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PROBABILISTIC CONSTRUCTIONS IN ADDITIVE NUMBER THEORY 
by 

Imre Z. Ruzsa 

1. Introduction 
Sometimes i t is easier to find a lot of examples of a certain 

phenomenon than one, by showing that, in a suitable probability, 
almost a l l objects are good. Examples abound in combinatorics (see 
Erdos-Spencer [1] as well as in number theory (see Halberstam-Roth 
[4]). Now we use a random construction to produce a wide class of 
"additively very effective" sets of positive integers. The novelty 
in the proof is that we use probability to study the Fourier trans
form of our random set, in contrast to previous works where gener
ally probability was applied directly to the representation. While 
this is not a panacea, sometimes i t can yield superior results. I 
have applied this approach to construct a thin essential component 
(Ruzsa [7]) . 

I should like to use this occasion to point out that the dis
tinction between "probabilistic" and "deterministic" constructions 
is a rather unclear one. After having proved, by probability or 
other methods, the existence of a sequence with certain properties, 
i t is generally not too difficult to pinpoint a concrete example, 
say the f i rs t in some lexicographical ordering, thus making our 
proof formally deterministic. Speed may seem a distinctive feature 
(and some insist i t i s ) : the above procedure of selecting the 
"first" works in exponential time, while most "real" constructions 
work much faster. On the other hand, I am rather inclined to accept 
a definition like "the remainder of 2n! mod 3n+1", which is very 
slow to compute, as deterministic. This - perhaps more philosophical 
than mathematical - problem may be worth clarifying. 
2. The main result 

We use capital let ters to denote a set of integers, and we use 
the same let ter to denote i t s counting function; that i s , if A is 
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a set of integers, we write 

A(x) - |Af1[1 , x] | . 

Observe that even if A has negative elements, they are not counted 
into A(x) . The Shnirelmann density of A is defined by 

a (A) = inf A(n)/n, 

n runs over the integers. The asymptotic density is 

d(A) = lim A(x)/x 
X+oo 

if i t exists. The upper limit of A(x)/x is called the upper den
sity of A and is denoted by d(A) . As usual, we write A+B (A-B) 
to denote the set of al l numbers a+b (a-b) , a€A , bGB . 

THEOREM. Let g be a positive-valued function defined on 
[2, oo) f such that g(x)/log x is increasing while g(x)/x tends 
monotonically to 0 . There exists a set H of positive integers  
with the properties that 

(2.1) H(x) ~ Z log, ? < 0 x , log2 (x + 1) , 
n<x g(n) 2g(x) ^ 

and that if A is another set of integers and 

(2.2) A(xk)/g(xk)+°o 

for a sequence (x^) , then their sum S=A+H and difference D=H-A 
satisfy 

S(2xv)-S(x ) 
(2.3) ^ — - 1 , D(xk)/xk - 1 . 

k 
In particular, if A(x) /g (x) , then both S and D have asymp 
totic density one. 

Comments. 1) The flexibility built in the theorem (the possi
bi l i ty to choose g(x) and (xk) ) will be useful for the applica
tions, cf. the next section. 

2) In (2.3), we cannot assert S(xk)/xk 1 . I t can 
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namely happen that almost all elements of A between 1 and 
are near to x^ , and then the majority of sums in A+H will be 
greater than x^ . Similarly, instead of H-A we cannot consider 
A-H , since if almost all elements of A in [1, x^] are small, 
then so are the differences in A-H. 

3) To get a positive portion of the numbers up to x 
into A+H we must have A(x)H(x)>cx ; thus if this has to happen 
whenever A(x)/g(x)^°° , H(x) must not be o(x/g(x)) . (2.1) is at 

2 
most a log x factor higher. If g(x) is near to x , this is nec
essary as we shall see in the next section. For g(x)=\/x , (2.1) 
yields H(x)=0(\/x log x) , and I cannot decide whether this can be 
improved. If g(x) is as small as log x , then (2.1) does not pro
duce any nontrivial bound. I can obtain better bounds than (2.1) 
for slowly increasing g(x) (up to g(x)=x ) by different meth
ods; this will be discussed in another paper. 

4) The second inequality in (2.1) is easy to see. If 
g(x)/x is decreasing, then g(n)/n>g(x)/x for n<x , hence 

z I°2_EU * Z l2SLn < * 1 iog2(x+1) . N<X G(N) g(x) n<X N G(x) 2 

3. Applications 
We show how a solution to a couple of older problems can be ob

tained as a corollary to our theorem. 
Following Erdos and Sarkozy [2, 3], we call a set H sum-in- 

tersective, if Hn(A+A)̂ 0 whenever d(A)>0 . This is an analogon 
to the much investigated concept of a difference-intersective set 
(see Ruzsa [8] for further reference), but i t is much less under
stood. In particular, no "natural" set is known to have this prop
erty. From Theorem 7 of Erdos and Sarkozy [3] i t follows that if 
H is sum-intersective, then H(x)^o(log x), and I can prove the 
slightly stronger 

(3.1) H(x)/log2x -> oo . 

In [2] they gave a probabilistic construction of a sum-intersective 
H with H (x) =0 (x2//3 + £) . In [7] I gave a deterministic construc
tion with H (x) =0 (x1//2 + E) . Here we show that the lower estimate 
(3.1) actually gives the correct order of magnitude. 

COROLLARY 1. Let w be a positive function defined on [1, °°) 
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and tending to infinity. There exists a sum-intersective set H 
with 

(3.2) H(x) = 0(w(x) log2 x) . 

Proof. Apply the Theorem with some function g(x)=o(x), 
g(x)>x/w(x) (we can have g(x)=x/w(x) if w(x) is regular enough). 
We obtain a set H that clearly satisfies (3.2). We have to show 
that i t is sum-intersective. 

Since A has a positive upper density, there is a sequence 
(x̂ .) such that 

(3.3) A(xk)/xk > c > 0 . 

Then also A (x^)/g ( x ^ ) , thus by the Theorem, for D=H-A we have 

(3.4) D(xk)/xk -> 1 . 

By (3.3) and (3.4), A(xk)+D(xk)>xk for large k , and then A and 
D cannot be disjoint. This means that there are numbers a^, â GA 
and h£H such that a^h-a^ ; this yields h=a^+a2 as wanted. 

For another application, we consider a problem that is dis
cussed in Halberstam-Roth [4], Ch. 1. §5. They ask whether a sequence 
A of density 0 exists such that a(A+B)>0 for every basis B . P.Erdos 
has shown that the sequence of primes does not have this property. 

COROLLARY 2. Let w be a positive-valued function on [ 1 , °°) 
satisfying w(x)=0(x£) for a l l e>0 . There exists a set H sat is 
fying 

(3.5) H(x) = 0(x/w(x)) 

such that for every basis B , H+B has asymptotic density one and  
a positive Shnirelmann-density. 

Remark. If B is a basis of order k , then clearly 

(3.6) B(n) > n1/k 

for al l n ; and this is the only property we shall need, i t will 
be irrelevant whether B is indeed a basis. 

Proof. Apply the Theorem with some g satisfying both 

176 
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2 E g(x) > w(x) log x , g(x) = 0(x ) . 

(3.5) follows from (2.1). If B is a basis, say of order k , then 
(3.6) yields B(x)/g(x)+°° and then for S=H+B we have d(S)=1. 

To obtain a(S)>0 , observe that i t is equivalent to d(S)>0 
and 1GS . Now if B is a basis, i t contains both 0 and 1 , and 
if we include 1 to H , 1€S is guaranteed. 
4. Outline of the proof 

We are going to select the positive integers into H indepen
dently, with probability 

(4.1) p = P(n€H) = . 
K ' ^n g(n) 
We use £ to denote the indicator of H , that i s , £ =1 if n̂ n 
nGH , =0 otherwise. Thus the £n1s are independent random vari
ables and 

(4.2) d +1 r1 
•0 

with probability 
drd 

I -p 

Hence i t s expectation and variance are 

(4.3) E(5n) = Pn , D2(?n) = Pnd-Pn) • 

By the strong law of large numbers we can immediately conclude 
that with probability one 

(4.4) H x = £ ? ~ I p , 
n<x n<x 

and hence that (2.1) holds with probability one. 
The proof of the additive properties (2.3) will not be so 

straightforward. We forst estimate some trigonometrical sums 

Z 
h£H,h<x 

ah e(ht) , 

and this will be applied in a more or less classical way. 
5. A random trigonometrical sum 

We shall need an estimate for certain sums 
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(5.1) rm(k) = Z ah e(kh/m) = Z e(kn/m) , 
h€H,h<m n<m 

where e(x)=exp 2-rrix as usual. We shall be interested only in ra
tional arguments with denominator m , and we need sums that are 
small for k̂ O (mod m) . For a fixed k and m , r (k) is a random 
variable, a sum of the independent variables L =a e(kn/m)E . I ts 

n n n̂ 
expectation is 
(5.2) E(r (k)) = E a e(kn/m)E(C ) = Z a p e(kn/m) . m ^ n n ^ n^n n<m n<m 

We cannot hope having small values without a small expectation. This 
expectation turns into 0 if a l l the coefficients anPn are equal. 
Recalling that pn=(log n)/g(n) , this can be achieved by putting 

(5.3) a = ^ainL . 
v ' n log n 
With this choice of an the expectation of rm(k) will be 

(5.4) E(rm(k)) = 
rO if k?iO (mod m) , 

if k=0 (mod m) 

To this sum we shall apply a version of Bernstein's inequality. 
LEMMA 1. Let £^,...^n be independent complex-valued random 

variables. Assume that \L.-E^.\<K for al l j and 

n 

j=1 
2 2 

Write M=ZEÇ_. . For 0<X<D/K we have 

(5.5) P ( | -M | >AD) < c1 exp -c2A2 , 

with positive absolute constants ĉ  and c2 • 
Real-valued versions of this inequality are standard (see e.g. 

Renyi [5]). To obtain the above complex variant one may apply the 
real inequality separately to the real and imaginary parts of the 
sum. In this way for c2 we obtain a rather weak estimate (about 
1/100), but this is quite irrelevant for our goals. 
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Our aim is to deduce 
LEMMA 2. Let dmk = 0 ÌJL m̂ k ' =m if m|k . With suitable  

absolute constants c, C the inequality 

(5.6) P(|rm(k)-dmk| > cVmg(m)) < Cm"3 

holds for a l l but a finite number of values of m . 
Proof . We use Lemma 1 with r,=a^e (k j /m) 5̂  . Clearly 

|t.-EC-|<a. , thus we can choose 3 3 3 

(5.7) K = max a. = max f-^- i- = . 
j<m 3 j<m log 3 log m 

-3 
To obtain Cm at the right side of (5.6), our choice of A must 
be 

(5.8) A = c^Vlog m , = \fT7~c~^ . 

We need an estimate for the variance. Clearly 

D2(^) = a2 Pjd-Pj) < a2 p. = g(j)/log j 

independently of k and m , thus 

m 

3= I 
D2(ç.) 

m 

j=1 
g(j)/log j < m max g(j)/log j 

= mg(m)/log m . 

With this as D , our ÀD will just be the ĉ Vmg(m) appearing in 
(5.6). The condition A<D/K is equivalent to 

g(m)/m<c2/3 , 

which is satisfied for large m . 
LEMMA 3. There is a set H of positive integers with 

H(x) ~ 
n<x 

loq n 
g(n) 

and such that the trigonometrical sums 
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r (k) = 
m h€H,h<m 

g(h) 
log h 

e(kh/m) 

satisfy 

lrm(k)""dmkl < cv̂ gW 

for a l l k and m>m  o 
Proof. We need to check only the values k=1,...m because of 

the periodicity. Since the sum of probabilities of these events i s , 
by Lemma 2, 

m 

m k = 1 
Cm"3 = E Cm 2 < oo , 

m 
by the Borel-Cantelli lemma almost a l l sets described in the previ
ous chapter fulfi l l the requirements of Lemma 3. 
6. A modular additive property 

Addition of sets of residue classes modulo m is connected 
with trigonometrical sums via the following lemma. 

LEMMA 4. Let G be a set of (mod m) residue classes. Let 
an, n£G be arbitrary complex numbers and put 

(6.1) r(t) = Z a e(nt/m) . 
nGG 

If 

(6.2) |r(t) | < n |r(0) | 

for al l integers t̂ O (mod m) , then for any set X of residue  
classes we have 

(6.3) |X+G| > mlxl 
|x|+n2(m-|x|) 

For a proof, see Ruzsa [7]. 
(6.3) immediately yields 

16.4 m-ix+G[ < n2 m/|x| . 
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Now let H be the set of residues modulo m of the elements 

of H up to m . In view of Lemma 3, (6.2) holds with some 

n = nm = c1Vg(m)/m 

with any c1>c for sufficiently large m . Hence 

(6.5) m - |X+Hm| < c'mg(m)/|x| 

for a l l X . 
7. Completion of the proof 

First consider S=A+H . We put m=2x̂  . In view of 
A (x^) /g (x^) , there is an interval 

I = [u, u+ekxk] c [1, xkl 

of length zy^-yi that contains more than ^k^*]^ elements of A , 
where £k~̂  and wk+°° . Let X=AflI . 

With a slight abuse of the notation, let H be the set of 
elements of H up to m . By (6.5) we conclude that X+Hm contains 
at least 

m - c'mg(m)/|x| > mCl-c1/^) 

different residues mod m . Thus i t s cardinality is also at least 
so much, and i t is contained in 

[u, u+ekxk+m] , 

an interval of length m+£kXk • Therefore i t contains al l but 

ekXk + c'm//ajk = xk(£k + 2c' ^k* = o(xk) 

elements of that interval. This interval contains txk' ^x^] , thus 
al l but °(xk) numbers between xk and 2xk are in S , qu. e. d. 

To obtain information about D=H-A we consider H -X in the 
same way. Our basic interval will then be [-u-£kxk, m-u] and this 
always contains [0, x, ] . 

181 



I. Z. RUZSA 

Added in proof. Recently I learned that some similar investigations 
were done by P. Erdös and A. Rényi, "On some applications of probabi
l i ty methods to additive number theoretic problems", in : Contribu
tions to Ergodic Theory and Probability (Proc. Conf., Ohio State 
University, Columbus, USA 1970), Springer 1970, p. 37-44. 
They show (Theorem 3) that for every function f (n) •> «> there is a set 
A of density 0 with the property that d(A+B)=l whenever the set B sa
t isf ies B(n) > f(n) for al l large n. This does not imply and is not 
implied by my Corollary 2, but i t also solves the problem that I quote 
from Halberstam-Roth1s book and which is actually due to A. Stöhr, 
Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe, 
J. reine angew. Math. 197 (1957), 216-219. Compared to my analytic 
method, their elementary probabilistic approach is superior for the 
treatment of dense random sets (x/log x elements or more), but weaker 
for thin ones. 
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