Astérisque

W. Sinnott On a theorem of L. Washington

Astérisque, tome 147-148 (1987), p. 209-224
http://www.numdam.org/item?id=AST_1987__147-148__209_0
© Société mathématique de France, 1987, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme

ON A THEOREM OF L. WASHINGTON

BY
W. SINNOTT

Introduction.

Let F be a finite abelian extension of the rational numbers \mathbb{D}, p a prime number, and \mathbb{Q}_{∞} the \mathbb{Z}_{p}-extension of Q. Let $F_{\infty}=F \mathbb{D}_{\infty}$, and for each integer $n \geq 0$, let h_{n} denote the class number of the unique extension F_{n} of F in F_{∞} of degree p^{n} over F. Then a theorem of L. Washington [3] states that, for any prime number $\ell \neq p$, the power of ℓ that divides h_{n} is constant for n sufficiently large.

To prove his theorem, Washington reduces it to an assertion (recalled in $\S 4$, below) about the ℓ-adic valuations of the values of Dirichlet's L-functions at $s=0$. We give here a proof of this assertion, somewhat different from Washington's, based on the fact that these L-function values are "generated by rational functions" ; more precisely, we prove in $\delta 3 \mathrm{a}$ general result applicable to any rational function measure, and apply to it the proof of Washington's theorem in $\$ 4$.
§1. Preliminaries on Measure.
1.1. Notations: We fix two distinct prime numbers ℓ and p. \mathbb{Z}_{p} denotes the ring of p-adic integers, \mathbb{F}_{ℓ} the prime field with ℓ elements, $\overline{\mathbb{F}}_{\ell}$ its algebraic closure, and $\mu_{p^{\infty}}$ the group of all p-power ronts of unity in $\overline{\mathbb{F}}_{\ell}$. We recall that the group \mathbb{Z}_{p}^{x} of units in \mathbb{Z}_{p} is the internal direct product of its torsion subgroup V and the subgroup $U=1+2 p \mathbb{Z}{ }_{p}$ •
1.2. Measures on \mathbb{Z}_{p} with values in $\overline{\mathbb{F}}_{\ell}$: By a measure on \mathbb{Z}_{p} with values in $\overline{\mathbb{F}}_{\ell}$ we mean a finitely additive $\overline{\mathbb{F}}_{\ell}$-valued set function on the collection of compact open subsets of \mathbb{Z}_{p}. If α is a measure, and $\phi: \mathbb{Z}_{p} \rightarrow \overline{\mathbb{F}}_{\ell}$ is a locally constant function, say constant on the cosets of $p{ }^{n} \mathbb{Z}_{p}$ in \mathbb{Z}_{p}, then we define the integral

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} \phi(x) d \alpha(x)=\sum_{\left.a \bmod p^{n^{\phi}(a) \alpha\left(a+p^{n}\right.} \mathbb{Z}_{p}\right) .} . \tag{1.3}
\end{equation*}
$$

1.4. Restriction and change of variahle: If α is a measure and $x \subseteq \mathbb{Z}_{p}$ is compact and open, we denote by $\left.\alpha\right|_{X}$ the measure obtained by restricting α to X and extending by 0 . We also define

$$
\begin{equation*}
\int_{X} \phi(x) d_{\alpha}(x)=\left.\int_{\mathbb{Z}_{p}} \phi(x) d_{\alpha}\right|_{X}(x), \tag{1.5}
\end{equation*}
$$

for any locally constant function $\phi: \mathbb{Z}_{p} \rightarrow \overline{\mathbb{F}}_{\ell}$.
If $c \in \mathbb{Z}_{p}^{X}$, we let $\alpha \circ c$ denote the measure defined by $\alpha \circ c(X)=\alpha(c X)$ for all compact open subsets $x \subseteq \mathbb{Z}_{p}$. In place of $d \alpha o c(x)$ we write $d \alpha(c x)$, so that we have the "change of variable" formula

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} \phi(c x) d \alpha(c x)=\int_{\mathbb{Z}_{p}} \phi(x) d_{\alpha}(x) . \tag{1.6}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\left.\alpha \circ c\right|_{X}=\left.\alpha\right|_{c x} \circ \circ \tag{1.7}
\end{equation*}
$$

1.8. The Fourier Transform: We identify the continuous characters $\mathbb{Z}_{p} \rightarrow \overline{\mathbb{I}}_{\ell}^{x}$ with the group $\underset{p}{\mu_{\infty} \subseteq \overline{\mathbb{F}}_{\ell}}$, an element $\zeta \boldsymbol{\epsilon}_{\mu \infty}$ corresponding to the character $x \rightarrow \zeta^{x}\left(x \in \mathbb{Z}_{p}\right)$. Let α be a measure ; the Fourier transform $\hat{\alpha}: \mu_{p} \rightarrow \overline{\mathbb{F}}_{\ell}$ of α is defined by p

$$
\begin{equation*}
\hat{\alpha}(\zeta)=\int_{\mathbb{Z}_{p}} \zeta^{x} d \alpha(x) \tag{1.9}
\end{equation*}
$$

By "Fourier inversion" we see that the Fourier transform gives an isomorphism between the ring (under convolution) of measures on \mathbb{Z}_{p} with values in $\overline{\mathbb{F}}_{\ell}$ and the ring of functions on μ_{∞} with values in $\overline{\mathbb{F}}{ }_{\ell}$.

It follows from (1.6) that, for any measure α,

$$
\begin{equation*}
\alpha \circ c(\zeta)=\hat{\alpha}\left(\zeta^{1 / C}\right) \tag{1.10}
\end{equation*}
$$

for $c \in \mathbb{Z}_{p}^{x}, \quad \zeta \in \mu_{p}$.
1.11. The Γ - Transform: Let Φ denote the group of continuous characters $U \rightarrow \overline{\mathbb{I F}}_{\ell}^{\mathrm{X}}$, viewed always as characters of $\mathbb{\#}_{p}^{x}$ trivial on V. Let α be a measure ; the Γ - transform $\Gamma_{\alpha}: \Phi \rightarrow \overline{\mathbb{F}}{ }_{\ell}$ of α is defined by

$$
\begin{equation*}
\Gamma_{\alpha}(\psi)=\int_{\mathbb{Z}_{p}^{x}} \psi(x) d \alpha(x) \tag{1.12}
\end{equation*}
$$

One relation between the two transforms is the following. Let $\psi \in \Phi$ and let $1+p^{n} \mathbb{Z}_{p}$ be the kernel of ψ in U. View ψ as above as a character of \mathbb{Z}_{p}^{X} trivial on V, and extend ψ by 0 to all of \mathbb{Z}_{p}. Then we may write ψ as a linear combination of additive characters

$$
\begin{equation*}
\psi(x)=\frac{1}{p^{n}} \sum_{\zeta \in \mu_{p^{n}} \tau(\psi, \zeta) \zeta^{x}, ~} \tag{1.13}
\end{equation*}
$$

with coefficients

$$
\begin{align*}
\tau(\psi, \zeta)= & \sum_{x \bmod p^{n}} \psi(x) \zeta^{-x} ; \tag{1.14}\\
& x \neq 0 \bmod p
\end{align*}
$$

therefore

$$
\begin{equation*}
\Gamma_{\alpha}(\psi)=\sum_{\zeta \in \mu p^{n}} \tau(\psi, \zeta) \hat{\alpha}(\zeta) \tag{1.15}
\end{equation*}
$$

When $n>0, \tau(\psi, \zeta)$ is a primitive Gauss sum, and so vanishes unless ζ has order p^{n}. So for $n>0$ the sum in (1.15) may he restricted to primitive p^{n}-the roots of unity ζ.
1.16. Rational Function Measures: We call a measure α a rational function measure if there is a rational function $R(Z) \in \overline{\mathbb{F}}_{\ell}(Z)$ such that

$$
\hat{\alpha}(\zeta)=R(\zeta)
$$

for almost all (ie. all but finitely many) $\zeta \in \mu_{\infty}$. p
If α is a rational function measure, then so is $\left.\alpha\right|_{X}$ for any compact open subset $x \subseteq \mathbb{Z}_{p}$. In particular, if $X=\mathbb{Z}_{p}^{x}$ and we put $\alpha^{\star}=\left.\alpha\right|_{\mathbb{Z}_{p}^{x}}$, then we have

$$
\hat{\alpha}^{*}(\zeta)=\hat{\alpha}(\zeta)-\frac{1}{p} \sum_{\varepsilon}^{p}=1
$$

It follows that α is supported in \mathbb{Z}_{p}^{x} if and only if

$$
\begin{equation*}
\varepsilon^{p^{p}=1} \hat{\alpha(\varepsilon \zeta)}=0, \quad \zeta \in \mu_{p^{\infty}} ; \tag{1.17}
\end{equation*}
$$

this implies the identity

$$
\begin{equation*}
\sum_{\varepsilon}^{p} R(\varepsilon Z)=0 \tag{1.18}
\end{equation*}
$$

where $R(Z)$ is the rational function associated to α. (For details in a similar case, see [1], Lemma 1.1).

Finally, if k is the finite field generated over \mathbb{F}_{l} by the coefficients of $R(Z)$ and the values $\hat{\alpha}(\zeta)$ for which $\hat{\alpha}(\zeta) \neq R(\zeta)$, then α takes values in k.

§2. Power Functions on ${ }^{\mu}{ }^{\infty}$.

2.1. Independence of Power Functions: Let z denote a "variable element" of μ_{∞}, so that we may define functions on μ_{∞} by means of expressions $\mathrm{p}^{\infty} \mathrm{p}^{\infty}$ involving z. For any $a \in \mathbb{Z}_{p}$, we have the "a-th power map" z^{a}; it is the Fourier transform of the Dirac measure of mass 1 at a . We have:

Theorem 2.2: Let b_{1}, \ldots, b_{n} be elements of $\overline{\mathbb{F}}_{\ell}$, not all 0 , and let a_{1}, \ldots, a_{n} be distinct elements of \mathbb{Z}_{p}. Define $f: \mu_{p}{ }^{\ell} \longrightarrow \overline{\mathbb{F}}_{\ell}$ by

$$
f(z)=\sum_{i=1}^{n} b_{i} z^{a_{i}} .
$$

Then f has only finitely many zeros in ${ }^{\mu}$.
Proof: Let k be the field generated over the prime field \mathbb{F}_{ℓ} by b_{1}, \ldots, b_{n} and the $p-t h$ roots of unity, and let $p^{N_{0}}$ he the number of p-power roots of unity in k. Let N_{1} be an integer large enough that a_{1}, \ldots, a_{n} are distinct mod $p^{N_{1}}$. Suppose that $f(\zeta)=0$, where ζ has order p^{N} and $N \geq N_{0}+N_{1}$. Let $T r$ denote the trace map from $k(\zeta)$ to k. Then, for each $j=1, \ldots n$,

$$
\begin{array}{r}
0 \\
a_{i}-a_{j},
\end{array} \operatorname{Tr}^{-a}\left(\zeta^{j_{f}}(\zeta)\right)=[k(\zeta): k]_{j},
$$

since if $i \neq j, \zeta \notin k$ and hence has trace 0 . Since $[k(\zeta): k]=$ $p^{N-N} o_{0}$, it follows that $b_{1}=\ldots=b_{n}=0$, contrary to hypothesis. Thus all of the zeros of f lie in ${ }^{\mu} N_{0}+N_{1}-1$, which completes the proof.

Let \mathcal{F} denote the $\overline{\mathbb{F}}_{\ell}$-algebra of maps from μ_{p}^{∞} to $\overline{\mathbb{F}}_{\ell}$; and let $\mathcal{F}_{0}=\mathcal{F} / N$, where N is the ideal of functions which vanish almost everywhere. The conclusion of the theorem states that $f(Z)$ is a unit in \mathcal{F}_{0}.

Corollary 2.4: If a_{1}, \ldots, a_{n} are elements of \mathbb{Z}_{p} linearly independent over 7 , then the functions $z^{a} 1, \ldots, z^{a n}$ are algebraically independent over $\overline{\mathbb{F}}_{\ell}$ in $\mathcal{F}_{0} \cdot$ Let x_{1}, \ldots, x_{n} be independent indeterminates over $\overline{\mathbb{F}}_{\ell}: \underline{\text { then sending }} x_{i} \rightarrow z^{a_{i}}, \quad i=1, \ldots, n, \underline{\text { induces an inclusion }}$

$$
\overline{\mathbb{F}}_{\ell}\left(X_{1}, \ldots, X_{n}\right) \rightarrow \mathcal{F}_{0} .
$$

Proof: In any case there is a map from the polynomial ring
$\overline{\mathbb{F}}_{\ell}\left[x_{1}, \ldots, x_{n}\right]$ to \exists_{0}, sending X_{i} to $z^{a_{i}}$ for each i. A monomial $x_{1}^{k} 1 \ldots x_{n}^{k} n$ is sent to the power map $z^{k} 1^{a} 1^{+\cdots+k_{n} a_{n}}$, so, since a_{1}, \ldots, a_{n} are linearly independent over \mathbb{Z}, distinct monomials are sent to distinct power maps. Hence if $F\left(X_{1}, \ldots, X_{n}\right)$ is a non-zero polynomial in $\overline{\mathbb{F}}\left\lceil X_{\ell}, \ldots, X_{n}\right], F\left(z^{a} 1, \ldots, z^{a_{n}}\right)$ is a unit in \mathcal{F}_{0}, hy Theorem 2.2 ; this proves the corollary.
§3. The Main Theorem.
3.1: We prove here a general result about Γ-transforms of rational functions; in the next section we apply this result to prove Washington theorem.

Theorem 3.2: Let α be a rational function measure on \mathbb{Z}_{p} with values in $\overline{\mathbb{F}}_{\ell}, \underline{\text { and let }} R(Z) \in \overline{\mathbb{F}}_{\ell}(Z)$ be the associated rational function. Assume that α is supported on \mathbb{Z}_{p}^{x}. If

$$
\Gamma_{\alpha}(\psi)=0
$$

for infinitely many $\psi \in \Phi$, then

$$
R(Z)+R\left(Z^{-1}\right)=0
$$

Proof: Since $\mathbb{Z}_{p}^{x}=V \times U$ (see (1.1)), we may write

$$
\Gamma_{\alpha}(\psi)=\sum_{\eta \in V} \int_{\eta U} \psi(x) d \alpha(x) ;
$$

then, making the change of variable $x \rightarrow n x$ in the integral, we have

$$
\begin{align*}
\Gamma_{\alpha}(\psi) & =\sum_{\eta \in V} \int_{U} \psi(x) d \alpha(\eta x) \tag{3.3}\\
& =\int_{U} \psi(x) d \beta(x)
\end{align*}
$$

with

$$
\begin{equation*}
B=\sum_{\eta \in V} \alpha \circ \eta \tag{3.4}
\end{equation*}
$$

By (1.16), α, and therefore also β, takes values in a finite subfield $k \subseteq \overline{\mathbb{F}}_{\ell}$. We may suppose that $\mu_{p} \subseteq k\left(\right.$ resp. $\mu_{4} \subseteq k$ if $\left.p=2\right)$. Let $p^{n}{ }_{0}$
be the number of p-power roots of unity in k and let $k_{n}=k\left(\mu_{p} n_{0}+n\right)$ for $n \geq 0$. Note that if ζ is a p-power root of unity in k_{n}, then

$$
\begin{align*}
\mathrm{p}^{-n} \operatorname{Tr}_{k_{n} / k}(\zeta) & =\zeta \text { if } \zeta \in \mu_{n_{0}}, \tag{3.5}\\
& =0 \text { if } \zeta \notin \mu_{n_{0}} .
\end{align*}
$$

Let $K=U_{n} k_{n}$. The action of $G a l(K / k)$ on μ_{p}^{∞} gives a natural
isomorphism $\operatorname{Gal}(K / k) \simeq 1+p^{n} \mathbb{Z}_{p}$. For $t \in 1+p^{n}{ }^{n} \mathbb{Z}_{p}$, we let σ_{t} denote the corresponding automorphism of k / k, so that $\sigma_{t}(\zeta)=\zeta^{t}$ for $\zeta \in \mu_{\infty}$ •
p
Lemma 3.6. Let $\psi \in \Phi$ and let p^{m} be the conductor of ψ (i.e. $1+p^{m} \mathbb{Z}_{p}$ is the kernel of ψ in U. Assume that $\Gamma_{\alpha}(\psi)=0$ and that $m \geq 2 n_{0}$. Let $n=m-n_{0}$ and let $\zeta_{\psi} \in \underset{p}{\mu \infty}$ satisfy $\zeta_{\psi}^{p^{n}}=\psi\left(1+p^{n}\right)$ (then
ζ_{ψ} has order $\left.p^{n+n_{0}}=p^{m}\right)$. Finally, for each $y \in U \quad$ let $\beta_{y}=\left.\beta\right|_{y\left(1+p^{n} \mathbb{Z}_{p}\right)} ^{n}$ $\left(\beta_{y}\right.$ depends only on y mod $\left.p^{n} \mathbb{Z}_{p}\right)$. Then for each $y \in U$, we have

$$
\hat{\beta}_{y}\left(\zeta_{\psi}^{1 / y}\right)=0
$$

Proof: Let $y \in U$. Multiply (3.3) by $\psi(y)^{-1}$ and take the trace from k_{n} to
$k:$ since $\Gamma_{\alpha}(\psi)=0$, and since $\psi(x / y) \in \mu_{p^{n} n_{0}}$ only if $x / y \in 1+p^{n} \mathbb{Z}_{p}$, we obtain

$$
\begin{equation*}
0=\int_{y\left(1+p^{n} \mathbb{Z}_{p}\right)^{\psi(x / y) d \beta(x)}, ~, ~}^{x} \tag{3.7}
\end{equation*}
$$

using (3.5). Let $x \in y\left(1+p^{n} \mathbb{Z}_{p}\right)$ and write $x=y\left(1+p^{n} z\right)$.
Then

$$
\psi(x / y)=\psi\left(1+p^{n} z\right)=\psi\left(1+p^{n}\right)^{z}=\zeta_{\psi}^{p^{n} z}=\zeta_{\psi}^{x / y-1}
$$

The second equality requires the hypothesis $m \geq 2 n_{0}$, i.e. $n \geq n_{0}$:

$$
\left(1+p^{n}\right)^{z} \equiv 1+p^{n} z \quad \bmod p^{2 n}
$$

hence the congruence holds mod p^{m}, the conductor of ψ. Using (3.8) in (3.7), we find

$$
\begin{equation*}
\int_{y\left(1+p^{n} \mathbb{Z}_{p}\right)}^{\zeta_{\psi}^{x / y}} d \beta(x)=0 \tag{3.9}
\end{equation*}
$$

Let $t \in 1+p^{n_{0}} \mathbb{Z}_{p}$. Replacing y by $y t$ in (3.9) and then applying σ_{t} gives

$$
\begin{equation*}
\int_{y t\left(1+p^{n} \mathbb{Z}_{p}\right)} \zeta_{\psi}^{x / y} d \beta(x)=0, \tag{3.10}
\end{equation*}
$$

and summing (3.10) over a complete set of representatives
$t \in 1+p^{n_{0}} \mathbb{Z}_{p}$ for $\left(1+p^{n_{0}} \mathbb{Z}_{p}\right) /\left(1+p^{n} \mathbb{Z}_{p}\right)$, we obtain the final formula of the lemma.

We may now complete the proof of Theorem 3.2 as follows. Assume that $\Gamma_{\alpha}(\psi)=0$ for infinitely many ψ. Fix $y \in U$ for the moment. Ry Lemma 3.6, $\hat{\beta}_{y}$ has infinitely many zeros in $\mu_{\rho^{\infty}}$. Now, by (3.4) and (1.7),

$$
\begin{align*}
\beta_{y} & =\left.\beta\right|_{y\left(1+p^{\circ} \mathbb{Z}_{p}\right)}=\sum_{n \in V} \alpha \circ n \mid y\left(1+p^{n}{ }^{\circ} \mathbb{Z}_{p}\right) \tag{3.11}\\
& =\sum_{\eta}\left(\left.\alpha\right|_{n y\left(1+p^{n} \mathbb{Z}_{p}\right)}\right) o n .
\end{align*}
$$

Since α is a rational function measure, so is $\left.\alpha\right|_{n y}\left(1+p^{n} \mathbb{Z}_{p}\right)$ by (1.16); let $R_{n y}(Z)$ be the rational function associated to $\left.\alpha\right|_{n y}\left(1+p^{n}{ }^{0} \mathbb{Z}_{p}\right)$. Then, by (3.11) and (1.10),

$$
\begin{equation*}
\hat{\beta}_{y}(\zeta)=\sum_{\eta} R_{\eta y}\left(\zeta^{1 / \eta}\right)=0 \tag{3,12}
\end{equation*}
$$

for infinitely many $\zeta \in \mu_{p}^{\infty}$.
Let A be the additive subgroup of \mathbb{Z}_{p} generated by the elements of v, and let a_{1}, \ldots, a_{n} be a \mathbb{Z} - basis for A. Let

$$
h: \overline{\mathbb{F}}_{\ell}\left(x_{1}, \ldots, x_{n}\right) \rightarrow \mathcal{F}_{0} .
$$

be the inclusion induced, as in Corollary 2.4, by sending x_{i} to $z^{a_{i}}$. Let η_{1}, \ldots, n_{m} be a complete set of representatives in V for $V /\{ \pm 1\}$; if we write

$$
1 / \eta_{j}=\sum_{i=1}^{n} c_{i j} a_{i}, c_{i j} \in \mathbb{Z}, j=1, \ldots, m
$$

and let

$$
Y_{j}=\prod_{i=1}^{n} \quad X_{i}{ }^{C_{i j}},
$$

$$
F\left(X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{m} R_{\eta_{j} y}\left(Y_{j}\right)+R_{-\eta_{j} y}\left(Y_{j}^{-1}\right) \in \overline{\mathbb{F}}_{\ell}\left(X_{1}, \ldots, X_{n}\right)
$$

and view $\hat{\beta}_{y}$ as an element of \mathcal{F}_{0}. By (3.12), $h(F)=\hat{\beta}_{y}$ has infinitely many zeros; so $h(F)$ is not a unit in \mathcal{F}_{0}; so $h(F)=0$ and $F=0$. Since the Y_{j} 's are pairwise multiplicatively independent over \mathbb{Z}, it follows from Proposition 3.1 of [1] (see appendix) that

$$
\begin{equation*}
R_{\eta_{j}} y(Z)+R_{-\eta_{j}} y\left(Z^{-1}\right) \in k \tag{3.13}
\end{equation*}
$$

for $j=1, \ldots, m$, and also, replacing Z by z^{-1} in (3.13),

$$
\begin{equation*}
R_{-n}^{j} y(Z)+R_{n_{j}} y\left(Z^{-1}\right) \in k \tag{3.14}
\end{equation*}
$$

for $j=1, \ldots, m$. Adding (3.13) to (3.14) and summing over j and over a complete set of representatives $y \in U$ for $U /\left(1+p^{n}{ }^{\circ} \mathbb{Z}_{p}\right)$ we obtain

$$
R(Z)+R\left(Z^{-1}\right) \in k
$$

However, the identity (1.18) implies that we must in fact have $R(Z)+R\left(Z^{-1}\right)=0$. This completes the proof of Theorem 3.2.
§4. Washington's Theorem.
4.1. Notations: Let θ_{ℓ} denote the field of ℓ-adic numbers, $\bar{\theta}_{\ell}$ a fixed algebraic closure of $\ell_{\ell}, \mathbb{Z}_{\ell}$ the ℓ-adic integers, and $\overline{\mathbb{Z}}_{\ell}$ the integral closure of \mathbb{Z}_{ℓ} in \bar{D}_{ℓ}; we identify the residue field of $\overline{\mathbb{Z}}_{\ell}$ with $\overline{\mathbb{F}}_{\ell}$ and denote the natural reduction map $\overline{\mathbb{Z}} \rightarrow \overline{\mathbb{F}}_{\ell}$ by \sim. We let ord denote the usual valuation on $\bar{\theta}_{\ell}$, normalized by ord $(\ell)=1$.

If F is an abelian extension of 0 , not necessarily finite, then by a character of F / \emptyset we mean a character of finite order of Gal(F/Q) with values in $\bar{\emptyset}$. If x is such a character, the primitive Dirichlet character associated to x by class field theory will also be denoted by x. Let f be any multiple of the conductor of x and define

$$
\begin{equation*}
F_{x}(z)=\frac{\sum_{a=1} x(a) z^{a}}{1-z^{f}} \in \bar{\theta}_{\ell}(Z) \tag{4.2}
\end{equation*}
$$

F_{x} does not depend on the particular choice of f. According to Hurwitz, we have, for nontrivial x,

$$
\begin{equation*}
L(0, x)=F_{x}(1) \tag{4.3}
\end{equation*}
$$

Here $L(0, \chi)$ is defined to be $L\left(0, \chi^{\sigma}\right)^{\sigma}$, where $\sigma: \bar{\theta}_{\ell}^{\sim} \stackrel{\sim}{\sim}$ is an arbitrary field isomorphism and $L\left(s, x^{\sigma}\right)$ denotes the Dirichet L-function attached to $x^{\sigma} . L(0, x)$ is independent of the choice of σ.
4.4. Washington's Theorem: In [2], Washington reduced his then conjectural theorem on class numbers (described in the introduction above) to the following assertion about the numbers $L(0, x)$, subsequently proved by him in [3]:
W. SINNOTT

Fix an odd character θ of $\theta^{a b} / 0$ of finite order and values in $\bar{\theta}_{\ell}$, and let ψ vary through the characters of $\theta_{\infty} / \mathbb{Q}$ with values in $\bar{\theta}_{\ell}$ (here Q_{∞} / \mathbb{Q} is the \mathbb{Z}_{p}-extension of Q) . Then

$$
\operatorname{ord}_{\ell} \frac{1}{2} L(0,0 \psi)=0
$$

for almost all such characters ψ.
4.5. Values of L-Functions and Γ-Transforms: We now show how to derive the assertion of (4.4) from Theorem 3.2 above. We fix from now on an odd character θ of $Q^{a b} / \mathbb{Q}$. The following proposition is essentially well-known:

Proposition 4.6 Let f_{0} be the conductor of θ, and let $f=2 p f{ }_{0}$. Let

$$
R(Z)=\frac{\sum_{a=1, p \nmid a}^{f / 2} \theta(a) z^{a}}{1-z^{f}}
$$

Then for any character ψ of $Q_{\infty} / 0$ whose conductor p^{m} does not divide f, we have

$$
\frac{1}{2} L(0,0 \psi)=\sum_{\zeta}^{1} \tau(\psi, \zeta) R(\zeta),
$$

the summation taken over primitive p^{m}-th roots of unity ζ in \bar{g}_{ℓ}. Here

$$
\begin{equation*}
\tau(\psi, \zeta)=\frac{1}{p^{m}} \sum_{a \bmod p^{m}} \psi(a) \zeta^{-a} \tag{4.7}
\end{equation*}
$$

Proof. Let \int_{ζ}^{1} denote summation over the primitive p^{m}-th roots of
unity in $\bar{\theta} \quad$.

To begin with, we note the following identities:

$$
\begin{equation*}
R(Z)+R\left(z^{-1}\right)=\frac{\sum_{a=1, p \nmid a}^{f} \theta(a) z^{a}}{1-z^{f}}=\frac{\sum_{a=1, p \nmid a}^{f p^{m}} \theta(a) z^{a}}{1-z^{f p^{m}}} \tag{4.8}
\end{equation*}
$$

so that, if ζ is a primitive p^{m}-th root of 1 ,

$$
\begin{equation*}
R(\zeta)+R\left(\zeta^{-1}\right)=\left.\frac{\sum_{a=1, p \nless a}^{f p^{m}} \theta(a) \zeta^{a} z^{a}}{1-z^{f p^{m}}}\right|_{z=1} . \tag{4.9}
\end{equation*}
$$

Also, for any integer a prime to p,

$$
\begin{equation*}
\sum_{\zeta}^{1} \tau(\psi, \zeta) \zeta^{a}=\psi(\mathrm{a}) ; \tag{4.10}
\end{equation*}
$$

for this it is helpful to notice that $\tau(\psi, \zeta)$, defined by (4.7), is 0 if ζ is an imprimitive p-th root of unity, so the sum may be extended over all $p^{m}-t h$ roots of unity ζ.

Now, since ψ is even, we have $\tau(\psi, \zeta)=\tau\left(\psi, \zeta^{-1}\right)$; hence

$$
\begin{aligned}
& 2 \sum_{\zeta} \tau(\psi, \zeta) R(\zeta)=\sum_{\zeta}^{\prime}\left(\tau(\psi, \zeta)+\tau\left(\psi, \zeta^{-1}\right)\right) R(\zeta) \\
& =\sum_{\zeta}^{\prime} \tau(\psi, \zeta)\left(R(\zeta)+R\left(\zeta^{-1}\right)\right) \\
& \sum^{f p^{m}} \quad \theta(a) \psi(a) z^{a} \\
& a=1, p / d a \\
& = \\
& 1-z^{f p^{m}}
\end{aligned}
$$

by (4.9) and (4.10). Since $p^{m} \nmid f$, the conductor of $\theta \psi$ is divisible by p, and this reduces to

$$
\left.\frac{\sum_{a=1}^{f p^{m}} \theta \psi(a) z^{a}}{1-z^{f p^{m}}}\right|_{z=1}=L(0, \theta \psi),
$$

by (4.2). This completes the proof of the proposition.

Now let $\tilde{R}(Z)$ denote the rational function in $\overline{\mathbb{F}}_{\ell}(Z)$ obtained from $R(Z)$ by applying \sim to its coefficients. By (1.8) we can determine a measure α on \mathbb{Z}_{p} with values in $\overline{\mathbb{F}}_{\ell}$ by stipulating that

$$
\hat{\alpha}(\zeta)=\tilde{R}(\zeta)
$$

for $\zeta \in \mu_{p}^{\infty}$ for which $\zeta^{f} \neq 1$ and setting $\hat{\alpha}(\zeta)=0$ otherwise. Then α is supported on \mathbb{Z}_{p}^{x}, by (1.17). If $\psi \in \Phi(1.11)$, let ψ^{\prime} be the character of θ_{∞} / Q which satisfies

$$
\psi^{\prime}(a)^{\sim}=\psi(a),
$$

for integers a prime to p; on the right we are viewing ψ as a character of \mathbb{Z}_{p}^{x} trivial on V, as in (1.11). Then $\tau\left(\psi^{\prime}, \zeta\right)^{\sim}=\tau(\psi, \zeta)$, as defined by (4.7) and (1.14), respectively; hence, by (1.15) and Proposition (4.6), we have

$$
\Gamma_{\alpha}(\psi)=\left(\frac{1}{2} L\left(0, \theta \psi^{\prime}\right)\right)^{\sim}
$$

if the conductor of ψ^{\prime} does not divide f. Now $\widetilde{R}(Z)+\widetilde{R}\left(Z^{-1}\right) \neq 0$, by (4.8); hence $\Gamma_{\alpha}(\psi)=0$ for only finitely many ψ, by Theorem 3.2. Thus the assertion of (4.4) follows.

Appendix

We recall here Proposition 3.1 of [1] and sketch a different proof:

Let k be a field, $X_{1}, \ldots, X_{n}, Z(n \geq 1)$ independent indeterminates over k, and $Y_{1}, \ldots, Y_{m}(m \geq 1)$ nontrivial elements of the multiplicative group $M=\prod_{i=1}^{n} x_{i}^{\mathbb{Z}}$ generated by $\quad x_{1}, \ldots, x_{n}$ in $k\left(x_{1}, \ldots, x_{n}\right)^{x} \cdot$ Suppose that the Y_{j}^{\prime} 's are pairwise multiplicatively independent, i.e. $Y_{i}^{a}=Y_{j}^{b}$ with $i \neq j$ only if $a=b=0$. Then a relation of the form

$$
\begin{equation*}
r_{1}\left(Y_{1}\right)+\ldots+r_{m}\left(Y_{m}\right)=0 \tag{*}
\end{equation*}
$$

with $r_{j}(Z) \in k(Z)$, can occur only if

$$
r_{j}(Z) \in k, j=1, \ldots, m
$$

Sketch of proof: Let $R=k\left[x_{1}, \ldots, x_{m}, x_{1}^{-1}, \ldots, x_{m}^{-1}\right]$; then R is a unique factorization domain and $R^{X}=k^{X} \cdot M$. If $f(Z), g(Z)$ are non-zero polynomials in $k\lceil Z]$ and $i \neq j$, one can check that $f\left(Y_{j}\right)$ and $g\left(Y_{j}\right)$ are relatively prime in R.

Let $r_{i}(Z)=f_{j}(Z) / g_{j}(Z)$, where f_{i}, g_{j} are polynomials over k. Since the elements $g_{j}\left(Y_{j}\right), j=1, \ldots, m$, are relatively prime in R, (*) implies that $g_{j}(Z)$ has the form $a Z^{b}, a \in k^{x}, b \in Z$. Hence each $r_{j}(Z)$ is a "Laurent polynomial", i.e. $r_{j}(Z) \in k\left[Z, Z^{-1}\right]$, and $r_{j}\left(Y_{j}\right) \in k\left[Y_{j}, Y_{j}^{-1}\right] \leq R$. Since
 elements of M, (*) implies that each $r_{j}(Z)$ is a constant, since for each j and $a \neq 0$, the element $\gamma_{j}^{a} \in M$ occurs at most once on the left-hand side of (*) , and hence not at all.

REFERENCES:

1. Sinnott, W.: On the u-invariant of the Γ-transform of a rational function. Invent. Math. 75, 273-282 (1984).

2 Washington, L.: Class numbers and \mathbb{Z}_{p}-extensions, Math. Ann. 214, 177-193 (1975).
3. Washington, L.: The non-p-part of the class number in a cyclotomic \mathbb{Z}_{p}-extension. Invent. Math 49, 87-97 (1978)

```
    Warren Sinnott
    Department of Mathematics
    The Ohio State University
    Columbus, Ohio 43210
    U.S.A.
```

