@incollection{AST_1988__157-158__75_0, author = {Burkholder, Donald L.}, title = {Sharp inequalities for martingales and stochastic integrals}, booktitle = {Colloque Paul L\'evy sur les processus stochastiques (22-26 juin 1987. \'Ecole Polytechnique, Palaiseau)}, series = {Ast\'erisque}, pages = {75--94}, publisher = {Soci\'et\'e math\'ematique de France}, number = {157-158}, year = {1988}, zbl = {0656.60055}, language = {en}, url = {http://archive.numdam.org/item/AST_1988__157-158__75_0/} }
TY - CHAP AU - Burkholder, Donald L. TI - Sharp inequalities for martingales and stochastic integrals BT - Colloque Paul Lévy sur les processus stochastiques (22-26 juin 1987. École Polytechnique, Palaiseau) AU - Collectif T3 - Astérisque PY - 1988 SP - 75 EP - 94 IS - 157-158 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1988__157-158__75_0/ LA - en ID - AST_1988__157-158__75_0 ER -
%0 Book Section %A Burkholder, Donald L. %T Sharp inequalities for martingales and stochastic integrals %B Colloque Paul Lévy sur les processus stochastiques (22-26 juin 1987. École Polytechnique, Palaiseau) %A Collectif %S Astérisque %D 1988 %P 75-94 %N 157-158 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1988__157-158__75_0/ %G en %F AST_1988__157-158__75_0
Burkholder, Donald L. Sharp inequalities for martingales and stochastic integrals, dans Colloque Paul Lévy sur les processus stochastiques (22-26 juin 1987. École Polytechnique, Palaiseau), Astérisque, no. 157-158 (1988), pp. 75-94. http://archive.numdam.org/item/AST_1988__157-158__75_0/
[1] Stochastic integration and -theory of semi-martingales, Ann. Probab. 9 (1981) 49-89. | DOI | Zbl
,[2] Martingale transforms, Ann. Math. Statist. 37 (1966) 1494-1504. | DOI | Zbl
,[3] Distribution function inequalities for martingales, Ann. Probab. 1 (1973) 19-42. | DOI | Zbl
,[4] A sharp inequality for martingale transforms, Ann. Probab. 7 (1979) 858-863. | DOI | Zbl
,[5] A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981) 997-1011. | DOI | Zbl
,[6] A nonlinear partial differential equation and the unconditional constant of the Haar system in , Bull. Amer. Math. Soc. (N.S.) 7 (1982) 591-595. | DOI | Zbl
,[7] Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984) 647-702. | DOI | Zbl
,[8] An elementary proof of an inequality of R. E. A. C. Paley, Bull. London Math. Soc. 17 (1985) 474-478. | DOI | Zbl
,[9] A sharp and strict -inequality for stochastic integrals, Ann. Probab. 15 (1987) 268-273. | DOI | Zbl
,[10] A proof of Pełczyński's conjecture for the Haar system, Studia Math., to appear. | EuDML | Zbl
,[11] Extrapolation and interpolation of quasilinear operators on martingales, Acta Math. 124 (1970) 249-304. | DOI | Zbl
and ,[12] Integral inequalities for convex functions of operators on martingales, Proc. Sixth Berkeley Symp. Math. Statist. Prob. 2 (1972) 223-240. | Zbl
, , and ,[13] The best constant in Burkholder' s weak- inequality for the martingale square function, Proc. Amer. Math. Soc. 85 (1982) 427-433. | Zbl
,[14] On the integrability of the martingale square function, Israel J. Math. 8 (1970) 187-190. | DOI | Zbl
,[15] Probabilités et potentiel: Théorie des martingales, Hermann, Paris, 1980.
and ,[16] Variation quadratique des martingales continues à droite, Ann. Math. Statist. 40 (1969) 284-289. | DOI | Zbl
,[17] Stochastic Processes, Wiley, New York, 1953. | Zbl
,[18] Martingale Inequalities: Seminar Notes on Recent Progress, Benjamin, Reading, Massachusetts, 1973. | Zbl
,[19] A square function inequality, Ann. Probab. 5 (1977) 823-825. | DOI | Zbl
,[20] Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math. 44 (1972) 583-595. | DOI | EuDML | Zbl
,[21] Norms of classical operators in function spaces, Colloque en l'honneur de Laurent Schwartz, Astérisque 131 (1985) 137-162. | Numdam | Zbl
,[22] Note on a square function inequality, Ann. Probab. 7 (1979) 907-908. | DOI | Zbl
,