}, \bar{\ell}=\left(\ell_{1}, \ldots, \ell_{q}\right) \in \mathbb{Z}^{q}$ the inequalities

$$
\left|K_{1} a_{1}+\ldots K_{p} a_{p}\right|>\exp \left(-|\bar{K}|^{€}\right),\left|\ell_{1} b_{1}+\ldots+\ell_{q}{ }_{q}\right|>\exp \left(-|\bar{\ell}|^{\varepsilon}\right)
$$

for $|\bar{K}|,|\bar{\ell}|$ exceeding a boundary, depending from $\epsilon, a_{i}, b_{i} . L$ et $\omega_{1}, \ldots, \omega_{m}$ be the set of numbers

$$
a_{1}, \ldots, a_{p}, e^{a_{1} b_{1}}, \ldots, e^{a_{p} b_{q}}, \quad m=p+p q
$$

ordered in any way, and $\omega_{o}=1, \bar{w}=\left(w_{o}, \ldots, w_{m}\right)$.
If r is an integer and τ is a real number, $1 \leq r<\tau<\frac{p+p q}{p+q}$, then for any homogeneous unmixed ideal $\mathfrak{J} \subset \mathbb{Z}\left[X_{0}, \ldots, X_{m}\right], h(\mathfrak{F})=m+1-r$, the estimate

$$
|\Im(\bar{w})| \geq \exp \left(-\mu_{r} t(\mathfrak{\Im})^{\frac{T}{\tau-r}}\right)
$$

holds, where $\mu_{r}=\mu\left(r, T, a_{i}, b_{j}\right)>0, t(\mathfrak{F})=N(\mathfrak{J})+\ell n H(\mathfrak{J})$.
This theorem, like the theorem 2, is proved by induction on r. Induction is successed not to $m=p+p q$, as in the theorem 2 , but only to $\frac{m}{p+q}$, which is connected with analytic possibilities of constructing polynomials sm all enough at the point \bar{w}.

We give auxilliary assertion, which connects lower estimates for ideals and polynomials at the point $\bar{\omega}=\left(1, w_{1}, \ldots, \omega_{m}\right) \in \mathbb{C}^{m}$ and allows us to deduce the theorem 3 from the theorem 4.

PROPOSITION 1. Let the transcendence base of the field $\mathbb{Q}\left(\omega_{1}, \ldots, \omega_{m}\right)$ be contained among the numbers $w_{1}, \ldots, w_{K}, K \leq m ;$ let $R_{1}, \ldots, R_{N} \in \mathbb{Z}\left[X_{0}, \ldots, X_{m}\right]$ be homogeneous polynomials $t\left(R_{j}\right) \leq T, a=\left(R_{1}, \ldots, R_{N}\right)$ is ideal in $\mathbb{Z}\left[X_{o}, \ldots, X_{m}\right]$, $r=K+1-h(a)$. Then there exists a hom ogeneous unmixed ideal $\mathfrak{J C} \mathbb{Z}\left[\times_{o}, \ldots, x_{m}\right]$, $h(\mathfrak{Y})=m+1-r, t(\mathfrak{Y}) \leq \gamma_{4} T^{K-r+1}$ such that

$$
\max _{1 \leq j \leq N}\left|R_{j}(\bar{w})\right| \geq|\Im(\bar{w})| e^{-\gamma_{S} T^{K-r+1}}
$$

when $\gamma_{i}=\gamma_{i}(\bar{w})>0, \quad i=4,5$.
Suppose in the theorem 4, that

$$
\begin{aligned}
& p=q=d, \quad a_{i}=\beta^{i-1}, b_{i}=\beta^{i-1} \text { en } \alpha, \quad i=1, \ldots, d, \\
& w_{1}=\alpha^{\beta}, \ldots, w_{d-1}=\alpha^{\beta^{d-1}}, K=d-1 .
\end{aligned}
$$

Then the theorem 4 and the proposition 1 give us the statement of theorem 3. We remark, that the estimate mentioned above for the quantity of al gebraically independent numbers am ong (2) is a simple consequence from the theorem 4.

Let us describe in brief the proof of theorem 4. Suppose, that the assertion theorem 4 is valid for all hom ogeneous unmixed ideals $g \subset \mathbb{Z}\left[\times_{0}, \ldots, X_{m}\right]$, $h(g)>m+1-r$. The step of induction contains two stages.

1. Reduction of the estimate of $|\Im(\bar{w})|$ to the analogous estimate for prime ideals.

If the assertion of the theorem 4 is valid for prime ideals $p, h(p)=m+1-r$, then there is constant $\mu>0$ such that

$$
\begin{equation*}
\operatorname{en}|P(\bar{\omega})| \geq-\mu t(p)^{\frac{T}{T-r}} \tag{3}
\end{equation*}
$$

We define for a homogeneous unmixed ideal \mathcal{F} with $h(\mathfrak{F})=m+1-r$ prime ideals p_{1}, \ldots, p_{S} and natural numbers K_{1}, \ldots, K_{S} according to the proposition 2 [7]. Then this proposition and (3) give us

$$
\begin{aligned}
& m^{3} t(\mathfrak{J})+\ell n|\Im(\bar{w})| \geq-\mu \sum_{\ell=1}^{S} K_{\ell} t\left(P_{\ell}\right)^{\frac{T}{\tau-r}} \geq-\mu\left(\sum_{\ell=1}^{S} K_{\ell} t\left(P_{\ell}\right)\right)^{\frac{T}{T-r}} \\
& \geq-\mu(m+1)^{\frac{2 T}{T-r}} t(\mathfrak{S})^{\frac{T}{T-r}}
\end{aligned}
$$

This proves theorem 4 with $\mu_{r}=\mu(m+1)^{\frac{2 T}{T-r}}+m^{3}$.
2. Increase of the rank of ideal.

In order to establish the inequality (3) it is sufficient to prove, that a set of real numbers S, such that there exist prime homogeneous ideal $p \subset \mathbb{Z}\left[X_{0}, \ldots\right.$, $\left.x_{m}\right], P \cap \mathbb{Z}=(0), h(P)=m-r+1$ with conditions

$$
\begin{equation*}
|P(\bar{w})|<\exp \left(-S^{\frac{T}{T-r}}\right), \quad t(p) \leq S \tag{4}
\end{equation*}
$$

is bounded.
The proof is based on the next proposition.
PR OPOSITION 2. L et $Q \in \mathbb{Z}\left[\times_{0}, \ldots, x_{m}\right], Q \neq 0$, be a homogeneous polynomial $; p \subset \mathbb{Z}\left[X_{0}, \ldots, X_{m}\right]$ be a prime homogeneous ideal, $p \cap \mathbb{Z}=(0)$, $r=m+1-h(p) \geq 1, \bar{w}=\left(w_{o}, \ldots, w_{m}\right) \in \mathbb{C}^{m+1}, \bar{\omega} \neq 0$,

$$
|P(\bar{w})| \leq e^{-x}, x>0,|Q(\bar{\omega})| \cdot|\bar{w}|^{-\operatorname{deg} Q} \leq t(Q)^{-2 m-2}
$$

Suppose that for $\sigma \geq 1$

$$
\min \left(\times, \frac{1}{2} \ln \frac{1}{\rho}\right)=-\sigma \ln \left(|Q(\bar{\omega})| \cdot|\bar{\omega}|^{-\operatorname{deg} Q}\right)
$$

where ρ is minim al of the distances between $\bar{\omega}$ and zeros of ideal p. Then for $r \geq 2$ there exist homogeneous unm ixed ideal $g \subset \mathbb{Z}\left[X_{o}, \ldots, X_{m}\right], h(g)=m-r+2$ such that

1) $\mathrm{t}(\mathrm{g}) \leq 2 \mathrm{~m}^{2} \mathrm{t}(P) \mathrm{t}(Q)$,
2) $\ln |g(\bar{\omega})| \leq-\frac{1}{2 \sigma} x+8 m^{2} t(P) t(Q)$.

If $r=1$, then the right-hand side of the last inequality is not negative.
Let P be prime homogeneous ideal, satisfying inequalities (4) for sufficiently large S, and δ be a small positive number. Let us define number T by the equality

$$
\begin{equation*}
T^{m+\delta}=\min \left(S^{\frac{T}{\tau-r}}, \frac{1}{2} \ln \frac{1}{\rho}\right) \tag{5}
\end{equation*}
$$

It may be proved with the help of analytical construction from the G elfonds method, that there exist homogeneous polynomial $Q \in \mathbb{Z}\left[X_{o}, \ldots, X_{m}\right]$ satisfying inequalities

$$
\begin{equation*}
-T^{m+\delta} \leq \ln \left(|Q(\bar{w})| \cdot|\bar{w}|^{-\operatorname{deg} Q}\right) \leq-T^{m-\delta}, t(Q) \leq T^{p+q+\delta} \tag{6}
\end{equation*}
$$

This construction uses, following Philippon, function on many complex variables, "small value lemma" for exponential polynomials, due to Tijdem an, and interpolation formula in \mathbb{C}^{n}.

It is easy to prove, that in proposition 2 with $\times=S^{\frac{\tau}{\tau-r}}$ inequalities $1 \leq \sigma \leq T^{2 \delta}$ hold. From the inductive hypothesis and proposition 2 we find

$$
\begin{aligned}
& \ell n|g(\bar{w})| \geq-\mu_{r-1} t(g)^{\frac{T}{T-r+1}} \geq-\mu_{r-1}\left(2 m^{2} S T^{p+q+\delta}\right)^{\frac{T}{T-r+1}} \\
& \ell n|g(\bar{w})| \leq-\frac{1}{2} T^{-2 \delta} S^{\frac{T}{T-r}}+8 m^{2} S T^{p+q+\delta}
\end{aligned}
$$

These estim ates lead for sufficiently large S to the inequality

$$
S^{\frac{T}{\tau-r}}<T^{m+\delta}
$$

which contradicts the equality (5).
If we could replace T^{δ} in the inequalities (6) by some power of ℓT, we should probably obtain the bound $\left[\frac{d+1}{2}\right]$ for the number of algebraically independent numbers among (2). The proof of the algebraical independence of these numbers dem and the construction of the polynomials Q for w hich

$$
\ell n|Q(\bar{w})| \sim-\gamma t(Q)^{x}, \quad x>d-1
$$

This method m ay be used for to prove some estimates for the orders of zeros of polynomials in a solution of a system of differential equations.

THEOREM 5. Suppose that ξ_{1}, \ldots, ξ_{q} are different complex numbers, the functions $f_{1}(z), \ldots, f_{m}(z)$ are algebraically independent over $\mathbb{C}(z)$, and constitute solution of the system of differential equations

$$
y_{j}^{\prime}=q_{j o}+\sum_{i=1}^{m} q_{j i} y_{i}, \quad j=1, \ldots, m, \quad q_{j i} \in \mathbb{C}(z),
$$

and are analytic at ξ_{1}, \ldots, ξ_{q}. Then for any polynomial $P \in \mathbb{C}\left[z, \times_{1}, \ldots, \times_{m}\right]$, $P \neq 0$,

$$
\sum_{j=1}^{q} \operatorname{ord}_{\xi_{j}} P\left(z, f_{1}(z), \ldots, f_{m}(z)\right) \leq \gamma_{5}\left(\operatorname{deg}_{z} P+q\right)\left(\operatorname{deg}_{\times} P\right)^{m}
$$

holds, w here $\gamma_{5}=\gamma_{5}\left(f_{i}\right)>0$.
THEOREM 6. Let ξ_{1}, \ldots, ξ_{q} be different complex num bers, the functions $f_{o}(z), \ldots, f_{m}(z)$ constitute a solution of the system of differential equations

$$
y_{j}^{\prime}=R_{j}\left(y_{o}, \ldots, y_{m}\right), \quad j=0,1, \ldots, m
$$

where $R_{j} \in \mathbb{C}\left[y_{o}, \ldots, y_{m}\right]$ are hom ogeneous polynomials. Suppose that these functions are analytic at ξ_{1}, \ldots, ξ_{q}, all vectors $\left(f_{o}\left(\xi_{\ell}\right), \ldots, f_{m}\left(\xi_{\ell}\right)\right), 1 \leq \ell \leq q$, are different, and maximal num ber of homogeneous algebraically independent over \mathbb{C} among $f_{0}(z), \ldots, f_{m}(z)$ equals to $K+1$. Then there exists a constant $\gamma_{6}=\gamma_{6}\left(f_{i}\right)>0$ such that for any hom ogeneous polynomial $P \in \mathbb{C}\left[y_{o}, \ldots, y_{m}\right], P\left(f_{o}, \ldots, f_{m}\right) \not \equiv 0$, inequality

$$
\sum_{j=1}^{q} \operatorname{ord}_{\xi_{j}} P(\bar{f}) \leq \gamma_{6}^{K}\left(\theta^{K}+\sum_{j=1}^{K-1} a_{j} \theta^{j}\right)
$$

holds, w here $\mathscr{D}=\operatorname{deg} P$ and a_{j} is a maximal number of points $\bar{f}\left(\xi_{l}\right), \quad 1 \leq \ell \leq q$, lying on an irreducible variety in \mathbb{P}^{m} of dimension $K-j$ with degree at most $\gamma_{6}^{j-1} D^{j}$.

For $K=3$ this statement was proved by D. Brownawell [8] (see the bibliography of this paper too).

Any unmixed homogeneous for $\times_{o}, \ldots, \times_{m}$ ideal \mathfrak{Y} in $\mathbb{C}\left[z, x_{o}, \ldots, \times_{m}\right]$ may be characterized by numbers $N(\mathscr{I}), B(\mathfrak{J})$, ord $g(\bar{f})$, which are analogous to $\operatorname{deg}_{x} P, \operatorname{deg}_{z} P$, ord $_{\xi} P(\bar{f})$ for $P \in \mathbb{C}\left[z, x_{0}, \ldots, x_{m}\right]$. The following assertion, generalizing theorem 5 is true.

THEOREM 7. Let ξ_{1}, \ldots, ξ_{q} be different complex num bers, the functions $f_{o}(z), \ldots, f_{m}(z)$ be not connected by any hom ogeneous al gebraic equation over $\mathbb{C}(z)$, constitute a solution of the system of differential equations

$$
\begin{equation*}
y_{j}^{\prime}=\sum_{i=0}^{m} q_{j i} y_{i}, \quad j=0,1, \ldots, m, \quad q_{j i} \in \mathbb{C}(z) \tag{7}
\end{equation*}
$$

and be analytic at ξ_{1}, \ldots, ξ_{q}. L et \mathcal{J} be an ideal of the ring $\mathbb{C}\left[z, \times_{o}, \ldots, x_{m}\right]$, which is homogeneous in the variables $X_{0}, \ldots, X_{m}, r=m+1-h(\mathfrak{J}) \geq 1$. Then

$$
\sum_{j=1}^{q} \operatorname{ord}_{\xi_{j}} \Im(\bar{f}) \leq(6 m)^{2 m^{2} r} B(\mathfrak{J}) N(\mathfrak{J})^{\frac{r}{m-r+1}}+\gamma_{7}^{3 m(m+r)} q_{q N(\Im)^{\frac{m}{m-r+1}}, ~}^{\text {l }}
$$

where $\gamma_{7}=\gamma_{7}\left(f_{i}\right)>0$.
This theorem is proved by induction on r from 1 to m. Theorem 5 follows
from theorem 7 for $r=m$. The common scheme of induction is analogous to the one in the case of numbers. But instead of the analytical construction of polynomial Q, as it is m ade in the proof of the theorem 4, the next lemma is used.

LEMMA. Let p be a prime ideal of the ring $\mathbb{C}\left[z, \times_{o}, \ldots, x_{m}\right]$, which is homogeneous in the variables $X_{0}, \ldots, x_{m}, P \cap \mathbb{C}(z)=(0), r=m+1-h(P) \geq 1$ and

$$
\sum_{j=1}^{q} \operatorname{ord}_{\xi_{j}} P(\bar{f})>B(P)+\gamma_{8} N(P),
$$

where $\gamma_{8}=\gamma_{8}\left(f_{i}\right)>0$. Then there exist hom ogeneous in the variables $\times_{0}, \ldots, X_{m}$ polynomials $R \in P, Q \notin P$ such that $Q(\bar{f})=t(z) \frac{d}{d z} R(\bar{f})$, w hen $t(z)$ is the least common denominator of the coefficients q_{ji} in (7), and

$$
\begin{aligned}
& \operatorname{deg}_{X} Q \leq 3(6 m)^{m} N(P)^{\frac{1}{m-r+1}}, \\
& \operatorname{deg}_{z} Q \leq 3(6 m)^{m} B(P) N(P)^{-\frac{m^{\prime}-r}{m-r+1}}+\gamma_{8},
\end{aligned}
$$

where $\gamma_{8}=\gamma_{8}\left(f_{i}\right)>0$.
The proof of lemma is connected with the theorem 2 from [6]. In order to establish theorem 5 and 6 we improve the method of [5], where result not so strong as theorem 7 w as proved. In the case of numbers this m ethod was stated for the first time in [10], [6], [7], where we proved that at least $\left[\log _{2}(\mathrm{~d}+1)\right]$ numbers among (2) are algebraically independent over \mathbb{Q}.

BIBLIOGRAPHY

[1] Galochkin A.I. : Sur une mesure de transcendance des valeurs de solutions de certaines equations différentielles. Mat. Zametki, 27, 1980, 175-183, (en russe).
[2] Molchanov S.M., Yanchenko A.Y. : Sur une mesure d'indépendance algébrique des valeurs de solutions de certaines équations fonctionnelles. Comptes rendus Conf. "La théorie des nombres transcendants et ses applications", Pub. Univ. Moscou, 1983, 98, (en russe).
[3] Molchanov S.M. : Estimations des mesures de transcendances dans la méthode de Mahler ; "Approximations diophantiennes I". Pub. Univ. Moscou, 1985, 56-65, (en russe).
[4] Molchanov S.M. : Sur une mesure de transcendance de quel ques nombres. Comptes rendus Conf. "L a théorie des nombres et ses applications". Pub. Univ. Tbilissi, 1985, 170-172, (en russe).
[5] Nesterenko Yu. V. : Majoration des ordres des zéros de fonctions d'une certaine classe et application à la théorie des nombres transcendants ; Izvestia Ac. Sc. URSS Math., 41, 1977, 253-284, (en russe).
[6] Nesterenko Yu. V. : Estimation de la fonction caractéristique d'un idéal premier. Mat. Sbornik, 123, 1984, 11-34, (en russe).
[7] Nesterenko Yu. V. : Sur l'indépendance algébrique de nombres algébriques élevés à des puissances algébriques. Mat. Sbornik, 123, 1984, 435-459, (en russe).
[8] Brownawell D. : Zero estimates for solutions of differential equations. C.R. Conf. "Approximations diophantiennes et nombres transcendants, Lum iny 1982', B irkhăuser, Progress in Math., 31, 1983, 67-94.
[9] Miller W. : Transcendence measure by a method of Mahler. J. Austral. Math. Soc. (ser. A), 32, 1982, 68-78.
[10] Nesterenko Yu. V. : On the algebraical independence of algebraic num bers to algebraic powers. C.R. Conf. "Approximations diophantiennes et nombres transcendants, Luminy 1982", Birkhäuser, Progress in Math., 31, 1983, 199-220.
[11] Philippon P. : Critères pour l'indépendance algébrique de familles de nom bres. Math. Repts. A cad. Sci. C an. , 6, 1984, $n^{\circ} 5,285-290$.

Yu.V.NESTERENKO
Département de Mathématiques Université Lénine MOSCOU 117234
U.R.S.S.

