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THIN BASES IN ADDITIVE NUMBER THEORY 

Melvyn B. Nathanson 

Let B be a set of nonnegative integers, and let hB denote the 
set of all sums of h elements of B. The set B is a basis (resp. 
asymptotic basis) of order h if hB contains all (resp. all 
sufficiently large) natural numbers. The squares, the k-th powers, 
and the primes are the classical examples of asymptotic bases in 
additive number theory. 

Let B(x) denote the number of positive integers in the set B 
that do not exceed x. If B is an asymptotic basis of order h, then 
it is easy to show that B(x)>cix"^^ for some constant ci>0 and all 
x>xi . An asymptotic basis B of order h is called thin if 
B(x)<C2x for some constant C2>0 and all x>X2. Thin bases exist. 
Indeed, for each ĥ >2, Cassels [1] constructed a family of bases B 
of order h such that B(x) /vcx^"^1 as x —> ^ . It is not known if 
the classical sequences in additive number theory contain sub­
sequences that are thin bases. 

Let A be a finite set of nonnegative integers, and let JAJ 
denote the cardinality of A. If ^0 ,1 , . . . ,n j £̂  hA, then A is 
called a basis of order In for n. Clearly, if A is a basis of order 
h for n, then |A | >n1/h. 

In this report I state some recent results on the additive 
basis properties of subsets of the squares, k-th powers, and primes. 

THEOREM (Choi-Erdos-Nathanson[2]. For every n>l there exists a 
finite set A of squares such that A is a basis of order 4 for n and 

|A|<cn1/3log n 
where c = 4/log 2. 

This is proved by means of an explicit construction. Note that 
the set of all squares up to n contains [n2]+l elements. 
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THEOREM (Erdos-Nathanson[3]). For every £ >0 there exists a 
set B of squares such that 

(i) B is a basis of order 4, 
( i i) If n + 4r(8k+7), then n e 3B, 
( i i i ) B(x) cx(^/3)+i £or some c > o as x—> ^ 
The proof uses the probability method of Erdos and Renyi. The 

Theorem is best possible except for the £ in the exponent in ( i i i ) . 
Zollner combined the two results above to obtain the following. 
THEOREM (Zollner[7]. For every £_ >0 there exists no such that 

if n>nQ there is a finite set A of squares such that A is a basis 
of order 4 for n and 

|A| <n^ + € 
This result is best possible except for the t in the exponent. 
THEOREM (Zollner[8]). Let h £4. For every £ >0 there exists 

a set B of squares such that B is a basis of order h and 
B(x)<x l/h)+£ 

for all X>XQ• 
THEOREM (Wirsing[6]). Let h > 4. There exists a set B of 

squares such that B is a basis of order h and 
B(x)< c(xlogx)1/b 

for some constant c=c(h)>0 and all X>XQ• 
Both Wirsing and Zollner use probability methods to obtain 

their results, and, consequently, i t is not yet possible to 
describe explicitly a sparse sequence of squares that is a basis 
of order 4. 

There are some results on thin versions of Waring's problem. 
THEOREM (Nathanson[4]). Let k ^ 3 and s > s o ( k ) . Let 

0< c" < 1/s. There exists a set B of nonnegative k-th powers such 
that B is a basis of order s and 

Bfx)~ cx1 ( l /s)+ i 
for some constant c>0 as x~~> ^ . 

The proof requires the Hardy-Littlewood asymptotic formula for 
the number of representations of an integer as the sum of s k-th 
powers, as well as the Erdos-Renyi probability method. 

There is a finite version of the preceding theorem. Let 
f(n,k,s) denote the cardinality of the smallest finite set A of 
k-th powers such that A is a basis of order s for n. Clearly, 
f(n,k,s)>n1/s. 
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Define 
A(k,s)-lim suplog f(n,k,s) 
/ n_* ~ l08 n 

Let g(k) denote the smallest integer h such that the set of all non-
negative k-th powers is a basis of orderh. 

THEOREM (Nathanson[5]). For k > 3 and s > g(k), 

f(n,k,s) < 2(s-g(k)+l) nl/(s-g(k)+k) 
In particular, /3(k,s) ^ 1 / s as s—^ ^ . 

Finally, there is the following beautiful result on sums of 
primes. 

THEOREM (Wirsing[6]). For h ^ . 3 , there is a set P of primes 
such that 

(i) n 6 hP for all n>ng such that n ~ h(mod 2), 
(i i) P(x) < c (xlogx)1^ for some constant c>0 and all x>xq. 
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