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ON A THEOREM OF L. WASHINGTON 

BY 

W. SINNOTT 

Introduction. 

Let F be a finite abelian extension of the rational numbers 0, p 
a prime number, and Q the J -extension of Q. Let F = F 0 , and 
for each integer n > 0 , let h denote the class number of the unique 

~ n 
extension F of F in F of degree p over F . Then a theorem of 
L. Washington [3] states that, for any prime number % t p, the power of 

l that divides h is constant for n sufficiently large, n 

To prove his theorem, Washington reduces it to an assertion (recalled 
in §4, below) about the £-adic valuations of the values of Dirichlet's 
L-functions at s = 0 . We give here a proof of this assertion, somewhat 
different from Washington's, based on the fact that these L-function values 
are "generated by rational functions" ; more precisely, we prove in 6>3 a 
general result applicable to any rational function measure, and apply to it 
the proof of Washington's theorem in §4. 

§1. Preliminaries on Measure. 

1.1. Notations: We fix two distinct prime numbers i and p . 1 denotes  
P 

the ring of p-adic integers, IF the prime field with i elements, F its 
l I 

algebraic closure, and v the group of all p-power roots of unity in IF . 

We recall that the group 1 of units in 1 is the internal direct product 
of its torsion subgroup V and the subgroup U = l+2pl . 

P 
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W. SINNOTT 

1.2. Measures on 2 with values in F : By a measure on I with values P £ P 
in F we mean a finitely additive F -valued set function on the collection 

of compact open subsets of I . If a is a measure, and <|> : I JF is 

a locally constant function, say constant on the cosets of p 2 in 1 , 
then we define the integral 
(1.3) T <|>(x)da(x) = J <}>(a)a(a+pn I ) . 

p a mod p 

1.4. Restriction and change of variable: If a is a measure and X £ 1 

is compact and open, we denote by a| the measure obtained by restrict-
ing « to X and extending by 0 . We also define 
(1.5) / <f>(x)da(x) = / <fr(x)da|v fx) , 

for any locally constant function J —• F 
x If c e 7/ , we let aoc denote the measure defined by aoc (X) = a(cX) P 

for all compact open subsets X 1 . In place of daoc(x) we write 
P 

da(cx) , so that we have the "change of variable" formula 

(1.6) / <|>(cx)da(cx) = / <f)(x)da(x) . 

We note that 

(1.7) aoc cX°C X 
1.8. The Fourier Transform: We identify the continuous characters 

—x — l - f l with the group y tt c IF , an element r ey » corresponding p l I 
x to the character x + 5 (x &I ) . Let a be a measure ; the Fourier P 

transform «: y oo-**̂  of a is defined by 
P 

(1.9) a (O = \2 CX da(x) . 
P 
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ON A THEOREM OF WASHINGTON 

By "Fourier inversion" we see that the Fourier transform gives an isomorphism 

between the ring (under convolution) of measures on 1 with values in IF 

and the ring of functions on y with values in IF . 

It follows from (1.6) that, for any measure a , 

- 1/c 
(1.10) ccoc (C) = a ) , 

x 
for c €. J , ^ e v oo • 
1.11. The r- Transform: Let $ denote the group of continuous characters 

—X X U—»- IF , viewed always as characters of 1L trivial on V . Let a be a 
£ 

measure ; the r - transform r : $ IF of a is defined by 

(1.12) r (i|/) = f Mx)da(x). 
t 
P 

One relation between the two transforms is the following. Let ^ e. $ 
n and let 1 + p 1 be the kernel of \b in U. View ju as above as a character p 

x 
of 1 trivial on V , and extend iu by 0 to all of 2 . Then we may 

P 
write $ as a linear combination of additive characters 
(1.13) «,(x) = I xU.ck* , 

P 
with coefficients 

(1.14) t^.ç) = J ^ ip(x)z~X 
x mod p 

x * 0 mod p 
therefore 

(1.15) r W = I t(i|»,C) cx (C) . 
a 

C^ n 
p 

When n > 0 , t (i|/»c) is a primitive Gauss sum, and so vanishes unless 5 
has order p"1 . So for n > 0 the sum in (1.15) may he restricted to 

n 
primitive p -the roots of unity 5 . 
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1.16. Rational Function Measures: We call a measure a a rational function 
measure if there is a rational function R(Z) £ F (Z) such that 

a (c) = R(c) 

for almost all (i.e. all but finitely many) £ e y «, . 

If a is a rational function measure, then so is a| for any compact 
open subset X ^ 2 . In particular, if X = 2 and we put P P 
a* = a | , then we have 

2X P 

a* (?) = a (?) - - T ^ (e?) . 

It follows that a is supported in 2 if and only if 

(1.17) J Uet) = 0 . y ; 
e =1 P 

this implies the identity 
d-18) y R(eZ) = 0 , 

/ = 

where R(Z) is the rational function associated to a . (For details in 
a similar case, see [1], Lemma 1.1). 

Finally, if k is the finite field generated over JF by the coefficients 
z 

of R(Z) and the values a(c) for which a(c) * R(c) , then a takes 
values in k . 
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§2. Power Functions on y 
2.1. Independence of Power Functions: Let z denote a "variable element" of 
u , so that we may define functions on y by means of expressions 

involving z. For any a B I , we have the "a-th power map" z ; it is 
P 

the Fourier transform of the Dirac measure of mass 1 at a . We have: 
Theorem 2.2: Let b ,...,b be elements of IF , not all 0 , and let  2 n ^ -

a19...,a be distinct elements of 1. Define f : u —• TF„ by I n p p 

n 
f(z) = I b. zai . 

i =1 
Then f has only finitely many zeros in y 

Proof: Let k be the field generated over the prime field IF by 

b b and the p-th roots of unity, and let p be the number of 1 n 
p-power roots of unity in k . Let N be an integer large enough that 

Ni 
a,,...,a are distinct mod p . Suppose that f(̂ ) = 0, where r has 1 n 

N order p and N > N + N . Let Tr denote the trace map from ~ o 1 
k(c) to k . Then, for each j = l,...n, 

-a . 
0 = Tr (r 3f(c)) = [k(c):k]b., 

a. -a . J 
since if i * j , c ^k and hence has trace 0 . Since [k(^):k] = 
N-N 

p o , it follows that b =...=b =0 , contrary to hypothesis . Thus all of 
the zeros of f lie in y . which completes the proof. 

No+Nr1 
p 

Let 3* denote the F -algebra of maps from y to IF ; and let l °° l 
5̂  = 7/N , where N is the ideal of functions which vanish almost 
everywhere. The conclusion of the theorem states that f(Z) is a unit in ^ . 
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Corollary 2.4: If a ,...,a are elements of 2 linearly independent I n p 

over J , then the functions za*,...,zan are algebraically independent 

over IF in J . Let X. ...,X be independent indeterminates over  I — 0 1 n 

F : then sending X + zai , i = l,..,,n, induces an inclusion I i 

JF (X ,.. . ,X ) J . 
I 1 n 0 

Proof: In any case there is a map from the polynomial ring 

F [X ,...,X 1 to 3 , sending X to zai for each i . I 1 n 0 i 
A monomial X ^1.. X̂11 is sent to the power map ẑ ^̂ + +̂ ndr] , so, 1 n 
since a ,..,a are linearly independent over 2 , distinct monomials 1 n 
are sent to distinct power maps. Hence if F(X ,..,X ) is a non-zero 

1 n 
polynomial in F TX ,...,X 1, F (zal,..,zdn) is a unit in J> , hy 

l 1 n 0 
Theorem 2.2 ; this proves the corollary. 

§3. The Main Theorem. 
3.1: We prove here a general result about r-transforms of rational functions; 
in the next section we apply this result to prove Washington theorem. 

Theorem 3.2: Let a be a rational function measure on 2 with 

values in F , and let R(Z) £ F (Z) be the associated rational function, 

Assume that a is supported on 2 . If 

r U) = o 
for infinitely many ^ e $ , then 

R(Z) + Rfz"1) = 0 . 
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x Proof: Since 1 = V x U (see (1.1)) , we may write  p 
R (IP) = J / „ IP(x)do(x) ; 

then, making the change of variable x~* nx in the integral, we have 

(3.3) r (*) = y /„ IP(x)da(nx) 
n€V U 

= I|>(x)d$(x) , 
with 
(3.4) 8 = y aon . 

By (1.16), a , and therefore also $ , takes values in a finite 

subfield k ^ IF . We may suppose that y £ k(resp. y ck if p = 2) . Let £ p 4 n 
p be the number of p-power roots of unity in k and let k = k(y , ) n no+n P 
for n _> 0. Note that if 5 is a p-power root of unity in k , then 

n 
(3.5) p nTrk (c) = c if C e y n > 

n 0 P 
= 0 i f c ^ % . 

0 
p 

Let K = U k . The action of Gal(K/k) on y ^ gives a natural 
n n 

isomorphism Gal(K/k) * 1 + p ° 1 . For t £ 1 + p ° # , we let a 
t 

denote the corresponding automorphism of K/k , so that CR (c) = e for 
* € ^ CO ' 

P 
Lemma 3.6. Let I|/ e $ and let p be the conductor of ^ (i.e. 1 + p 2 

p 
is the kernel of ^ i_n_ U) . Assume that r (I|>) = 0 and that m > 2n . 

n 
Let n = m - n0 and let ^ 6 y ra satisfy CP = 4, (1 + pP ) (then 

P 
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n+nn m n £ has order p = p ). Finally, for each y e U let g = g , o_y x ^ y y(l+p # ) 
P 

n ( g depends only on y mod p ° J ) . Then for each y£U , we have y — p 

; (?1/y) - o . 
y * 

Proof: Let y£U. Multiply (3.3) by (̂y) *and take the trace from k to 
n 

k: since r (ij>) = 0 , and since \b(x/y) e y only if x/y £ 1 + p'V , we 
obtain 

(3.7) 0 = / n ^(x/y)dg(x) , 
;y(l+p Zp) 

using (3.5). Let x£y(l + P^) and write x = y(l + p°z) . 

Then 
n n z pnz x/y-1 * (x/y) = i|, (1 + p z) = i|>(l + p ) =5 =5 ; 

The second equality requires the hypothesis m _> 2n̂ , i.e. n _> n̂ : 

n.z n , 2n (1+p) = 1+pz mod p , 

hence the congruence holds mod p"1 , the conductor of ^ . Using (3.8) 

in (3.7), we find 

(3.9) / iy n7/ , CX/Y dB(x) = 0 . 
Jy(l+p Zp) i\> 

Let t £• 1 + p"0? . Replacing y by yt in (3.9) and then applying 
P 

a gives 

<3-10) W v y \ d6(x) = 0' 

and summing (3.10) over a complete set of representatives 
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t € l + pn°Z for (1 + pn°Ẑ  ) / (1 + p% ) , we obtain the final formula 
P P P 

of the lemma. 

We may now complete the proof of Theorem 3.2 as follows. Assume that 
r (if>) =0 for infinitely many ij>. Fix y £ U for the moment. Ry Lemma 3,6, a 
$ has infinitely many zeros in y . Now, by (3.4) and (1.7), 
y oo 

P 
n n (3-H) 6 = 8 I M o7/ = I aoTi | n o . y y(l + p 7 ) .. y(l + p 7 ) , P n € V p 

= y (a I ) on . 
n ny(l + Pn°̂  ) P 

n Since a is a rational function measure , so is aI o_„ . by (1.16); ny(l + p 7 ) P 
n let R (Z) be the rational function associated to a I o ny n.y(l+P Tt ) 

P 
Then, by (3.11) and (1.10), 

(з. i г) 8 (c) = I R (C ) = 0 

for infinitely many 5 ^ y ^ . 
P 

Let A be the additive subgroup of 7 generated by the elements of V, 
P and let a ,...,a be a 7 - basis for A. Let 1 n 

h: IF (X....,X ) - J. 
o 1 n 0 

be the inclusion induced, as in Corollary 2.4, by sending X to zSl . Let 
i 

n ,...,n be a complete set of representatives in V for V/{±1} ; if we 1 m 
write 

1/n = y c a , c e 7 , j = l,..,m, 
.1 . '. i i i i i 
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and let 
Y = n X CiJ , 
j 1=1 1 

then h(Y ) = z1/nJ £ 3* . Let J 0 

m _ 
F(X1f...,X ) = y R (Y.) + R (Y*1) e J (Xl9...,X ), 

and view ĝ  as an element of 5^. By (3.12), h(F) = $̂  has infinitely 

many zeros; so h(F) is not a unit in 3̂  ; so h(F) = 0 and F = 0. 

Since the Y 's are pairwise multipiicatively independent over it J 
follows from Proposition 3.1 of [1] (see appendix) that 

(3.13) Rn y(Z) + y (Z_1)6k , 
J j 

for j = l,...,m, and also, replacing Z by Z * in (3.13), 

(3.14) R_n y(Z) + Rn y (Z"1) e k, 
3 3 

for j = l,...,m . Adding (3.13) to (3.14) and summing over j and over a 
n 

complete set of representatives y £ U for U/(l+p I ) we obtain 
P 

R(Z) + R (Z"1) € k . 

However, the identity (1.18) implies that we must in fact have 

R(Z) + R(Z "S = 0 . This completes the proof of Theorem 3.2. 

218 



ON A THEOREM OF WASHINGTON 

§4. Washington's Theorem. 

4.1. Notations: Let 0 denote the field of £-adic numbers, 0 a fixed 
I I 

algebraic closure of 0 , 1 the £-adic integers, and J the integral 

closure of ? in 0 ; we identify the residue field of 1 with F and 

denote the natural reduction map 1 —• F by ~ . We let ord denote the 

usual valuation on 0 , normalized by ord (i) = 1. 

If F is an abelian extension of 0 , not necessarily finite, then by 
a character of F/0 we mean a character of finite order of Gal(F/(Q) with 

values in 0) . If v is such a character, the primitive Dirichlet character 
associated to x by class field theory will also be denoted by x . Let f 
be any multiple of the conductor of x an̂  define 

I x(*)Za 
(4.2) F (Z) = — — £ 0 (Z) ; 

x 1 - zf £ 
F does not depend on the particular choice of f. According to Hurwitz, 
X 

we have, for nontrivial x » 

(4.3) L(0,x) = F (1) . 
X 

-1 
Here L(0,x) is defined to be L(0,xQ)a , where a: Q > (D is an 
arbitrary field isomorphism and L(s,x ) denotes the Dirichet L-function 
attached to x°• L(0,x) is independent of the choice of a . 

4.4. Washington's Theorem: In [2], Washington reduced his then conjectural 
theorem on class numbers (described in the introduction above) to the following 
assertion about the numbers L(0,x) , subsequently proved by him in [3]: 
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Fix an odd character e of C /0 of finite order and values in 

(? , and let i|> vary through the characters of Q with values in 0 

(here $ /Q is the Z -extension of V)) . Then 
00 P 

ord ~ L(O,0i|;) = 0 

for almost all such characters ^ . 

4.5. Values of L-Functions and r-Transforms: We now show how to derive the 
assertion of (4.4) from Theorem 3.2 above. We fix from now on an odd 

ab 
character 0 of 0 . The following proposition is essentially well-known: 

Proposition 4.6 Let f be the conductor of o , and let f = 2pf  c 0 Q 
Let 

f/2 
I e(a)Z8 

a=l,p/a 
R(Z) = m " . 

m 
Then for any character y of Q /0 whose conductor p does not divide f , 
we have 

\ L(0,onO = Y TU.C) R(C) , 

the summation taken over primitive pm-th roots of unity 5 in 0̂  , Here 

(4.7) TU,C) = — y *(a) r3 m , m p a mod p 
pfa 

m 
Proof. Let y1 denote summation over the primitive p -th roots of 

unity in 0 
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To begin with, we note the following identities: 

(4.8) R(Z) + R(Z_1) 

f 

a=l, pia 
0(a)Za 

1 -zf 

fp 

dv a=i .pJfa 
0(a)Za 

i - zfp 
so that, if ç is a primitive pm-th root of 1 , 

m 
fp 

(4.9) R(ç) + R(r~l) = a=l,p/a 

/ \ a-7a e(a)ç Z 

m 
i -zfp 

Z = 1 

Also, for any integer a prime to p, 

(4.10) l* T(i|i,ç)ça = if;(a) ; 

for this it is helpful to notice that T(I|J,Ç) , defined by (4.7), is 0 if 
m 

ç is an imprimitive p -th root of unity, so the sum may be extended over all 
m 

p -th roots of unity ç . 
Now, since i|; is even, we have T(T|*,Ç) = T(I|;,Ç ; hence 

2 I T(<P,Ç)R(Ç) = T (T(*.C) + T d p . ç " 1 ) ) » ^ ) 
r r 

= I' T(«,Ç)(R(Ç) + R(ç" )) 
r 

m 
fp 
a=l,p/a 

e(a)i|;(a)Z 

i - zfp 
z = 1 , 

by (4.9) and (4.10). Since pm Ì f , the conductor of Qi\> is divisible by p, 
and this reduces to 
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fp a 
l 0̂ (a)Z 

a = l  
i -zfp 

= L(O,0ip) , 
Z = 1 

by (4.2). This completes the proof of the proposition. 

Now let R(Z) denote the rational function in F (Z) obtained from 

R(Z) by applying ~ to its coefficients. By (1.8) we can determine a 

measure a on I with values in F by stipulating that 
P l 

a (c ) = R(c) . 

for n € ]i co for which ± 1 and setting a(c) = 0 otherwise. Then 
P 

a is supported on 2 , by (1.17). If ^ £ $ (1.11) , let %̂ be the 

character of Q /0 which satisfies 

ill1 (a) = ip(a) , 

for integers a prime to p ; on the right we are viewing y as a character 
x ~ of 1 trivial on V , as in (1.11). Then T(I|>',C) = tU,c) , as P 

defined by (4.7) and (1.14), respectively; hence, by (1.15) and Proposition 
(4.6), we have 

r (*) = (\ LfO.eVJf , 
a £ 

if the conductor of '̂ does not divide f . Now R(Z) + R(Z S ± 0 , by 

(4.8); hence r 0j>) = 0 for only finitely many ^ , by Theorem 3.2. Thus a 
the assertion of (4.4) follows. 
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Appendi x 
We recall here Proposition 3.1 of [1] and sketch a different proof: 

Let k be a field, X ,̂...,X ,Z (n 1) independent indeterminates over 

k , and Y ,...,Y (m > 1) nontrivial elements of the multiplicative group 1 m 
n 1 x M = n X generated by X„,...,X in k (X,,...,X ) . Suppose that the -j u j- i n — 1 n — 

i =1 
Y *s are pairwise multip!icatively independent, i.e. Ŷ  = Ŷ. with 

i ± j only if a = b = 0 . Then a relation of the form 

(*) rfYJ +...+ r (Y ) = 0 , 
1 1 mm 

with r.(Z)€ k(Z), can occur only if   J 

r.(Z)£ k , j = l,...,m . 
J 

Sketch of proof: Let R = k[X ....,X , X, ,...,X J; then R is a  1 m l m 
x x 

unique factorization domain and R = k •№ . If f(Z), g(Z) are non-zero 
polynomials in kTZ] and i t j , one can check that f(Y ) and g(Y ) are 

i J 
relatively prime in R . 

Let r.(Z) = f.(Z)/g.(Z), where f ,g are polynomials over k. Since i J J i j 
the elements g (Y ), j = l,...,m , are relatively prime in R , (*) implies J J 

b x 
that g.(Z) has the form aZ , aek , bel . Hence each r (Z) is a "Laurent i J 
polynomial", i.e. r.(Z)ek[Z,Z 1 , and r . (Y .) £ k [Y ., Y ^ R . Since J J i J J 
each element of R can be written uniquely as a k-linear combination of 
elements of M , (*) implies that each r (Z) is a constant, since for each 

j 
j and a * 0 , the element Y36M occurs at most once on the left-hand side of 

J 
(*) , and hence not at all. 
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