Astérisque

W. SINNOTT On a theorem of L. Washington

Astérisque, tome 147-148 (1987), p. 209-224 <http://www.numdam.org/item?id=AST_1987_147-148_209_0>

© Société mathématique de France, 1987, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Société Mathématique de France Astérisque 147-148 (1987), p.209-224.

ON A THEOREM OF L. WASHINGTON

ΒY

W. SINNOTT

Introduction.

Let F be a finite abelian extension of the rational numbers \emptyset , p a prime number, and \emptyset the \mathbb{Z}_p -extension of \emptyset . Let $F = F \, \emptyset_{\infty}$, and for each integer $n \ge 0$, let h denote the class number of the unique extension F_n of F in F_∞ of degree p^n over F. Then a theorem of L. Washington [3] states that, for any prime number $\ell \ne p$, the power of ℓ that divides h is constant for n sufficiently large.

To prove his theorem, Washington reduces it to an assertion (recalled in §4, below) about the ϱ -adic valuations of the values of Dirichlet's L-functions at s = 0. We give here a proof of this assertion, somewhat different from Washington's, based on the fact that these L-function values are "generated by rational functions"; more precisely, we prove in §3 a general result applicable to any rational function measure, and apply to it the proof of Washington's theorem in §4.

§1. Preliminaries on Measure.

1.1. <u>Notations</u>: We fix two distinct prime numbers ℓ and p. \mathbb{Z}_p denotes the ring of p-adic integers, \mathbb{F}_{ℓ} the prime field with ℓ elements, $\overline{\mathbb{F}}_{\ell}$ its algebraic closure, and μ the group of all p-power roots of unity in $\overline{\mathbb{F}}_{\ell}$. We recall that the group $\mathbb{Z}_p^{\mathsf{X}}$ of units in \mathbb{Z}_p is the internal direct product of its torsion subgroup V and the subgroup $\mathbb{U} = 1+2p\mathbb{Z}_p$. 1.2. <u>Measures on</u> \mathbb{Z}_p with values in $\overline{\mathbb{F}}_{\ell}$: By a measure on \mathbb{Z}_p with values in $\overline{\mathbb{F}}_{\ell}$ we mean a finitely additive $\overline{\mathbb{F}}_{\ell}$ -valued set function on the collection of compact open subsets of \mathbb{Z}_p . If α is a measure, and $\phi : \mathbb{Z}_p \to \overline{\mathbb{F}}_{\ell}$ is a locally constant function, say constant on the cosets of $p^n \mathbb{Z}_p$ in \mathbb{Z}_p , then we define the integral

(1.3)
$$\int_{\mathbb{Z}_{p}} \phi(x) d\alpha(x) = \sum_{\substack{n \neq 0 \\ p \neq n \neq n \neq p}} \phi(a)\alpha(a+p^{n} \mathbb{Z}_{p}) .$$

1.4. Restriction and change of variable: If α is a measure and $X \subseteq \mathbb{Z}_p$ is compact and open, we denote by $\alpha|_{\chi}$ the measure obtained by restricting α to X and extending by 0. We also define

(1.5)
$$\int_{X} \phi(x) d_{\alpha}(x) = \int_{Z'_{p}} \phi(x) d_{\alpha}|_{X} (x) ,$$

for any locally constant function $\ _{\varphi}\colon \ \mathbb{Z} \to \overrightarrow{F}$.

If $c \in \mathbb{Z}_p^X$, we let $\alpha \circ c$ denote the measure defined by $\alpha \circ c$ (X) = $\alpha(cX)$ for all compact open subsets $X \subseteq \mathbb{Z}$. In place of $d_{\alpha \circ c}(x)$ we write $d_{\alpha}(cx)$, so that we have the "change of variable" formula

(1.6)
$$\int_{\mathbb{Z}_{p}} \Phi(cx) d_{\alpha}(cx) = \int_{\mathbb{Z}_{p}} \Phi(x) d_{\alpha}(x) .$$

We note that

(1.7)
$$\alpha \circ c = \alpha c \chi \circ c \lambda$$

1.8. The Fourier Transform: We identify the continuous characters

 $\mathbb{Z}_{p} \to \overline{\mathbb{F}}_{\ell}^{X} \quad \text{with the group} \quad \mu_{\infty} \subseteq \overline{\mathbb{F}}_{\ell}, \text{ an element } \zeta \in \mu_{\infty} \quad \text{corresponding} \\
\text{to the character } x + \zeta^{X} (x \in \mathbb{Z}_{p}) \quad \text{. Let } \alpha \quad \text{be a measure } ; \text{ the Fourier} \\
\underline{\text{transform}} \quad \hat{\alpha} : \mu_{\infty} \to \overline{\mathbb{F}}_{\ell} \quad \text{of } \alpha \text{ is defined by} \\
p \quad \hat{\alpha} (\zeta) = \int_{\mathbb{Z}_{p}} \zeta^{X} d\alpha(x) \quad \text{.}$

By "Fourier inversion" we see that the Fourier transform gives an isomorphism between the ring (under convolution) of measures on \mathbb{Z}_p with values in $\overline{\mathbb{F}}_{\ell}$ and the ring of functions on μ_{∞} with values in $\overline{\mathbb{F}}_{\rho}$.

It follows from (1.6) that, for any measure $_{lpha}$,

(1.10)
$$\alpha \circ c (\zeta) = \alpha (\zeta^{1/c})$$

for $c \in \mathbb{Z}_p^X$, $\zeta \in \mu_\infty$.

1.11. The <u>r</u>-Transform: Let ϕ denote the group of continuous characters $U \to \overline{F}_{\ell}^{\chi}$, viewed always as characters of \mathbb{Z}_{p}^{χ} trivial on V. Let α be a measure ; the <u>r</u> - transform $\underline{r}_{\alpha} : \phi \to \overline{F}_{\ell}$ of α is defined by

(1.12)
$$\Gamma_{\alpha}(\psi) = \int_{Z} \psi(x) d_{\alpha}(x).$$

One relation between the two transforms is the following. Let $\psi \in \phi$ and let $1 + p^n Z_p$ be the kernel of ψ in U. View ψ as above as a character of Z_p^X trivial on V, and extend ψ by O to all of Z_p . Then we may write ψ as a linear combination of additive characters

(1.13)
$$\psi(x) = \frac{1}{p} \sum_{\substack{p \\ \varphi \in \mu \\ p}} \tau(\psi, \zeta) \zeta^{x},$$

with coefficients

(1.14)
$$\tau(\psi,\zeta) = \sum_{\substack{x \mod p \\ x \neq 0 \mod p}} \psi(x)\zeta^{-x};$$

therefore

(1.15)
$$\Gamma_{\alpha}(\psi) = \sum_{\alpha} \tau(\psi, \zeta) \hat{\alpha}(\zeta) .$$

When n > 0, τ (ψ , ζ) is a primitive Gauss sum, and so vanishes unless ζ has order p^n . So for n > 0 the sum in (1.15) may be restricted to <u>primitive</u> p^n -the roots of unity ζ .

W. SINNOTT

1.16. <u>Rational Function Measures</u>: We call a measure α a <u>rational function</u> <u>measure</u> if there is a rational function $R(Z) \in \overrightarrow{F}_{\ell}(Z)$ such that $\hat{\alpha}_{\alpha}(\zeta) = R(\zeta)$

for almost all (i.e. all but finitely many) $\zeta \boldsymbol{\varepsilon} \mu_{\infty}$.

If α is a rational function measure, then so is $\alpha|_{\chi}$ for any compact open subset $X \subseteq \mathbb{Z}_p^{\alpha}$. In particular, if $X = \mathbb{Z}_p^{\chi}$ and we put

$$\alpha^* = \alpha |$$
 , then we have \overline{z}^X_p

$$\hat{\alpha}^{\star}(\zeta) = \hat{\alpha}(\zeta) - \frac{1}{p} \sum_{\substack{\rho \\ \varepsilon^{p}=1}} \hat{\alpha}(\varepsilon\zeta) .$$

It follows that α is supported in ${\mathbb Z}_p^X$ if and only if

(1.17)
$$\hat{\sum_{\alpha} \alpha(\epsilon \zeta)} = 0, \quad \zeta \in \mu;$$

this implies the identity

(1.18)
$$\sum_{\substack{\epsilon \\ p=1}}^{\gamma} R(\epsilon Z) = 0,$$

where R(Z) is the rational function associated to α . (For details in a similar case, see [1], Lemma 1.1).

Finally, if k is the finite field generated over \mathbb{F}_{ℓ} by the coefficients of R(Z) and the values $\hat{\alpha}(\zeta)$ for which $\hat{\alpha}(\zeta) \neq R(\zeta)$, then α takes values in k. §2. Power Functions on μ_{∞}

2.1. Independence of Power Functions: Let z denote a "variable element" of μ , so that we may define functions on μ by means of expressions $p^{\tilde{p}}$ involving z. For any a $\boldsymbol{\epsilon} \boldsymbol{Z}$, we have the "a-th power map" z^{a} ; it is the Fourier transform of the Dirac measure of mass 1 at a . We have:

<u>Theorem 2.2</u>: Let b_1, \ldots, b_n be elements of $\overline{\mathbb{F}}_{\ell}$, <u>not all</u> 0, and let a_1, \ldots, a_n be distinct elements of \mathbb{Z}_p . Define $f: \mu_p^{\infty} \longrightarrow \overline{\mathbb{F}}_{\ell}$ by

$$f(z) = \sum_{i=1}^{n} b_i z^{a_i}$$

Then f has only finitely many zeros in μ_{p}

<u>Proof</u>: Let k be the field generated over the prime field \mathbf{F}_{k} by b_{1}, \dots, b_{n} and the p-th roots of unity, and let p^{0} be the number of p-power roots of unity in k. Let N_{1} be an integer large enough that a_{1}, \dots, a_{n} are distinct mod p^{1} . Suppose that f(z) = 0, where z has order p^{N} and $N \ge N_{0} + N_{1}$. Let Tr denote the trace map from k(z) to k. Then, for each $j = 1, \dots, n$. $0 = \text{Tr}(z^{-a_{j}}f(z)) = [k(z):k]b_{j}$, since if $i \ne j$, $z \ne k$ and hence has trace 0. Since [k(z):k] = $p^{N-N}o$, it follows that $b_{1}=\dots=b_{n}=0$, contrary to hypothesis. Thus all of the zeros of f lie in $\mu_{N_{0}+N_{1}-1}$, which completes the proof. Let \mathcal{F} denote the \overline{F}_{2} -algebra of maps from $\mu_{p^{\infty}}$ to \overline{F}_{2} ; and let $\mathcal{F}_{0} = \mathcal{F}/N$, where N is the ideal of functions which vanish almost everywhere. The conclusion of the theorem states that f(Z) is a unit in \mathcal{F}_{0} . Corollary 2.4: If a_1, \ldots, a_n are elements of \mathbb{Z}_p linearly independent over \mathbb{Z} , then the functions z^{a_1}, \ldots, z^{a_n} are algebraically independent over $\overline{\mathbb{F}}_{\mathfrak{g}}$ in \mathcal{F}_0 . Let X_1, \ldots, X_n be independent indeterminates over $\overline{\mathbb{F}}_{\mathfrak{g}}$: then sending $X_i + z^{a_i}$, $i = 1, \ldots, n$, induces an inclusion

$$IF_{\ell}(X_1,\ldots,X_n) \to \mathcal{F}_0$$

<u>Proof</u>: In any case there is a map from the polynomial ring $\overline{\mathbf{F}}_{\ell}[X_1,...,X_n]$ to $\overline{\mathcal{P}}_0$, sending X_i to z^{a_i} for each i. A monomial $X_1^{k_1}..., x^{k_n}$ is sent to the power map $z^{k_1a_1+\cdots+k_na_n}$, so, since $a_1,...,a_n$ are linearly independent over \mathbb{Z} , distinct monomials are sent to distinct power maps. Hence if $F(X_1,...,X_n)$ is a <u>non-zero</u> polynomial in $\overline{\mathbf{F}}_{\ell}[X_1,...,X_n]$, $F(z^{a_1},...,z^{a_n})$ is a <u>unit</u> in $\overline{\mathcal{P}}_0$, by Theorem 2.2; this proves the corollary.

§3. The Main Theorem.

3.1: We prove here a general result about r-transforms of rational functions; in the next section we apply this result to prove Washington theorem.

<u>Theorem 3.2</u>: Let α be a rational function measure on \mathbb{Z}_p with values in $\overline{\mathbb{F}}_{\ell}$, and let $R(Z) \in \overline{\mathbb{F}}_{\ell}(Z)$ be the associated rational function. Assume that α is supported on \mathbb{Z}_p^X . If <u>for infinitely many</u> $\psi \in \Phi$, then $R(Z) + R(Z^{-1}) = 0$.

Proof: Since
$$\mathbb{Z}_{p}^{X} = V \times U$$
 (see (1.1)), we may write
 $\Gamma_{\alpha}(\psi) = \sum_{\eta \in V} \int_{\eta \cup \psi(x) d_{\alpha}(x)} ;$

then, making the change of variable $\ x \rightarrow \ _{n} x$ in the integral, we have

(3.3)
$$\Gamma_{\alpha}(\psi) = \sum_{n \in V} \int_{U} \psi(x) d_{\alpha}(nx)$$
$$n \in V$$
$$= \int_{U} \psi(x) d_{\beta}(x) ,$$

with

$$(3.4) \qquad \beta = \sum_{\eta \in V} \alpha \circ \eta \cdot \eta$$

By (1.16), α , and therefore also β , takes values in a finite subfield $k \subseteq \overline{F}_{\ell}$. We may suppose that $\mu_p \subseteq k(\text{resp. } \mu_4 \subseteq k \text{ if } p = 2)$. Let p^0 be the number of p-power roots of unity in k and let $k_n = k(\mu_p n_0 + n)$ for $n \ge 0$. Note that if ζ is a p-power root of unity in k, then

$$(3.5) \qquad p^{-n} \operatorname{Tr}_{k_n/k} (\zeta) = \zeta \quad \text{if} \quad \zeta \in \mu \quad n,$$

$$= 0 \quad \text{if} \quad \zeta \notin \mu \quad n,$$

$$p^{0}$$

Let K = U k . The action of Gal(K/k) on
$$\mu_{\infty}$$
 gives a natural n p

isomorphism Gal(K/k) $\approx 1 + p^{0} \mathbb{Z}_{p}^{\prime}$. For $t \in 1 + p^{0} \mathbb{Z}_{p}^{\prime}$, we let σ_{t}^{\prime} denote the corresponding automorphism of K/k, so that $\sigma_{t}^{\prime}(\varsigma) = \varsigma^{t}$ for $\varsigma \in \mu_{\infty}^{\prime}$.

$$\frac{p}{\text{Lemma 3.6.}} \quad \underline{\text{Let}} \quad \psi \in \phi \text{ and let } p^{\text{m}} \quad \underline{\text{be the conductor of}} \quad \psi \quad (\text{i.e. } 1 + p^{\text{m}} \mathbb{Z}_{p})$$

$$\frac{\text{is the kernel of}}{\alpha} \quad \psi \quad \underline{\text{in}} \quad U) \quad \underline{\text{Assume that}} \quad r_{\alpha}(\psi) = 0 \quad \underline{\text{and that}} \quad \underline{\text{m}} \ge 2n_{0} \quad e^{-p_{0}}$$

$$\underline{\text{Let}} \quad n = m - n_{0} \quad \underline{\text{and let}} \quad \zeta_{\psi} \in \mu_{\infty} \quad \underline{\text{satisfy}} \quad \zeta_{\psi}^{p^{\text{n}}} = \psi (1 + p^{\text{n}}) \quad (\text{then})$$

$$\zeta_{\psi} \xrightarrow{\text{has order } p^{n+n_0} = p^m}$$
. Finally, for each $y \in U$ let $\beta_y = \beta |_{y(1+p} {}^{n_0} \mathbb{Z}_p)$
($\beta_y \xrightarrow{\text{depends only on } y \xrightarrow{\text{mod } p^0} \mathbb{Z}_p$). Then for each $y \in U$, we have
 $\hat{\beta}_y (\zeta_{\psi}^{1/y}) = 0$.
Proof: Let $y \in U$. Multiply (3.3) by $\psi(y)^{-1}$ and take the trace from k_p to

n

k: since $r_{\alpha}(\psi) = 0$, and since $\psi(x/y) \in \mu_{n_0}$ only if $x/y \in 1 + p^n \mathbb{Z}_p$, we obtain

(3.7)
$$0 = \int_{y(1+p^{n} \mathbb{Z}_{p})} \psi(x/y) d\beta(x) ,$$

using (3.5). Let $x \in y(1 + p^n \mathbb{Z}_p)$ and write $x = y(1 + p^n z)$.

Then

$$\psi(x/y) = \psi(1 + p^{n}z) = \psi(1 + p^{n})^{z} = \zeta_{\psi}^{p^{n}z} = \zeta_{\psi}^{x/y-1};$$

The second equality requires the hypothesis $m \ge 2n_0$, i.e. $n \ge n_0$:

$$(1 + p^{n})^{z} \equiv 1 + p^{n} z \mod p^{2n}$$
,

hence the congruence holds mod $p^{\rm m}$, the conductor of ψ . Using (3.8) in (3.7), we find

(3.9)
$$\int_{y(1+p^{n}\mathbb{Z}_{p})} \zeta_{\psi}^{x/y} d\beta(x) = 0.$$

Let t \in 1 + pⁿoZ . Replacing y by yt in (3.9) and then applying $\sigma_{t}^{\sigma_{t}}$ gives

(3.10)
$$\int_{yt(1+p^{n}\mathbb{Z}_{p})} \zeta_{\psi}^{x/y} d\beta(x) = 0 ,$$

and summing (3.10) over a complete set of representatives

 $t \in 1 + p^{n_0} \mathbb{Z}_p$ for $(1 + p^{n_0} \mathbb{Z}_p) / (1 + p^{n_0} \mathbb{Z}_p)$, we obtain the final formula of the lemma.

We may now complete the proof of Theorem 3.2 as follows. Assume that $\Gamma_{\alpha}(\psi) = 0$ for infinitely many ψ . Fix $y \in U$ for the moment. By Lemma 3.6, $\hat{\beta}_{y}$ has infinitely many zeros in μ_{p} . Now, by (3.4) and (1.7), (3.11) $\beta_{y} = \beta|_{y}(1 + p \overset{n}{\mathcal{O}} \mathbb{Z}_{p}) = \sum_{n \in V} \alpha \circ n |_{y}(1 + p \overset{n}{\mathcal{O}} \mathbb{Z}_{p}),$ $= \sum_{n \in V} (\alpha|_{n}) \circ n \cdot \sum_{n \in V} (\alpha|_{p}) \circ n \cdot \sum_{n \in V}$

Since α is a rational function measure, so is $\alpha \Big|_{ny(1 + p}^{n} \mathbb{Z}_{p}^{n}\Big)$ by (1.16); let $R_{ny}(Z)$ be the rational function associated to $\alpha \Big|_{ny(1+p)}^{n} \mathbb{Z}_{p}^{n}\Big)^{\bullet}$.

Then, by (3.11) and (1.10),

(3.12)
$$\hat{\beta}_{y}(\zeta) = \sum_{n} R_{ny}(\zeta^{1/n}) = 0$$

for infinitely many $\zeta \in \mu_{\infty}$.

Let A be the additive subgroup of \mathbb{Z}_p generated by the elements of V, and let a_1, \dots, a_n be a \mathbb{Z} - basis for A. Let

h:
$$\overline{\mathbb{F}}_{\ell} (X_1, \dots, X_n) \to \mathcal{F}_0$$
.

be the inclusion induced, as in Corollary 2.4, by sending X_{i} to $z^{a_{i}}$. Let n_{1}, \dots, n_{m} be a complete set of representatives in V for V/{±1}; if we write

$$\frac{1}{n_{j}} = \sum_{i=1}^{n} c_{ij} a_{i}, c_{ij} \in \mathbb{Z}, j=1,...,m,$$

and let

$$Y_{j} = \prod_{i=1}^{n} X_{i}^{c_{i}j},$$

then $h(Y_j) = z^{1/n_j} \epsilon \mathcal{F}_0$. Let

$$F(X_{1},...,X_{n}) = \sum_{j=1}^{m} R_{j}(Y_{j}) + R_{-n_{j}y}(Y_{j}^{-1}) \in \overline{\mathbb{F}}_{\ell}(X_{1},...,X_{n}),$$

and view $\hat{\beta}_y$ as an element of \mathcal{F}_0 . By (3.12), h(F) = $\hat{\beta}_y$ has infinitely many zeros; so h(F) is not a unit in \mathcal{F}_0 ; so h(F) = 0 and F = 0. Since the Y_j's are pairwise multiplicatively independent over \mathbb{Z} , it follows from Proposition 3.1 of [1] (see appendix) that

(3.13)
$$R_{\eta_j y}(Z) + R_{-\eta_j y}(Z^{-1}) \in k$$

for $j = 1, \ldots, m$, and also, replacing Z by Z⁻¹ in (3.13),

(3.14)
$$R_{-n,y}(Z) + R_{n,y}(Z^{-1}) \in k,$$

for j = 1, ..., m. Adding (3.13) to (3.14) and summing over j and over a complete set of representatives $y \in U$ for $U/(1+p \stackrel{O}{\mathbb{Z}})$ we obtain

$$R(Z) + R(Z^{-1}) \in k$$
.

However, the identity (1.18) implies that we must in fact have $R(Z) + R(Z^{-1}) = 0$. This completes the proof of Theorem 3.2.

§4. Washington's Theorem.

4.1. <u>Notations</u>: Let \emptyset_{ℓ} denote the field of ℓ -adic numbers, $\overline{\emptyset}_{\ell}$ a fixed algebraic closure of \emptyset_{ℓ} , \mathbb{Z}_{ℓ} the ℓ -adic integers, and $\overline{\mathbb{Z}}_{\ell}$ the integral closure of \mathbb{Z}_{ℓ} in $\overline{\emptyset}_{\ell}$; we identify the residue field of $\overline{\mathbb{Z}}_{\ell}$ with $\overline{\mathbb{F}}_{\ell}$ and denote the natural reduction map $\overline{\mathbb{Z}}_{\ell} \to \overline{\mathbb{F}}_{\ell}$ by \sim . We let ord denote the usual valuation on $\overline{\emptyset}_{\ell}$, normalized by $\operatorname{ord}_{\ell}(\ell) = 1$.

If F is an abelian extension of \emptyset , not necessarily finite, then by a character of F/ \emptyset we mean a character of finite order of Gal(F/ \emptyset) with values in $\overline{\emptyset}_{\ell}^{\chi}$. If χ is such a character, the primitive Dirichlet character associated to χ by class field theory will also be denoted by χ . Let f be any multiple of the conductor of χ and define

(4.2)
$$F_{\chi}(Z) = \frac{A^{+}}{1 - Z^{+}} \epsilon_{\varrho}(Z);$$

F does not depend on the particular choice of f. According to Hurwitz, χ we have, for nontrivial χ ,

(4.3)
$$L(0,\chi) = F_{\chi}(1)$$
.

Here $L(0,\chi)$ is defined to be $L(0,\chi^{\sigma})^{\sigma}$, where $\sigma: \overline{0}_{\ell} \stackrel{\sim}{+} \mathbb{C}$ is an arbitrary field isomorphism and $L(s,\chi^{\sigma})$ denotes the Dirichet L-function attached to χ^{σ} . $L(0,\chi)$ is independent of the choice of σ .

4.4. <u>Washington's Theorem</u>: In [2], Washington reduced his then conjectural theorem on class numbers (described in the introduction above) to the following assertion about the numbers $L(0,\chi)$, subsequently proved by him in [3]:

Fix an odd character 0 of $0^{ab}/0$ of finite order and values in $\overline{0}_{\ell}$, and let ψ vary through the characters of $0_{\rho}/0$ with values in $\overline{0}_{\ell}$ (here $0_{\rho}/0$ is the \mathbb{Z}_{p} -extension of 0). Then $ord_{\rho} = \frac{1}{2} L(0,0\psi) = 0$

for almost all such characters ψ .

4.5. <u>Values of L-Functions and r-Transforms</u>: We now show how to derive the assertion of (4.4) from Theorem 3.2 above. We fix from now on an odd character Θ of Q^{ab}/Q . The following proposition is essentially well-known:

<u>Proposition 4.6</u> Let f_0 be the conductor of Θ , and let $f = 2pf_0$. Let

$$R(Z) = \frac{\sum_{a=1,p \nmid a} \Theta(a) Z^{a}}{1 - Z^{f}}$$

Then for any character ψ of $0_{\infty}/0$ whose conductor p^m does not divide f, we have

$$\frac{1}{2} L(0,\Theta\psi) = \sum_{\zeta} \tau(\psi,\zeta) R(\zeta) ,$$

the summation taken over primitive p^{m} -th roots of unity ζ in $\overline{\emptyset}_{\ell}$. Here (4.7) $\tau(\psi,\zeta) = \frac{1}{p^{m}} \sum_{\substack{a \mod p^{m} \\ p \nmid a}} \psi(a) \zeta^{-a}$

<u>Proof</u>. Let \sum_{ζ}' denote summation over the primitive p^m -th roots of ζ unity in $\overline{0}_{p}$.

To begin with, we note the following identities:

(4.8)
$$R(Z) + R(Z^{-1}) = \frac{\int_{a=1, p/a}^{f} \Theta(a)Z^{a}}{1 - Z^{f}} = \frac{\int_{a=1, p/a}^{fp''} \Theta(a)Z^{a}}{1 - Z^{fp''}},$$

so that, if ζ is a primitive p^{m} -th root of 1,

(4.9)
$$R(\zeta) + R(\zeta^{-1}) = \frac{\begin{pmatrix} fp \\ \sum \Theta(a)\zeta^{a}Z^{a} \\ a=1,p/a \\ 1 - Z^{fp} \\ z = 1 \end{pmatrix}$$

Also, for any integer a prime to p,

(4.10)
$$\sum_{\zeta} \tau(\psi, \zeta) \zeta^{a} = \psi(a) ;$$

for this it is helpful to notice that $\tau(\psi, \zeta)$, defined by (4.7), is 0 if ζ is an imprimitive p^m -th root of unity, so the sum may be extended over all p^m -th roots of unity ζ .

Now, since ψ is even, we have $\tau(\psi,\zeta) = \tau(\psi,\zeta^{-1})$; hence

$$2 \sum_{\zeta} \tau(\psi, \zeta) R(\zeta) = \sum_{\zeta} (\tau(\psi, \zeta) + \tau(\psi, \zeta^{-1})) R(\zeta)$$
$$= \sum_{\zeta} \tau(\psi, \zeta) (R(\zeta) + R(\zeta^{-1}))$$
$$\frac{fp^{m}}{\sum_{\zeta} \Theta(a)\psi(a)Z^{a}}$$
$$= \frac{a=1, p/a}{1 - Z^{fp^{m}}} | Z = 1,$$

by (4.9) and (4.10). Since $p^m \not k$ f , the conductor of $\theta \psi$ is divisible by p, and this reduces to

$$\begin{array}{c|c} fp''' \\ & \sum \Theta \psi(a) Z^{a} \\ \hline a=1 \\ & 1 - Z^{fp''} \end{array} \middle| \begin{array}{c} = L(0,\Theta\psi) \\ Z = 1 \\ \end{array} \right.$$

by (4.2). This completes the proof of the proposition.

Now let $\widetilde{R}(Z)$ denote the rational function in $\overline{F}_{\ell}(Z)$ obtained from R(Z) by applying ~ to its coefficients. By (1.8) we can determine a measure α on \mathbb{Z}_{p} with values in \overline{F}_{ℓ} by stipulating that

 $\hat{\alpha}(\zeta) = \widetilde{R}(\zeta)$,

for $\zeta \in \mu_{\infty}$ for which $\zeta^{f} \neq 1$ and setting $\hat{\alpha}(\zeta) = 0$ otherwise. Then α is supported on \mathbb{Z}_{p}^{X} , by (1.17). If $\psi \in \phi$ (1.11), let ψ' be the character of $\emptyset_{\alpha}/\emptyset$ which satisfies

 $\psi'(a)^{\sim} = \psi(a)$,

for integers a prime to p; on the right we are viewing ψ as a character of \mathbb{Z}_{p}^{X} trivial on V, as in (1.11). Then $\tau(\psi',\zeta)^{\sim} = \tau(\psi,\zeta)$, as defined by (4.7) and (1.14), respectively; hence, by (1.15) and Proposition (4.6), we have

$$\Gamma_{\alpha}(\psi) = \left(\frac{1}{2} L(0, \Theta \psi')\right)^{\sim},$$

if the conductor of ψ' does not divide f. Now $\tilde{R}(Z) + \tilde{R}(Z^{-1}) \neq 0$, by (4.8); hence $\Gamma_{\alpha}(\psi) = 0$ for only finitely many ψ , by Theorem 3.2. Thus the assertion of (4.4) follows.

Appendix

We recall here Proposition 3.1 of [1] and sketch a different proof:

Let k be a field,
$$X_1, \dots, X_n, Z$$
 $(n \ge 1)$ independent indeterminates over
k, and Y_1, \dots, Y_m $(m \ge 1)$ nontrivial elements of the multiplicative group

$$M = \prod_{i=1}^{n} X_i^{\mathbb{Z}} \quad \underline{\text{generated by}} \quad X_1, \dots, X_n \quad \underline{\text{in}} \quad k \ (X_1, \dots, X_n)^{\mathbb{X}} \quad \underline{\text{Suppose that the}} \quad \underline{\text{suppo$$

with $r_j(Z) \in k(Z)$, can occur only if

 $r_{j}(Z) \in k$, j = 1, ..., m.

<u>Sketch of proof</u>: Let $R = k[X_1, \dots, X_m, X_1^{-1}, \dots, X_m^{-1}]$; then R is a unique factorization domain and $R^X = k^X \cdot M$. If f(Z), g(Z) are non-zero polynomials in k[Z] and $i \neq j$, one can check that $f(Y_1)$ and $g(Y_j)$ are relatively prime in R.

Let $r_i(Z) = f_j(Z)/g_j(Z)$, where f_i, g_j are polynomials over k. Since the elements $g_j(Y_j)$, j = 1, ..., m, are relatively prime in R, (*) implies that $g_i(Z)$ has the form aZ^b , $a \in k^x$, $b \in Z$. Hence each $r_j(Z)$ is a "Laurent polynomial", i.e. $r_j(Z) \in k[Z, Z^{-1}]$, and $r_j(Y_i) \in k[Y_j, Y_j^{-1}] \leq R$. Since each element of R can be written uniquely as a k-linear combination of elements of M, (*) implies that each $r_j(Z)$ is a constant, since for each j and $a \neq 0$, the element $Y_j^a \in M$ occurs at most once on the left-hand side of (*), and hence not at all.

REFERENCES:

- 1. Sinnott, W.: On the $\,\mu$ -invariant of the $\,\Gamma$ -transform of a rational function. Invent. Math. 75, 273 282 (1984).
- 2 Washington, L.: Class numbers and \mathbb{Z} -extensions, Math. Ann. 214, p 177 193 (1975).
- 3. Washington, L.: The non-p-part of the class number in a cyclotomic \mathbb{Z} -extension. Invent. Math 49, 87 97 (1978)

Warren Sinnott Department of Mathematics The Ohio State University Columbus, Ohio 43210 U.S.A.