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On Heegaard Diagrams of 3-manifolds 
by Heiner Zieschang 

Fakultät für Mathematik, Ruhr-Universität Bochum 

The following text is intended to give a survey of (parts of) the theory of Heegaard decom­
positions for non-specialists in low dimensional topology. Therefore first the basic concepts are 
defined and illustrated by simple examples, and only thereafter do we discuss some recent results 
on Heegaard decompositons of Seifert fibre spaces, obtained in joint work with M. Boileau and 
M. Rost. 

My thanks go to M. Boileau for detailed discussions on the subject and its history, to J. 
Chyska for her excellent redrawing of the figures and to M. Schwarz for the final TgXversion of 
the manuscript. It has been a great pleasure for me to give a talk on Heegaard diagrams at the 
"Convegno-Studio" on "Geometry of the differential manifolds", and I would like to express my 
gratitude for the hospitality in Roma. 

In the following the symbol Q either denotes the end of a (sketch of a) proof or indicates 
that the assertion is given without further arguments. 

1. Heegaard decompositions of 3-manifolds 

In books on algebraic topology manifolds which are used to illustrate invariants are mostly 
surfaces, 5n,Pn and perhaps a few further ones, e.g., lens spaces. One obstruction to the use 
of 3-manifolds as examples is that there is no general simple way to describe them, in contrast 
to the perceptual pictures of surfaces as a 2-sphere with handles. Of course, there have been 
models in 3-topology and, since all 3-manifolds are triangulable and the Hauptvermutung is true 
for dimension 3 (i.e. any two triangulations of the same space have isomorphic subdivisions), 
these models represent all 3—manifolds. But they lack intuition and do not help to find invariants 
of the space considered. Nevertheless, I will describe three of them. 
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Assume the 3—manifold M3 is given by a complex, for instance, a simplicial one. By 
iteratively dropping 2—cells separating different 3—cells we obtain a cellular complex which 
contains only one 3—cell. Hence, M3 may be obtained from a 3—ball D3 by identifying points of 
the boundary. More precisely: dD3 = S2 carries some 2—complex and the 2—cells are pairwise 
identified by homeomorphisms which can be extended to the boundary of the 2—cells. The result 
is the manifold A/3. The other way round, let us start with a 3—ball Dz, a complex on dD* and 
identification rules for 2—cells of dDz. Now we ask whether the space obtained is a 3—manifold. 
There is a simple answer with a simple proof (see [ST, pg. 208]): 
1.1 Theorem. Let X be obtained from D3 by pairwise identification of 2—cells of a complex of 
dDz = S2. Then X is a closed 3— manifold if and only if the Elder characteristic is 0. CH 

As an application let us see why lens spaces are lens spaces. The favorite definition of a 
lens space is the following: Represent S3 by {(zi,z2) I ~i € C,zizJ + z2z^ = 1} and define 
g : S3 —> S3 , (2:1,2:2) l—• (C-i?C9 2̂) where £ is a p-th root of unity, p > 1 and gcd(p,q) = 1. 
Then the group G = {1,<7, ...,gp~l} = Ip acts freely on S3, and L{p,q) = 53/G is a 3—manifold: 
a lens space. The projection IT : S3 —• L(pyq) is the universal cover of q), i.e. ir\L(p,q) = Zp. 
The lens space L(2,l) is equal to P 2, and this is the only lens space with fundamental group 
12. Clearly: L(p,q) = L(p,q + kp),k £ Z, and by changing orientation or the interchanging 
coordinates we obtain the if-statement of the following theorem. That these conditions are also 
necessary is due to K. Reidemeister [Rei 1]. 

1.2 Theorem. L(p,q) = L(p',q') if and only if p' — p and q' = ±q mod p or q'q = 
±1 mod p. 

But why are the spaces L(p,q) called lens spaces? Take a lens L, subdivide the boundary 
in p equal sections and identify a triangle of the upper side with the triangle on the lower 
side lying q steps further in positive direction. Let us call the obtained complex already now 
L(p,q). Since gcd(/>, q) = 1 the quotient space carries a complex consisting of two 0—ceils (one 
coming from top-bottom, the other from the equator), (p + 1) 1—cells (one from the equator 
and p from the arcs going from equator to top-bottom), p 2—cells and one 3 —cell, that is 
x(L(p, g)) = 2 — (p + l)+p — 1=0; hence, the quotient is a manifold. It is easy to see that it 
is the space L(p, q) resulting from the action of Zp described above. 

Both ways of constructing 3—manifolds, that is by identifying points of the boundary of 
a 3—cell or as the quotient space of a free action of a group (of isometries), obtained new life 
during the last decade evoked by the work of Thurston. For details see [Ed], [Sco], [Thu 1,2]. 

We will now leave this extraordinary vivid area and come to another approach of describing 
3—manifolds. Let us again start with a (simplicial) complex K of an orientable closed 3—manifold 
M3 consisting of a{ i—cells (i = 0,1,2,3). Let V denote the 1—skeleton and N(T) = Hg a closed 
regular neighbourhood of T with g = a\ — ao + 1. The space Hg can be obtained as follows: 
Take a maximal tree T C T. The regular neighbourhood of T is a 3—ball which is part of iV(T), 
and N(T) is obtained from the 3-ball N(T) by attaching g 1-handles D2 x J. Since A/3 is 
orientable the handles are glued to N(T) such that dN(T) is an orientable surface of genus g. 

248 



ON HEEGAARD DIAGRAMS OF 3-MANIFOLDS 

Moreover, Hg — N(T) is a handlebody of genus g, that is, Hg is homeomorpliic to the closed 
regular neighbourhood of a bouquet of g circles in R3. The complement of Hg is an open regular 
neighbourhood of the 1—skeleton of the complex dual to K; hence, Ai3 — Hg = H'g is also a 
handlebody of genus g. Let us interrupt our discussion for a definition: 

1.3 Definition. Let M3 be a closed orientable 3—manifold. 
(a) A pair (Hg,H'g) of handlebodies of genus g is called a Heegaard decomposition of genus 

g of M3 if M3 = HgU H'g and Hg D Hg — 8Hg = dHg is a closed orientable surface of genus g. 
If the side is not specified, that is, when we consider the pair (M3, 8Hg), we use the expression 
Heegaard splitting. 

(b) Two Heegaard decompositons (Hg,H'g) and (Hg,H'g) are called homeomorphic if there is 
an (orientation preserving) homeomorphism <£: HgL)H'g —+ HgUH'g with $(Hg) — Hg, $(H'g) — 
H'g. Similar for Heegaard splittings by looking at homeomorphisms of pairs (M3,dHg). 

(c) The minimal genus among the genera of all Heegaard decompositions of M3 is called 
the Heegaard genus of M3 and is denoted by h(M3). 

Using this notation we can formulate the result from above as follows: 

1.4 Theorem. Every closed orientable 3— manifold admits a Heegaard decomposition. EH 

Since a manifold carries many different complexes the genus of some Heegaard decomposition 
is not an invariant of M3; in fact, one can add handles: Let 7 C H'g be a simple arc and A C H'g 
a disc such that dA = ~y{J(AndHg) , = jHdHg. If N(~y) is a closed regular neighbourhood 
of 7, then Hg+1 = Hg U N('y) and H'g — N(~y) — H'g+1 are handlebodies of genus g + 1. 

1.5 Definition. The step from the Heegaard decomposition (Hg,H'g) to (Hg+i, H'g+1) is called 
an elementary stabilization and a sequence of such steps a stabilization. The inverse procedure 
is called a reduction. A Heegaard decomposition is called minimal or irreducible if it cannot be 
reduced, that is, does not result from a stabilization of a Heegaard decomposition of smaller 
genus. 

Using the fact that two triangulations of a 3—manifold have isomorphic subdivisions the 
following result can be obtained (see LRei 1], [Sin], [Cr]). 

1.6 Proposition. Any two Heegaard decompositions (Hg,H'g) and (Jf,J!f) of a 3—manifold Mz 
lead to homeomorphic Heegaard decompositions (Hk,H'k) and (Jk,J'k) by stabilization. \Z\ 

1.7 Remark. Can one choose in Proposition 1.6 always k < f + This question is not yet 
decided. A positive answer to it would imply in particular that every Heegaard decomposition 
of S3 of genus g > 1 is reducible. This is a known non-trivial result of F. Waldhausen ;Wa 1], 
see Theorem 1.17, and this throws some light on the difficulty of this problem. 

1.8 Examples, (a) A Heegaard decomposition of genus 0 gives a 3 —manifold which is the union 
of two 3 —balls glued together along there boundaries; hence it is the 3-sphere. Obviously, S3 
is the only manifold with Heegaard genus 0. Next take a circle 7 in a plane in S3 and let Hx 
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be a regular neighbourhood of 7 and H[ — S3 — H\. Then (H\,H[) is the "standard Heegaard 
decomposition of genus 1 of S3". 

(b) Let us again consider the lens space L(p,q). Take the axis a of the lens and a regular 
neighbourhood Hi of a. Then Hi is a solid torus. The closure of the complement of H-\ is 
also a solid torus. Hence, the lens spaces have Heegaard genus 1 and the described Heegaard 
decompositions are minimal. 

(c) If we take the double of a solid torus H\ we obtain a Heegaard decomposition (Hi,H[) 
of genus 1 where the boundary of a meridian disc of Hi also bounds a meridian disc of H[. 
Therefore the manifold obtained is S2 x S1. The sphere 53, the lens spaces and S2 x 51 are the 
only 3—manifolds having a Heegaard decompositions of genus 1. 

(d) Consider in S3 the standard solid torus Hi and the standard Heegaard decomposition 
(Hi,H[). Fix on dHi a small disc A and define F — 3Hi — A. The regular neighbourhood 
of F is homeomorphic to F x / and looks like the rubber of a car tyre. The complement, the 
air, forms a handlebody of genus 2; the rubber does the same: take two disjoint simple arcs 
a,/? C F with da U df3 C dF; then a x / , ¡3 x / are discs and F x I - N(a x I U ¡3 x I) - here N 
indicates regular neighbourhood - is homeomorphic to a 2—disc cross /, that is a 3—ball. Hence, 
(F x I, S3 — F x I) is a Heegaard decomposition of genus 2 of 53. (This construction has been 
used by K. Reidemeister [Rei 3].) In the same way we can construct Heegaard decompositons of 
genus 2 for lens spaces or, in general, a Heegaard decomposition of genus 2g when starting the 
same construction from a Heegaard decomposition of genus g. 

These are the only simple examples. Next we come to more complicated examples: Heegaard 
decompositions of Seifert fibre spaces. 

1.9 Seifert manifolds. Consider a 3—manifold M3 with an action of the group S1 where no 
point is fixed by all group elements. The orbits decompose M3 into circles, and the orbifold 
M3 /S1 is a closed surface F , called basis of the Seifert fibration. However, the projection 
7r : M3 —• F does not define a fibre bundle in the usual sense, it is a foliation, but of a very 
special type. If we exclude a finite number of points xj,...,xm of F , 

TT: TT-^F - {*! , . . . ,*„}) - (F - {xu...,xm}) 

is a locally trivial fibration. Every point Xi has a disc neighbourhood D2 such that 7T-1(D2) is 
a solid torus D2 x 51, the core of which is mapped to X{. If we use polar coordinates (r,y?) for 
D2 and ij) for S1 then the fibres are 

{(r,<P + — ' I 0 < 0 < where at > 1,^,6, G Z,gcd(at,6t) = 1. 

When 0 runs from 0 to 2n every fibre with r ^ 0 is passed exactly once, but the central fibre 
with r = 0 is passed a{ times. It is called an exceptional fibre of type (a,-,&i) (or bi/ai). See Fig. 
1.1. For simplicity let us assume that M and F are orientable. Then the Seifert manifold ( = 
Seifert fibre space) is denoted by S(g; eo; bi/ai,...,6m/am) where g is the genus of F , eo G Q 
and e = e0 4- Y^Li ^ilai ^ ^ is the Euler class. Here the number e represents an obstruction to 

250 



ON HEEGAARD DIAGRAMS OF 3-MANIFOLDS 

the existence of a section of the fibration. It also appears in the presentation of the fundamental 
group, see 2.3. The rational number eo is defined by the above equation. It turns out that the 
fractions bi/at modulo 1 and e0 are invariants of the manifold. (For details see [Or], [OVZ], [Sei], 
[Sie].) 

23 

12 xm-i 

x1 
10 

u1 
I m 

v1 

Fig . 1.1 F i g . 1.2 

1.10 Proposition. Let M = S(g; eo;&i/ai,... ,6m/am) with 1 < a\ < • • • < am and gcd(a;, bi) = 
151 < i < m. If m > 2, M admits a Heegaard decomposition of genus 2g -f rn — 1; if m < 1, M 
admits a Heegaard splitting of genus 2g -f 1. 

Sketch of Proof [BoiZ]. Choose a point XQ on dD\ and a system {u\ ,ug, vg) of simple 
closed curves on F — {a*i,... ,zm} passing through xo such that the surface obtained from F 
by cutting along ui,...,vg is a disc; see Fig. 1.2. The restriction of the Seifert fibration to 
F — (J Di is a trivial 51 —fibration. Therefore we may assume that XQ and the curves u\,..., vg 
are in M. For m > 2 we consider the graph V consisting of the curves Ui,..., vg, the exceptional 
fibres over xi,...,a»m_i and m — 1 segments going from x\ to xo and Xi, 2 < z < m — 1, see 
Fig. 1.2. A regular neighbourhood N(T) of T is a handlebody of genus 2g + m — 1. To see that 
M — N(T) is also a handlebody, consider the 2g+m — 2 segments indicated by heavysolid lines in 
Fig. 1.2. The preimage of each of them is an annulus in M; hence, a disc in M — N(T). Cutting 
M — N(T) along these 2g -f m — 2 discs we obtain a solid torus which is a regular neighbourhood 
of the TO—th exceptional fibre. A similar argument will do it for m < 1. CD 

Clearly, in connection with the notion of Heegaard decompositions there arise questions of 
the following type: 

1.11 Problems, (a) Given a manifold M3. Determine h(Mz). 
(b) Given two Heegaard decompositions of minimal genus of the same manifold. Are they 

horneomorphic? Does A/3 have only finitely many classes of homeomorphic Heegaard decompo­
sitions? Have irreducible Heegaard decompositions of a manifold M3 equal genus? 
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(c) Given a Heegaard decomposition. Is it minimal? How can this question be decided? 
(d) Get invariants of the manifold from a Heegaard decomposition. 
(e) Give convenient descriptions of Heegaard decompositions. 
In general, only partial results are known in connection with these problems, and most of 

these are for Seifert manifolds. In the following we will mainly deal with the questions (a), (b) 
and (e) for Seifert manifolds and will only mention some results related to the other questions. 

Before looking to these problems let us purely listen papers related to them, (more or less 
ordered according to the date of publication): 

(a) [Ha 1], [Bu], [Oc 1, 3], [TO], [BoiZ], [Ko 1, 2], [Jo], [Mo 5, 6]. 
(b) [Wa 1], [Eng], [Sta], [Bi 2], [BGM], [Mo 2, 3], [Bon 2], [BonO], [HR], [MoW], [MoS], 

[BRZ 1, 2], [BoiO], [CG 2], [Mor 1,2], [BCZ]. 
(c) [Whi 1], [Zi 5], [Wa 1, 2], [Sta], [Ha 1], [VKF], [ViK], [BiM], [HOT], [Oc 2], [Mok], [Ka 

1-3], [Os], [CG 1], [Mo 7]. 
(d) [BiC], [Jon], [Cas]. 
(e) [Poi], [Whi 1], [Rei 3], [Zi 1-5], [Wa 2], [Ka 2], [BRZ], [Mor 1,2]. 
Heegaard decompositions are often applied in 3-dimensional topology, e.g. [Sta], [Ro], [FL], 

[BuZ]. For instance, they can be used to show Stiefel's theorem that 3-manifolds are parallelizable, 
see [Lau 1]. 

Before going on with Heegaard diagrams we recall the concept of connected sums of 3—mani­
folds. Let M3 be a closed 3-manifold, S2 C M3 a (tame) 2-sphere separating M3: M3 = X\ U 
X2,X\ n X2 — dXj — dX2 = S2. Attaching 3—balls Bi,B2 to Xx,X2 gives closed 3—manifolds 
Mf = Xi U Bi where Xi fl Bi = dBi = S2 (i = 1,2) and M3 is called the connected sum of 
M3 and M3; notation: M3 = M3#M|. The topological type of M3 does not depend on the 
choices of the balls Bi or the glueing mapping. A 3—manifold M3 is called prime if an equation 
M3 = M3#M% implies that M3 or Af| is homeomorphic to S3. The manifold M3 is called 
irreducible if every 2-sphere in M3 bounds a 3—ball. Irreducibility implies primeness. However, 
S2 x S1 is prime, but not irreducible; this is the only closed orientable 3—manifold with this 
property (see [Hem, 3.13]). The following often used result is due to H. Kneser [Kn], see also 
the stronger version of J. Milnor [Mi] and the isotopy theorem of Laudenbach [Lau 2], [Lau 3, 
Ch. Ill, IV]: 

1.12 Theorem. Every 3 — manifold is a connected sum of finitely many prime 3— manifolds. 
The prime factorization is uniquely determined up to a permutation. CH 

From Heegaard decompositions (H^^, H'{1)) and (H^^H^) of the manifolds M3 and M2 
one can easily construct a Heegaard decomposition of M3 = M3#M|: choose the balls B\ and 
B2 in H'^ and #(2)' resPectively, such that they touch the boundaries of the corresponding 
handlebodies in a disc. Then H^D U H(2) and if^ — B\ U H'^ — B2 are handlebodies and form 
a Heegaard decomposition of M3. For the Heegaard genera we obtain the following inequality: 

h(Ml#Ml) < h{Ml) + h(Ml). 
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W. Haken proved the much more difficult result that in fact equality holds: 
1.13 Theorem [Ha 1]. //A/3 - Af3#M3 then h(M3) = h(Mf) + /i(A/3). • 

For the proof Haken showed: If (i/, H') is a Heegaard decomposition of Af3 — M\ j^M~i then 
there exists a curve 7 with the following properties: 
(*) 7 is a simple closed curve on dH = dH' which is not contractible on dH but bounds 

disks D and D' in H and H'; here D fl dH — D1 H dH' — 7. 
Obviously, the sphere DuD' now defines either a decomposition of A/3 into a connected sum 

of two 3-manifolds different from S3 or a reduction of the Heegaard decomposition. Of course, 
if we consider a Heegaard decomposition (H,H') of an arbitrary manifold the existence of a 
curve with the property (*) gives some simplification. For instance, assume that for arbitrary 
A/3 the condition 7r1(A/3) = 1 yields the existence of a curve with the property (*) for every 
Heegaard decomposition (H,H') of A/3. By induction we decompose (H,H') into Heegaard 
decompositions of genus 1 of manifolds which are also simply connected. As we have seen in 1.8 
these summands are also 3-spheres and, hence, A/3 also. In other words, the above assumption 
implies the Poincaré conjecture; in fact, by the Theorem 1.17 of Waldhausen the assumption is 
even equivalent to it. One may formulate this in more algebraic versions to get some algebraic 
equivalences to the Poincaré conjecture, see [Sta]. 

Until now we have not given a general method for presenting Heegaard decompositions; we 
have only described some examples. Of course, a Heegaard decomposition (Hg,H'g) of Af3 is 
determined, up to a homeomorphism, if the identification mapping of dHg and dH' is known 
(up to isotopy and conjugation by homeomorphisms). One could try to use the mapping class 
groups of surfaces, as done by J. Birman and J. Powell [Bi 2, 3], [BiPl, but this has not yet 
intensively been studied. Let us now describe the classical approach: 
1.14 Heegaard diagrams. The common way is to cut the handlebodies HgiH'g along discs 
into balls: There are g disjoint discs Aj,...,A^ C Hg with 8[ = <9A' C 3Hg such that 
Hg — IJ^j iV(AJ) is a 3 —ball; similar for H'g where we use discs Aj with boundaries S{. On Fg — 
dHg — dH'g we now obtain two systems of pairwise disjoint simple closed curves: (8'1:... , 8'g) 
and [8i,... ,8g). This is called a Heegaard diagram. Clearly, a Heegaard diagram determines 
the Heegaard decomposition up to homeomorphisms, but there are many different Heegaard 
diagrams with the same decomposition. The elementary stabilization adds curves 8'g+1 and 8g+i 
to the given systems where 8g+1 fi 8{ (and 8g+\ fl 6\) is empty for i / g -f 1 and one point if 
i = g + l. 

Heegaard diagrams were introduced by Heegaard [Heej to construct examples of 3-manifolds 
and compute their Betti numbers. Shortly thereafter Poincaré [Poi] used the same concept and 
gave the description of it which is more or less the modern one. In fact, Heegaard splittings 
were already considered by Dyck some ten to fifteen years earlier in [Dyj which contains a 
detailed description of the genus 1 Heegaard diagrams. The classification of 3-manifolds can 
be transformed into some equivalence of Heegaard diagrams as done by Reidemeister [Rei lj 
and Singer [Sin]. In the study of Heegaard diagrams there arise non-trivial equivalences for the 
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same genus in addition to stabilization, and it seems rather hopeless to get to a classification of 
3—manifolds this way. 

1.15 An alternative form of Heegaard diagrams. Consider only the curves (#!,..ag) 
but now as curves on the boundary of the handlebody Hg where the equivalence is defined by 
homeomorphisms of Hg. Then Hg and the system (6i9... ,6g) determines the manifold M3 and 
we also call (Hg;6i,... j6g) a Heegaard diagram of M3. The stabilization adds one handle to 
Hg and a longitude 8g+i of this handle to (6\,... ,Sg). The inverse procedure corresponds to a 
reduction. If this is possible we say that the Heegaard diagram can be reduced. 

We come back to the general situation in Section 2, but consider next the case of genus 1. In 
this case we have a solid torus Hi = D2 x 51, a meridian m = dD2 x 1 and a longitude I = 1 x S1 
on the torus T = dHx = dD2 x S1 = S1 x 51. (Here we put D2 = {z e C | | z |< 1}.) The 
meridian is uniquely determined up to isotopy and reversing of the orientation. The longitude 
can be altered by isotopy, reversing of orientation and adding multiples of the meridian. If an 
orientation of Hx (and so on T) has to be respected, the orientations of m and £ can be altered 
simultanously only. The pair (ra,E) forms a basis for iri(dHi) = Hi(dHi). 

Let us now in addition consider a positive meridian-longitude pair (m' ,£') of the solid torus 
H[. Then (where — denotes homologous) 

rri ~ qm + p£ , £' ~* am + j3£ on T — dHi where q/3 — pa = 1, 

and the numbers p, q determine how H[ is glued to Hi and thus the Heegaard decomposition. 
Let us denote Heegaard diagram and decomposition by (Hi;(p,q)). By simple considerations 
one obtains the following proposition. 

1.16 Proposition, (a) The Heegaard decomposition (Hi;(p,q)) represents S3 if p = 1, S2 x S1 
if p = 0 and L(p,q) for p > 2. 

(b) The Heegaard decompositions (Hi;(p,q)) and (Hi; (p*,^*)) are homeomorphic by an 
orientation preserving homeomorphism if and only if p = p* and q = qm mod p. There is an 
orientation reversing homeomorphism mapping (Hi\(p,q)) to (H1 (p, q)) if and only if p = p* 
and q = —q+ mod p. 

(c) The Heegaard diagrams (Hi;(p,q)) and (Hi;(p, q)) with qq = ±1 mod p belong to the 
same manifold, namely if they correspond to the Heegaard decompositions (Hi, H[), (Hi,H[) then 
there is a homeomorphism of M3 onto itself sending Hi to H[ and H[ to Hi. The condition 
qq = ±1 mod p is also necessary for the existence of a homeomorphism changing the solid tori, 
that is, for the homeomorphy of the Heegaard splittings. Q 

Let us now consider the connected sum of two lens spaces Z(p, q) and Z(r, 3). We obtain Hee­
gaard decompositions of genus 2 of the sum by glueing two Heegaard decompositions of genus 1 of 
the factors together. They have the Heegaard diagrams (H2; (p,q), (r,s)) and (H2 ; (p,?), (r,s+)) 
where s+s = —1 mod r. Here (p,q) represents a curve on the first handle, (r,5),(r,sm) on the 
second. ABoth diagrams define the same 3—manifold M3, a connected sum of two lens spaces. 
Assume that there is a homeomorphism h: M3 —• M3 mapping H2 to H£ or to M3 — H2. 
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Using the methods of [Mi] one sees that there is a homeomorphism (even an isotopy [Lau 2, 
3]) mapping one of the 2-spheres to the other, and we may assume that they coincide. Thus 
M3 = X1uX2,X1nX2 = S2 and#2nXi ,H;nXi , (M3 \ H2)nXi , (M*\H;)nX{ (i = 1,2) 
are solid tori. In X\ we obtain twice the Heegaard decomposition (#i;(p, q)). If the Heegaard 
decomposition of genus 1 of L(p,q) is not symmetric, i.e. q2 ^ ±1 mod p, it follows that h 
maps H2 n Xi onto #2* fl Xi; hence, h(H2) = #2*. This implies that /i(#2 n l 2 ) = #2* n X* 
and that the Heegaard decompositions (Hx;(r,s)) and (#i; (r,5*)) are homeomorphic which is 
possible only if s2 = ±1 mod r, see 1.16. Hence we obtain the result of R. Engmann [Eng] that, 
for q2 ^ ±1 mod p, s2 ±1 mod r, L(p, q)#L(r, s) has Heegaard splittings of genus 2 which 
are not homeomorphic. For a complete classification of genus 2 Heegaard splittings of connected 
sums of two lens spaces see [MoS]. This has been the first negative answer to the last question 
in 1.11(b). Shortly later Birman, Gonzalez-Acuiia and Montesinos constructed prime Seifert 
manifolds of Heegaard genus 2 with two non-homeomorphic Heegaard decompositions of genus 
2, see [BGM] and [Mo 2, 3]. We will describe an example due to Moriah [Mor 1,2] explicitly in 
Theorem 4.11. For examples of hyperbolic manifolds see [MoW], Recently Casson and Gordon 
constructed, manifolds having infinitely many irreducible Heegaard splittings of different genus, 
see [CG 2]; this gives, in particular, a negative answer to the last question in 1.11 (b). 

There are also known some 3—manifolds which have only one type of irreducible Heegaard 
decompositions for some genus. The best known example is S3, as shown by Waldhausen [Wa 
1]. Only recently Bonahon-Otal [BonO] showed a similar property for lens spaces. 

1.17 Theorem [Wa 1]. Let (Hg,H'g) be a Heegaard decomposition of 53 of genus g>l. Then 
there is a pair of meridians m and m' of Hg and H'gf respectively, such that m fl m' consists of 
one point where proper intersection takes place. Hence, (Hg,H'g) is obtained from a Heegaard 
decomposition of genus g — 1 by stabilization. Furthermore, any two Heegaard decompositions of 
53 of equal genus are homeomorphic and thus every Heegaard decomposition (Hg,H'g) of S3 is 
symmetric in the following sense: there is a homeomorphism of S3 mapping Hg to H'g . d 

1.18 Theorem [BonO]. Every Heegaard decomposition of genus g > 1 of a lens space is ob­
tained by stabilization from a Heegaard decomposition of genus g — 1. Moreover, if (Hg,H'g) 
and (Hg,H'g) are Heegaard decompositions of L(p,q) and g > 1 then there is an orientation 
preserving homeomorphism f: L(p,q) —* L(p,q) such that f(Hg) = Hg and f(H'g) = H'. D 

As we have seen in 1.16 the last claim does not hold for g — 1. In the proof of Waldhausen 
in [Wa 1] the curves of two systems of meridians for the two handlebodies are ordered, and they 
are reduced to systems in which a curve of one of the systems is only intersected by curves of 
the other systems with numbers not larger as its own. This is proved by using arguments on 
curves on handlebodies. In the proof of [BonO] methods introduced by Schubert [Sch], see also 
[Bon 2], are used which have not been applied in the theory of Heegaard decompositions before, 
in particular they use Morse functions. J.-P. Otal [Ot] has used this method also to reprove 
Waldhausen's theorem for S3. 

255 



H. ZIESCHANG 

1.19 Heegaard decompositions and Morse theory. Let us now give another interpretation 
of a Heegaard decomposition Hg, H'g of the closed 3—manifold M. First we take a point and its 
regular neighbourhood, a ball Bo, in the interior of Hg such that Hg — Bo consists of g cylinders 
Ai = cti x D2,..., Ag — ag x D2 where the ctj's are arcs, the cores of the handles of Hg. The 
ball Bo is called a 0—handle and the cylinders are called 1 — handles: 

Hg = Bo U Ai . . . U Ag, ^ n i4j = 0 if i ^ j , Ai n Bo = dA{ n dB0 = 5° x D2. 

Next let Ai,..., Ag be a system of discs of H'g and D\,... ,D3g be their regular neighbourhoods 
in H'g such that #J - U =̂1Z)3 is a bail, in particular, Dj = Aj x /, D3 C\ Hg - dAj x / . Then 
the space M0 = ^ U D J U . . . U D J is obtained from Hg by attaching 2-handles. It is bounded 
by a 2—sphere and M is obtained from M0 by adding the Z-handle H'g — U?=1Z}3. 

This interpretation of a Heegaard decomposition suggests some generalizations of the con­
cept: 

1) There is no need to postulate that the number of 2—handles is as big'as the number 
of 1—handles and we may assume that the manifold M has boundary and that M — Hg U Kh 
where is obtained from the product of a closed orientable surface of genus g and the interval 
by attaching h 2 —handles. We will consider this situation for the special case where h = g — 1 
in Section 4. 

2) This description is very close to the construction of manifolds using singularities of Morse 
functions: we choose such a function which has one singularity of index 0 on the lowest level, 
g singularities of index 1 followed when going up by g singularities of index 2 and, finally, 1 
of index 3 — or in the more general concept as described in 1), one singularity of index 0, g 
singularities of index 1 and h singularities of index 2. As already mentioned, the approach of 
this type has effectively been used by Bonahon-Otal [Bon 2], [BonO]. 

3) The description of Heegaard decompositions using handles can also been used to construct 
Heegaard splittings in higher dimensions. 

2. On the rank of ^ M 3 and the Heegaard genus of M3 

There have been few attemps to calculate invariants of 3—manifolds using Heegaard decom­
positions or diagrams. The following approach has often been used. Obviously, a Heegaard dia­
gram (Hg; 8i,..., 8g) gives rise to a presentation of ir\ A/3 by taking as generators a system of free 
generators S\,..., sg ofiriHg (corresponding possibly to the cores of the handles) and as relators 
the expressions of the curves 6\,... ,6g as words R\ = Ri(s\,... ,sg),..., Rg = Rg(s\,...,sg ): 

TTJM3 - (su...,sg | Ru...,Rg). 
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Hence, the fundamental group тт\Мг of a closed (orientable) 3-manifold M3 admits a presentation 
with as many relations as generators, that is a so-called balanced presentation. If M3 has a 
Heegaard decomposition of genus g then 7TiM3 can be generated by g elements. To formulate 
this in a more sophisticated way we make the following definition. This is the reason why not 
all groups can be fundamental groups of 3-manifolds, for instance, Z4 or Z4 ® Z4 do not have 
balanced presentations. 

2.1 Definition. In the situation above the presentation (si,...,sg | Ri,...,Rg) of л-jM3 is 
called geometric. The minimal number of elements needed to generate a group G is called the 
rank of G, denoted by r(G). For a 3-manifold M3 we denote the rank of щМг by r(M3). 

2.2 Proposition. r(Af3) < /i(M3). • 

Clearly, 0 = /i(M3) implies M3 = S3, and 0 = r(M3). The Poincaré conjecture can be 
formulated in the following way: 

r(M3) = 0 <i==> h(Mz) = 0. 

For the lens spaces and S2 x Sl we have also the equation r(M3) = h(M3), namely = 1, since 
these spaces have cyclic fundamental groups and Heegaard diagrams of genus 1. Waldhausen 
(see [Wa 2], [Ha 2]) has asked whether for every 3—manifold equality is true and suggested a 
study of this more general question instead of the Poincaré conjecture. In 2.3 we will show 
that for most of the Seifert fibre spaces rank and Heegaard genus coincide. However there are 
examples where this is not the case and others for which this question is not yet decided, see 
Theorem 2.6. 

2.3 The rank of fundamental groups of Seifert manifolds. Using the Seifert-van Kampen 
theorem it is easy to prove that the Seifert manifold S(g; eo; b\ ja\,...,bg/ag) has a fundamental 
group with presentation 

G = (.si,... ,5m,ai, .. ,ug,vg,f I si .. .sm 
9 

M 

3=1 

[vjj], 4г/6, 

[*,/], 4г/6, (1 [vjj], 4г/6, (1 < * < m , 1 < j < g)) 

where e — eo-f-V™^ 6;/a;, ([a,b] denotes the commutator aba~1b~l.) If 2$f-h]£3™1(l — bjai) > 2, 
in particular, if 2g -f m > 4, then / has infinite order. Moreover, f generates the centre of G if 
there is a strict inequality. (For details see [Or j , [OVZ].) 

The group F = G/{/} has the presentation 

[Si ,5m, «1 ,У1,...,И0,1'0[vjj], 
m 

П 
¿=1 

Si • 
9 

П 
j=i 

ujivi})' 

and, thus, is isomorphic to a Fuchsian group (or a group acting on R2), see[-ZVC, 4.6, 4.7]. Of 
course, 

(1) r(G) > r(F). 
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For the rank of the Fuchsian group one would expect r(F) = m + 2g — 1, if m > 0, and r(F) = 2g 
if m = 0; at least, these numbers are the minimal numbers of generators defined by fundamental 
domains of the Fuchsian groups, see the text following 2.4. However, this is not the case as 
shows. 

2.4 Theorem ([PRZj, [Zi 6]). 

r(F) = 
2g if m = 0, 
m — 2 if g = 0, m even, one ai odd, all others being 2, 
2g -f m — 1 for the remaining cases. 

The geometric rank of the Fuchsian group F is defined as follows: Let D be a fundamental 
domain for F. Let r£> be the number of pairs {<p,^-1} where <p(D) n D contains an arc. By 
taking from each pair one element we obtain a system of generators for F. The minimum of the 
7*p over all fundamental domains is called the geometric rank ofF. In the first and the third case 
in 2.4 the geometric and the algebraic ranks coincide, however in the second case the geometric 
rank is m — 1. This example has been discovered by Burns, Karrass, Pietrowski and Purzitzky. 
We present it in a slightly more complicated version after 2.5. For details see [PRZj. From 2.1, 
2.4, 1.10 and the inequality r(F) < r(G) = r(Af3) < /i(M3) we obtain most of the the following 
theorem: 

2.5 Theorem [BoiZ]. Let M3 = $(<7;eo;&i/ai,...,6m/am) with 1 < ai < . . . < am and 
gcd(ai,bi) = 1 for 1 < i < m. 

(i) If Mz = S(0;eo;l/2,...,l/2,6m/2* + 1) with i > 0, m even and m > 4, then m-2 = 
r(M3) < h(M3) < m - 1. //, in addition, e0 = ±l/2(2€ + 1), then r(M3) = h(M3) = m - 2. 
Moreover: 

'(*) J/m = 4 and eQ £ ±1/2(21 + 1) &en 2 = r(M3) < h(M*) = 3. 

(ii) If g > 0 and m = 2, or if m > 3 and if M3 does not belong to the case (i), then 
r(M3) - h{Mz) = 2g + m-l. 

(iii) Ifm = 1, </ien r(M3) = /i(M3) = 2^ t/e0 = ±l/alf- otherwise r(M3) = /i(M3) = 2^-fl. 
// m = 0, tAen r(M3) = /i(M3) = 2g if e0 = ±1; otherwise r(M3) = /?(M3) = 2g + 1. 

The cases (ii) and (iii) are obtained by standard arguments using the existence of a sec­
tion for the cases where the Heegaard genus becomes smaller than in the usual case. In the 
following we deal with the case (i). Let us first show for the case m = 4 that the unex­
pected diminishing of the rank of F lifts to a diminishing of the rank of G = (^1,52,53,54,/ | 
5j / , 5^/, 53/, 5^+1/b, 5!525354/e). A consequence of the relations s\f is that [5;,/],l < i < 4 
is a relation. Define x = 5i52, y = sis^. Then 

w = xy 1x 1y = sls>sif J5i/ 1s2f 1s*1s1ss = (siS-yS^f 3 
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and w G (x,y), the subgroup of G generated by X and Y. Further, 

s:1 = (/%*2*з)2 = w2e+3, 
„-21 r-b l f2eí + Zt-b 54 = 4̂ / = W J » 

S3=(SiS-i) S1S2S3 - (Si32) s4 f =x w f -2e(-i(+b-e 

s2 = 5j 5^2 = ж w г/ я/7 G where 7 = -2e¿ - Zi + b - e, 

5i=3i5353 =ywxf £ (ж, г/, / ) , 
.s2 = 5j 5^2 = ж w г/ я/7 G (x,y,f). 

This implies that 

1 = *î/ = (уЮ'*)2/-^+1 
l = 4f = (x-ìw-ty-1x)2f^+1; 

^ y-27+1 e (z,y), 

hence, /2 G (avy) ancl / ^ (xi¡j)' This shows that x,y generate G. (The example of Burns, 
Karrass, Pietrowski, Purzitzky is obtained when putting / = 1.) 

In fact, by a more careful calculation one obtains that there is a presentation for G with the 
generators x, y and two defining relations, a so-called balanced presentation. J.M. Montesinos 
[Mo 5, 6] has shown that one can pass from a presentation defined by a Heegaard diagram of 
genus 3 to a balanced presentation with 2 generators by using only extended Nielsen processes; 
this gives a geometric interpretation of the presentation mentioned. 

It remains to show that h(M3) = 3 for the exceptional cases 2.6 (*). We will only sketch 
the proof; for details see [BoiZ]. The proof is based on two well known theorems. The first is a 
result of Birman-Hilden and Viro which is valid only for handlebodies of genus 2 and does not 
have an analogue for higher genus. 

S 

7 7 
S' 

Fig. 2.1 

A Dehn twist on a surface S along a curve 7 is a homeomorphism which is the identity 
outside a regular neighbourhood N(j) of 7 and gives a twist inside N(7), see Fig. 2.1. It is well 
known, see [De], [Li], [Bi, 4.3], that for every surface the Dehn twists along a finite system of 
curves (which is nearly the usual canonical system) generate the group of orientation preserving 
homeomorphisms up to isotopies; more precisely, the isotopy classes of such twists generate the 
group of isotopy classes of orientation preserving homeomorphisms. For the particular case of a 
closed orientable surface S2 of genus 2 every orientation preserving homeomorphism is a product 
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of the Dehn twists along the curves 7i,...,7s which are drawn in Fig. 2.2. If r denotes the 
hyperelliptic involution, i.e. the rotation by 7r described in Fig. 2.2, then each of the Dehn 
twists along 7i,...,75 can be chosen in a r—equivariant form, that is, such that every pair of 
points one of which is the image of the other under r is mapped to a pair with the same property. 
Thus every orientation preserving homeomorphism of S2 is isotopic to a r—equivariant one. Now 
consider S2 as the boundary of a handlebody H2 of genus 2 and extend r to an involution of 
H2 in the way suggested by Fig. 2.2. The factor space H2/r is a 3—ball D3 and H2 —* D3 is a 
branched covering where the branching occurs along three unlinked arcs, see Fig. 2.2. 

7l 72 73 74 75 7T 

r 

Quotient 

by r 

Handlebody of genus 2 with the standard 
rotation of angle w about an axis meeting 
the boundary in G points. 

Dat! which contains 3 unknotted and 
unlinked arcs corresponding to the imag« 
of the image of the fixed point set of ir. 

Fig. 2.2 

Next consider a 3—manifold M3 which has a Heegaard decomposition (H2,H2) of genus 2. 
The hyperelliptic involution on the surface can be extended to both handlebodies and, thus, to 
A/3, see Fig. 2.2. On each handlebody the involution defines a branched covering over a 3—ball 
and, hence, a branched covering A/3 S3 of order 2 where the branch points are on the link 
formed by the six arcs from the two 3—balls. In every 3—ball the three arcs are unlinked, that is, 
there are three pairwise disjoint discs each of which is bounded by one of the arcs considered and 
an arc on the boundary of the 3—ball. A presentation of a link of this type is called a 3— bridge 
presentation; in each ball the system of arcs is trivial and all complications of the link are due 
to the glueing mapping used to identify the boundaries of the balls. — Hence, we have shown 
the following. 

2.6 Proposition ([BiH],[Vi]). (a) Let S2 be a closed orientable surface of genus 2. There is an 
involution T: S2 S2 such that every orientation preserving homeomorphism f: S2 —*• S2 is 
isotopic to a homeomorphism /* such that f~x о г о /„ — г. 

(b) A closed orientable 3 — manifold A/3 admits a Heegaard decomposition of genus 2 if and 
only if M3 is a 2—fold covering of S3 branched along a link with a 3 —bridge presentation. О 

For other relations between Heegaard decompositions, bridge presentations and branched 
coverings see [Нее], [Bu], [Mo 4]. The next important result we need is due to Tollefson [To] and 
Bonahon [Bon 1], namely that every involution of a Seifert fibre space A/3 is conjugate to a fibre 
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preserving one. Let us assume that the involution r from above is already fibre-preserving. One 
has to discuss the different cases according to the effect of r to the fibres and, in particular, to 
the exceptional fibres of M3. We do this here for the case when r reverses the orientation of the 
fibres. 

For M3 = S(0;e0;l/2,l/2,l/2,6/2£ + 1) the bases of the Seifert fibration is S2 with four 
exceptional points, corresponding to the exceptional fibres. On S2, r induces an involution f 
which reverses the orientation of S2, since r preserves the orientation of A/3 and reverses the 
orientation of the fibres. Since r has a non-empty fixed point set, so does f too. Therefore f 
looks like a reflection through the equation of 52. Since r respects the set of exceptional fibres, 
f permutes the images of the exceptional fibres in S2, and there are the two possibilities, shown 
in Fig. 2.3. 

s2 

I 
2 1 

2 
I 
2 

в 
2£-h 1 

a) r respects each 
exceptional fibre 

S2 

I 
2 

I 
2 

ß 
2*+i 

1 
о 

b) r exchanges two exceptional 
fibres of type 1/2 

Fig. 2.3 

a) In this case M3/r is S3 and the branch set is the link from Fig. 2.4, called the Montesinos 
link m(0;e0; 1/2,1/2,1/2, 6/(2* + 1)). (For details see [Mo 1,3], [BuZ, Section 12], [Zi 8].) It is 
a link consisting of 3 components one of which is a non-ti vial 2 —bridge knot. This component 
needs at least 2 bridges in every bridge presentation, so there are necessarily at least 4 bridges 
for the branch set. 

e 

2€
+ 

l,ß
 

Montesinos link m(0; 1/2,1/2, l/2,/?/2¿ + l),c = e0 + 3/2 +/3/2Í +16 2 
Fig. 2.4 
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b) In the second case the quotient M3/r is not S3, contrasting with the result in 2.6 (b). 
In fact, according to Montesinos' construction ([Mo 1,3], [BuZ, Section 12]), M/r is obtained 
by Dehn surgery with coefficient 1/2 along a trivial solid torus in S3, see Fig. 2.5, that is, the 
solid torus drawn is replaced by another one having as meridian a curve going twice along the 
longitude and once along the meridian. After the surgery this solid torus correponds to the 
image in A/3/r of a regular neighbourhood of the two exceptional fibres of type 1/2 which are 
exchanged by T. Therefore tt1(M/t) = 22 and r defines a 2—fold branched covering of M3 over 
the lens space X(2,1), not over S3. 

branch set 

e 

21
+I

J 

Dehn surgery with coefficient 1/2 
along this trivial solid torus 

Fig. 2.5 

Hence, if r reverses the orientation of the fibres, A/3 is never a 2—fold covering of S3 
branched along a link admitting a 3—bridge presentation. In a similar way, using other special 
results on Seifert fibre spaces, one deals with the case when r preserves the orientation of the 
fibres. • 
2.7 Remarks, (a) The proof of Theorem 2.5 for m = 4 described above essentially depends on 
Proposition 2.6. For the cases in 2.5 (ii) with m > 6 the Heegaard genus is not determined and 
it seems much more difficult to deal with this case than for the case m — 4. 

(b) Using connected sums of the manifolds from above one can find 3—manifolds K3 where 
h( A"3)— r(K3) is arbitrarily large, since Heegaard genus and rank behave additively for connected 
sums of 3—manifolds, see 1.13 and [ Zi 6], [ZVC, 2.8.2]. Up to now, no prime manifold is known 
where the difference of Heegaard genus and rank of the fundamental group is greater than 1. In 
fact, no other examples of prime manifolds, except those given in 2.5(*), are known to have a 
positive difference, although it seems rather likely that there must be more (see [Mo 6]). 

3. Simple closed curves on handlebodies 

In this section we will collect some results on curves on handlebodies which can be used 
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in the theory of Heegaard decompositions as we will do in the following section. Most of the 
results are from [Zi 1,2,3]. In the following we consider an oriented handlebody H = Hg of 
genus g; the orientation induces an orientation on the boundary 5 = dH. Therefore we can 
define intersection numbers between curves in 5 or between curves on 5 and discs A{ C H with 
A; 0 S — dA and use an expression like "positive intersection". 

A system A = (Ai,..., A )̂ of disjoint discs in the handlebody H is called a system of cuts of 
H if AtHdH — dAi and the complement of a regular neighbourhood of these discs is ball. Let 8* 
be a simple closed curve on 5 = dH such that 8+ D A = 0. Since H — N(A) is a 3—ball and 8+ lies 
in its boundary there is a disc A* C H with 8* = dA* and A* D (Ji=i &i = Assume that there 
is a curve k C S such that KC\6m and k Pi dAi, for some i G {1,...,consist of one point each 
and that the intersection is proper in both cases. Then A' = (Ai,..., A;_i, A*, A;+i,..., Ag) 
is also a system of cuts of H. The step from A to A' is called a bifurcation. See Fig. 3.1. It is 
easily proved that one can go from one system of cuts of H to an arbitrary other one by finitely 
many bifurcations. 

Fig. 3.1 

A1 
a1 a2 A2 AT 

a1 

Д3" a3 

a1 
a3 

A3 

a2 
A2 

Fig. 3.2 

Let us now determine the changes of free generators of TT\H induced by a bifurcation. 
Take the basepoint P# £ S — dA and complete dA by curves (•#!,... such that the set 
S — (dA U (Jj=i '^j) ls a disc- The curves ... ,dg define free generators of w1H. By dividing 
5 along the trace (¿1,...,8g) of A we obtain the 2—sphere S2 with 2g holes (8^~,8^ ,... ,8£,8~) 
which are connected with P# by arcs (a1 , a1 ... ag + ag) obtained from the See Fig. 3.2. 
If we cut along all these arcs the sphere with 2g holes becomes a disc. Let 8+ be a simple 
closed curve on the sphere with holes which intersects any tfj1 at most once. The curve 8* 
divides the sphere into two domains and the curves 8f and 8~ have to be in different domains, 
if we want to replace A? by a disc A* with boundary 6m; this condition is also sufficient. Now 
A' = (Ai,..., Ai_i, A*, Aj+i,..., Ag) defines a new system (5J,...,5^) of free generators of 
KiH. By calculating the words for the curves #j with respect to the new system of cuts we see 
how the old generators are expressed by the new ones: there is a permutation f \ x f x | 

\n(l) ••• n(g)) 
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such that 

Sn(j) = 

S'n(j) for 1 < j < gì, 

S'n,(i)S'iS for 9i <î<92, 

Si SSn(j) for 92<j<9z, 

Si~es'n(j)S'iS for 9г<3< 9, 

where e = ±1 and n(t) = 1. In the first case both discs &n(j)> ^n(j) are *n same domain as 
P#, in the last case they both belong to the other domain, in the second and third, one of the 
discs is in the same domain as P#, the other is not. By taking a homeomorphism of H which 
sends the new system A' of discs to the old preserving subscripts and orientations, we obtain 
the automorphism of 7Ti H which has the following effect on the generators: 

Sn(j) 

Sn(j) for 1 < j < gi, 
Sn(j)S£i for 9i < j < 92, 

Sr£Sn(j) for g2 <j<gz, 
Si*SnU)st for 03 <j < 9-

Automorphisms of this form are called Whitehead automorphisms. They have the following 
remarkable properties. 

3.1 Whitehead automorphisms. In the free group (S1,...,Sg | —) let \W\ denote the usual 
length with respect to the generators 5 X , . . . , Sg. Two words W, W are called Nielsen equivalent 
if there is an automorphism a of the free group with a(l^) = W. The main property now 
is: If W does not have minimal length among all words which are Nielsen equivalent to W 
then there exists a Whitehead automorphism a such that |a(W)| < \ W\. Therefore, if the words 
W and W are Nielsen equivalent and their lenghts cannot he reduced by applying Whitehead 
automorphisms, then they have the same length. Moreover, if two words W, W have minimal 
length and are Nielsen equivalent then there is a sequence a i , . . . ,a& of Whitehead automorphisms 
and automorphisms induced by permutations of the set {Si, S^1,..., Sg, S"1} such that 

ctk o • • • o a\[W) = W' and \ctj o • • • o a i ( = \ W\ for 1 < j < k; 

in other words, the application of the cti does not increase the length of the word. 
The results quoted above can be generalized to the case of systems of words. Another 

generalization, important for topological problems, deals with system of conjugacy classes of 
words and uses the cyclic length, that is the length obtained after free and cyclic reductions; 
for example, S\ S2S^1 has the cyclic length 1. Two systems (W\,..., Wk) and (W[,..., W'k) of 
words of the free group are called equivalent if there is an automorphism a of the free group and 
elements L\,... ,Lk such that a(W{) = L'1 W[Li for 1 < i < ka. Of course, the length used for 
this case is the cyclic length. Clearly, this type of equivalence is the right one for dealing with 
Heegaard diagrams. There are only finitely many Whitehead and permutation automorphisms; 
hence, it can be decided in a finite number of steps whether two words or systems of words are 
equivalent or not. 
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The results described in 3.1 have been found by J.H.C. Whitehead in [Whi 1, 2j; new proofs 
are given by Rapaport [Ra] and Higgins-Lyndon [HiL]. The theorem of Whitehead allows one 
to calculate generators for the stabilizer of an element of a free group, that is for the group 
of automorphisms of the free group which fix the element. McCool [Mc] discovered how to 
calculate defining relations for the stabilizer, which leads to a better understanding of the proof 
of Higgins-Lyndon. 

Let us consider some examples to become more familiar with the Whitehead method. 

3.2 Examples, (a) Consider the word SpT~q with p, q > 2 in the free group (5, T \ - } . Since 
inner automorphism do not change the length one can decrease length only by applying the 
following Whitehead automorphisms (or their products with inner automorphisms): 

5 ^ 5 , T^TS£ or 5 ^ ST% T^T 

where s £ {1,-1}. The image of the above word is Sp(TS£)~q in the first case and it is easy to 
check that the length increases. Similar for the other case; so the word SpT~q is minimal. 

(b) Consider the words S5V-3S5V~* and S5V~2 S5V~2 S5V~3 of (S,V\-). It is easy to 
check that are also minimal. Further consider the word S5T~7 £ (S, T | —). Since the lengths 
of these elements are 17, 22 and 12 they are not Nielsen equivalent. 

What is interesting about these words is that they give isomorphic groups if we introduce 
them as single defining relations: 

(5,T | S5 = T7> - {S,T,V | S5 = T7,V = T2} = (S,T,V i s5v~3 = T,V = T2) 

= (S,T,V I S5V~3 = T,V = (S5V~3)2) = (S,V I s5v~3s5v-4). 

When we define V = T3 we obtain in the same way the relator S5 V~2S5 V~2S5V~3, and so 
all these three presentations with a single defining relation are from the 'same' group. Since 
the relations are not Nielsen equivalent they give a counterexample to a conjecture of Magnus 
concerning one-relator groups, see [MKS, p. 401]; in fact, this has been the first one found by 
McCool-Pietrowski [McP] and in [Zi 6]. We will return to it later. 

To study simple closed curves on Hg (g > 2) it is convenient to determine handles of Hg by 
a system ¡3 = {j3\, ...,(3g} of g disjoint simple closed curves on dHg, the belt curves, bounding g 
disjoint discs Bj in Hg which cut Hg into solid tori Qi,...,Qg and a ball D3. If g = 2, it suffices 
to take only one curve ¡3 and forget the ball. Each solid torus Qj determines uniquely, up to 
isotopy and reversal of orientation, a meridian 6j of Hg such that 8j fl j3j — 0. Any system of 
pairwise disjoint simple closed curves on 0Hg can be deformed by an isotopy of Hg into a system 
k transverse to 3. Assume that k H Qj, for some Qj, contains an arc r which is nomotopic on 
OQj to one of the arcs on /3j determined by the endpoints of r. Then r can be pushed by an 
isotopy of Hg to the belt ,3j and further to the other side, so we may assume that arcs of this 
trivial type do not occur. 

3.3 Connections. The remaining arcs on one handle are called connections. They are arcs 
on the boundary of a handle Q - Qj which start and end on the belt curve ¡3 — 3} and which 
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cannot be continuously deformed on ÔQ to (3. (For a moment we will drop the subscript since 
all arguments are valid for every handle Qj.) Let r be a system of pairwise disjoint connections 
on dQ. Two disjoint connections on Q are called parallel if they, together with two arcs on 
bound a rectangle on dQ. If we ignore the orientations of the members of r, at most three classes 
of parallel connections occur in r according to Fig. 3.3. 

0' 0 
T1 

*1 
*3 

0 0 
Fig. 3.3 Fig. 3.4 

We complete 8 by a longitude t? D B = 0, to a canonical system of curves on dQ and we 
assume that we cannot reduce the number of intersections of r with £Ui?; that is, we forbid an arc 
in r which together with an arc on 8 or $ bounds a disc on dQ. For a fixed oriented connection the 
intersections with 8 or d are all positive or all negative. If a connection has intersection numbers 
a and a' with 8 and respectively, then we call (a, a') the type of the connection. If two disjoint 
connections are not parallel and have types (a, a'), (6, &'), respectively, then a 6 

a' 6' = ±1. 

A homeomorphism h of Q maps 8 to a curve isotopic to e'8 and $ to eâ + m8 with e',e 6 
{1,-1},m G Z; h preserves the orientation of Q when e' = e. Connections of type (a,a') 
are mapped to connections of type (e'a, ea' -f ma). This can be done for all numbers e',e G 
{1,-1}, me I. 

Let r consist of two or three subsystems of parallel connections of types (a, a'), (6, 6'),(c,c') 
where members of different systems are not parallel. Let f be another system of connections 
of types (a,a"),(6,6"),(c,c"). Since I a b 

a" b" 
= ±1, . . . it follows that a" = ±a' + //a, 6" = 

±6' + ub and c" — ±c' -h/uc; hence, when the numbers of the connections of the corresponding 
types are the same there is a homeomorphism h : Q —• Q mapping r to f. Thus, if the three first 
numbers are different then already the first numbers determine the types up to homeomorphisms 
of Q. Of course, in the discussion above we did not forbid that two of the numbers a, 6, c coincide 
or one to be the negative of the other. Assume that b = a 4- c if there are in fact three types 
of connections. Assume that a = c. Since ac' — a'c = ±1 it follows that a = c = 1, 6 = 2. 
If a = b then a — b — 1, c = 0. For all other cases the three numbers a, 6, c are distinct. If a 
connection of type (0,a') occurs then a! = ±1 and |6| = \c\ = 1 for possibly other connections. 
In general already the intersection numbers with the meridian 8 determine the distribution of 
the connections to the classes of parallels. We record this result in a weak form which we will 
use in the following. The last assertion of it becomes evident from Fig. 3.4. 

3.4 Proposition. Let r be a system of pairwise disjoint connections on a handle Q such 
that there are at least two non-parallel ones and for one connection the (algebraic) intersection 

266 



ON HEEGAARD DIAGRAMS OF 3-MANIFOLDS 

number with a meridian of Q is bigger than 2 in absolute value. Then the intersection numbers 

with a meridian of Q determine the connections up to a homeomorphism of Q. Moreover, 

r is determined up to a homeomorphism of Q if the quantities of the different collections of 

connections is known. O 

Because there are only finitely many possibilities to join finite systems of connections on 

the different handles, these results allow to decide whether a given system of conjugacy classes 

of words in a free group of rank g can be realized by a system of disjoint simple closed curves 

on the boundary of a handlebody of genus g. Fortunately, the case when one of the intersection 

numbers with a meridian is 0 can be avoided, but, nevertheless, if all numbers are ones or twos 

the ones do not decide to which system of parallels the connection in question belongs. For 

Details see [Zi 1-3]. 

3.5 Heegaard diagrams of genus 2. Now the situation is much simpler. First we need only 

one belt curve ¡3 on dH2. Let W be a system of conjugacy classes of elements of it\H2, each 

conjugacy class being represented by a reduced cyclic word with powers of the generators as 

syllables such that consecutive syllables belong to different generators. If W is obtained from 

a system K' of disjoint simple closed curves on 3H2 then there exists a homeomorphism of H2 

mapping K' to a system K such that W is obtained by reading off the words belonging to K with 

respect to (61,62}- Clearly, if connections of type (0,a') do not occur, the number of syllables in 

W equals the number of points in K fl /3. The connections of type (0,a') can be avoided, see [Zi 

2]. This makes it easy to decide whether a given system of words in iriH2 can be represented 

by disjoint simple closed curves on dH2. To illustrate this we present here two examples coming 

from the group of the torus knot t(5,7), which has the presentation G(5,7) = (s,t | s5t~'); the 

meridian of the knot is \x — s~2t3, see [BuZ, 3.28]. 

3.6 Examples. First we consider the one-relator presentation corresponding to the pair of 

generators (s, v = t2), see Example 3.2 (b): G(5,7) = (s, v = t2 \ s5v~3 s5v~4). In Fig. 3.5 one 

can see that the relator s5 v~3 s5 v~4 and the meridian /z — s3v~3s5v~3s5v~3 cannot be realized 

by disjoint simple closed curves on the boundary of a genus 2 handlebody. We say, see 2.1, that 

this one-relator presentation of the group G(5,7) of the torus knot t(5,7) is not geometric. (Of 

course, the connections on the handlebody H2 look more complicated than those in Fig. 3.5, 

but the original curves and their pictures can be mapped one to the other by a homeomorphism 

of the surface dH2 which in general does not extend to H>.) 

For our second example we consider the one-relator presentation corresponding to the pair 

of generators (s,v — t3), see Example 3.2 (b): (s,v \ s5v~2s5v~2s5v~3). In Fig. 3.6 one can see 

that the relator s5v~2s5v~2s5v~3 and the meridian /x = s~2v can be realized by disjoint simple 

closed curves on the boundary of a genus 2 handlebody. Thus this one-relator presentation of 

the group G(5,7) is geometric. For final results in this direction see Section 4. 
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S-handle V-handle 

b - 4 

5 5 3 W7,2 
- 3 - 3 

m 

Wlt2{V\S*) ~ S?V-3S5V~4 m = S3V'3S5V3S5V'3 
Fig. 3.5 

5-handle 7-handle 

u w7,3 

5 
05 5 - 2 . 

- 2 
- 3 -1 

- 2 

m 

W7,3{V-ltSp) ~ S5V~2S5V-2S5V-3 m = S~2V 
Fig. 3.6 

4. Heegaard decompositions of knot exteriors. 

The title of this section suggests that the concept of Heegaard decompositions has to be 
extended to manifolds with boundary as described in 1.19. 

4.1 Torus knots. Consider the "standard" Heegaard decomposition (Hi, H[) of S3, see 1.8 (a). 
Let 8 and 8' be meridians of the solid tori Hi and H[, respectively, such that 8 O 8' consists of 
one point. These curves generate the homology group of the torus T = dH\ which is isomorphic 
to Z2. Let us recall some well known results on curves on a torus. / /7 is a simple closed curve 
on T then 7 ~- q8 + p8' where gcd(p,<?) = 1. // two simple closed curves are homologous on T 
then they are isotopic. To any pair (p,q) of relatively prime integers there exists a simple closed 
curve 7 on T with j — q8 +• p8'. Proofs can be found in many places. By t(p, q) we denote a 
simple closed curve on T of the homology class q8 -f p8' and call it the (p,q) torus knot. 
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4.2 The standard Heegaard decomposition of E(p,q). Consider a regular neighbourhood 
N = T x [-1,1] of the torus T = T x 0, a regular neighbourhood Ao = S1 x [—1,1] of the 
knot t(p,q) = Sl x 0 on T, and A = T - A0. Then C/ = A0 x [-1,1] C N and V = 
N — U = A x [ — 1,1] are annuli x interval and U is a regular neighbourhood of t(p,q). Define 
Qi = Hi - N and Q2 = #J - A\ Then £(/>,?) = S3 - V = Qi U Q2 is the exterior of the 
knot t(p,q). Next we divide the annulus A into two closed discs A, B the intersection of which 
consists of two disjoint segments. Then H2 — Qi U (B x [—1,1]) U Q2 is a handlebody of genus 
2 and E(p,q) — H2 = A x [ — 1,1] is a disc x interval. Hence, (H2,e(p,q) - H2) is a Heegaard 
decomposition of genus 2 of E(p,q); we call it the standard Heegaard decomposition of genus 2 
of E(p,q) and denote it by HDQ. A diagram of it, also denoted by HDq, is given by #2 and the 
curve 6 = OA. (This construction mentioned already in 1.8 (d) is from [Rei 3].) See Fig. 4.1. 

В X 1-1,1 Д X [-1Д] 

Ql 
<?2 

Fig. 4.1 

4.3 Different Heegaard diagrams for t(p,q). Let us now consider the torus knot t(p, q). 
Let a, b £ Z such that pb + qa = 1. We illustrate the construction for the torus knot t(5,7); 
here a — —2, 6 = 3. Starting with the Heegaard diagram (H2;s5t~' ,s-2£3) of S3, see Fig. 4.2, 
we add one handle and obtain the Heegaard diagram (H3; s5t~7,s~2t3, v~lt3) of S3, see Fig. 
4.3. Next we move the knot meridian /x, comp. 3.5, from s~2t3 to s~2v, see Fig. 4.4, and then 
replace s5t~7 by $5i'~2*-1 and r""1/3 by v~1(s5v~2 )3, see Fig. 4.5-7, and finally we cut off the 
T—handle, see Fig. 4.8. This gives the following sequence of Heegaard diagrams of S3: 

4.4 

(tf2; 55R7,/x = .s~2f3), 
(#3; s5TT , /z = s-2*3 , iT1*3), 

(Я3; s4-' , fi' = s-'v , v-4d), 
(#3; ^y"2*"1 , fl' = s~2v, v~H3), 
(F3; s5v-'2r\ J =s~2v, s5v-2s5v-2s5v-*), 
(H2; M =^~2i' , s*v-2s5v-2s5v-*). 
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R 
m 

S-handle 
(S,T I R m ST"« , m « 5*T*) 

Fig. 4.2 

If we drop the meridian we obtain a sequence of Heegaard diagrams of E(p,q); thus (H2; s5t~7) 
and (H2;s5v~2s5v~2s5v~z) are Heegaard diagrams of genus 2 of £(5,7). Notice that for the 
first diagram the words do not determine the connections on both handles, but for the second 
diagram only those on the 5—handle are not characterized by the words. We must add the 
second number of the connections which are 2 for the 5—handle and 3 on the T—handle. On 
the V — handle we do not need this additional information, see 3.10. 

The third and the fourth step in 4.4 correspond to the steps in the euclidean algorithm to 
find gcd(7,3): 

7 = 2-3 + 1 
3 = 3-1+0 

the 2 and 2 + 1 are the exponents of V~l in the following expressions. 
We want to show that these Heegaard decompositions of £7(5, 7) are not homeomorphic. 

Otherwise there would be an isomorphism 

#:(,,< | _ ) - < , „ | _) 

inducing an isomorphism 

tp : (s,t | s5r7) -* (s,v | s5v-2s5v~2s5v-3). 

By a theorem closely related to the Freiheitssatz, see [MKS, Theorem 4.11], it follows that 
$(s5t~') is conjugate to (s5v~2s5v~2s5r~3 )±x. But this is impossible as we have seen in 3.2 (b). 

If we replace s by u = s2 and do the same construction as above, we obtain the Heegaard 
diagram (H2;t7u~2fu~z ,u~1t3) of S3 and (H2;fu~2Vu~z) of £7(5,7). It is not homeomorphic 
to the other two. Hence, E(p,q) admits three non-homeomorphic Heegaard decompositions of 
genus 2. In fact, these are all the types, see 4.8. 

4.5 Heegaard diagrams of the exteriors of torus knots. To attack the problem for 
arbitrary torus knots one has 

(a) to find the non-Nielsen-equivalent 1—relator presentations of the fundamental group 

n\E{p,<l) = G(P,?) = (M I spt~q) for p,q>2, gcd(p,o) = l; 

(b) to generalize the steps 4.4; 

T-handlc 
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R 

m 

S-handle 
T-handle 

V-(7=) -̂handle 
{S,T,V\R,mtV-iTh) 

Fig. 4.3 

R 

V-(7=) 

S-handle T-handle 

m' 
f-handle 

Fig. 4.4 

P 

V-(7=) 
S-handle r-handle 

M -̂handle 

Fig. 4.5 

R! 

handle r-handle 

m' 

-̂handle 
Fig. 4.6 

R' 

S-handle r-handle 

V-handle 

Fig. 4.7 

S-handle 

(S,v) Wc (v+ sp=) m' 
K-handle 

Fig. 4.8 
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(c) but to do so one has to relate the euclidean algorithm for finding gcd(g, 6) with changes 
of connections on one handle and curves on Hz; 

(d) to show that any two simple closed curves that realize the appearing words are uniquely 
determined up to a homeomorphism of H2 • 

The problem 4.5(a) has been solved by D. Collins: By [Zi 7, Theorem 5.1], each pair of 
generators of G(p,q) is Nielsen equivalent to a pair (sa,tb) such that 

gcd(a,p) = gcd(6, q) — gcd(a,6) = 1, 0 < 2a < pb, 0 < 2b < qa 

(equality may hold only if pb = 2 or qa = 2). Moreover two such pairs (sa,Tb) and (sa ,Tb ) of 
generators of G(p,q) are Nielsen equivalent iff a = a' and b — V or, for the case p — q, a = V 
and b = a'. One-relator presentations for G(p,q) can be obtained if a = 1 or b = 1 (see [Zi 7, 
section 6]). Moreover these are the only possibilities by [Col, Theorem 2.6]. 

Therefore we have the following: 

4.6 Theorem ([Zi 7] and [Col]). The group G(p,q) = < s,t \ sp = tq >, with p,q > 2, has 
only finitely many one-relator presentations which are not Nielsen equivalent. They correspond 
to the pairs of generators (sa,t) or (s,tb) with gcd(a,p) = 1 and 0 < 2a < p or gcd(6, q) = 1 and 
0 < 2b < o, respectively. O 

The possible relators can be determined as follows. Define a function fm,n ' ^ —*• {1>2} by 

fm,n(k) - fm,n(k') if k = k' mod(m + n) and 

t (u\ _ / 1 ^ 0 < < m, 
[2 if m < K < n + m . 

Now define a word ^rm,n(xi,.T2) by Wm,n(zi , ) = n^tT-1 ^ ^ ( l + im)' If gcd(m,n) = 1 this 
word corresponds to a free generator of the free group (x\,x2 | —) which gives in the abelianized 
group Z2 the primitive element (m, n). VFm,n is determined by these properties up to conjugation. 
See [Nie 1] and [OZj. In the following we will use the expression Wm>n, although, in fact, we 
should take a conjugate of it. 

4.7 Corollary. The relation corresponding to the generators (u = sa,t) and (s,v — tb) from 4.6 
are Wp,a(u~l,tq) and Wq^(v~l,sp), respectively. D 

If we apply the euclidean algorithm to q, b with 0 < 26 < q then we start with the equation 
q = m • 6 + ri, 0 < ri < 6. Here n\ plays the role of the 2 in 4.3 and is > 2 because 26 < <jf. It 
follows that v~l appears in Wq^(v~l,sp) with exponents nx and iii -f 1 and the last one occurs 
at least once. Thus we may apply 3.4 to see that the word Wq^( v~l,sp) defines the connections 
on the V—handle up to a homeomorphism. To determine the Heegaard diagram we have only 
to add the second number for the 5-handle and we write (Wq^{v~l ,sp)\ q, —); similar for the 
other Heegaard diagrams: (spt~q;q,p), (Wp,a(u~l,tq);-,p), respectively. After proving some 
additional properties of connections one sees that all steps of 4.4 can be done in the general case 
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and this gives the existence of three, in general, non-homeomorphic Heegaard decompositions of 
E(p,q) (see [BRZ 1, 2], [Mor lj). This is part of the following theorem: 

4.8 Theorem [BRZ 1, 2]. Any Heegaard decomposition of genus 2 of the exterior E(p,q) of the 
torus knot t(p,q) is homeomorphic to one of the following three, which are described by Heegaard 
diagrams: 

HD0 ~(8>r';q,p), HDS ~(Wp ( J u - \ f ) ; - , p ) , HDT ^ (Wqtb (v-\s*);q,-), 

where aq + bp = I. They are pairwise not homeomorphic, except in the following cases: i) for 
\p — q\ = 1 they are all homeomorphic; if ii) \p — q\ ^ 1 the Heegaard diagrams HD3 and HDT 
are not homeomorphic; now HDQ is homeomorphic to HD3 (or HDT, respectively) if and only 
if q = ±1 mod p (or p = ±1 mod q, respectively). 

We have sketched the proof of the existence of three, in general, non-homeomorphic Hee­
gaard decompositions of E(p,q). To see that those are all, thus to solve Problem 4.5 (d), is 
more difficult. One can do it by looking carefully to intersection numbers of suitable curves on 
dH2. Another approach uses alternating products in free groups. The most efficient way is the 
following: The parallels of the knot t(p, q) on the torus T and its parallels in the solid tori Hi, H[ 
together with the cores of the solid tori form a Seifert fibration of E(p,q) with a disc as base 
space and the cores as exceptional fibres of orders p and q. More general, one can consider all 
Seifert fibre spaces with two exceptional fibres of types a/p,f3/q and base a disc. Let us denote 
such a space by S(a/p, 3/q). They all have Heegaard decompositions of genus 2 and fundamental 
group {s,t | spt~q). The steps described in 4.4 can be performed for these spaces and it follows, 
using the known classification theorem for Seifert fibre spaces, the following theorem: 

4.9 Theorem [BRZ 2]. The manifold S(a/p,l3/q) admits three Heegaard decompositions HDQ, 
HDS, HDT, represented by the following Heegaard diagrams: 

HD0 <-> (spt~q\\,ti), HD, ~(Wp,a(u-\.«);-, ?),HDT ~ (W^tr1,*') ; A,-). 

Here a A = 1 mod p and j3n = 1 mod q. Any Heegaard decomposition of genus 2 of S(a/p, (3 /q) 
is homeomorphic to one of these. Moreover: 

(a) HDQ is homeomorphic to HDT (or HDs ) if and only if (3 = ±1 mod q or a = ±1 mod p, 
respectively ). 

(b) If 3 = ±1 mod q and a = ±1 mod p then HDQ, HDS, HDT are homeomorphic. 
(c) HDs an>d HDT are homeomorphic if and only if either case (b) occurs or a/p = 

±3/q mod 1 (that is, p — q and a = 3 mod p). 
In general there are exactly three non-homeomorphic Heegaard decompositions of S(a>p, 3/q). 

• 

M. Boileau and J.P. Otal BoiOj used Theorem 4.9 to classify the Heegaard decompositions 
of genus 2 of some closed Seifert fibre spaces; moreover, they obtained the following slightly 
stronger result: 
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4.10 Theorem. Let A/3 = 5(0; e0; ±l/j>, ±1/9,7/7-) 6e a Seifert fibre space over S2 with three 

exceptional fibres. Then any two Heegaard decompositions of genus 2 of M3 are isotopic, except 

in the case of a Brieskorn manifold E(2,3,a) with gcd(a,3) = 1 and a > 7 or a manifold 

S(0; 1/46; 1/2, (—6)/4, (4_1)/6) with 6 > 5 odd; here (n) and (n-1) denote the number n or 

its inverse modulo the denominator. In these exceptional cases there are exactly two classes with 

respect to homeomorphisms or isotopies; these are also the examples of [BGM]. O 

Theorem 4.9 can also be used to find non-homeomorphic Heegaard decompositions of closed 

Seifert fibre space with three exceptional fibres and orbitspace a 2—sphere. 

4.11 Theorem [BCZ], [Mor 2]. Let A/3 = 5(0; e0; clx/p,j3 / q,^/r) be a Seifert fibre space over 

S2 with three exceptional fibres. 

(a) If a ^ ± 1 mod p ,/? ^ ± 1 mod q and 7 ^ ± 1 mod r then M admits exactly three pairwise 

non isotopic Heegaard decompositions of genus 2, namely HD(1, 2), HD{2, 3), HD(3,1). (These 

Heegaard decompositions are described below.) 

(b) If a ^ ±1 mod p, /3 ̂  ± 1 mod q and 7 = ± 1 mod r then M admits exactly two non 

isotopic Heegaard decompositions of genus 2, namely HD(1,2) and HD(3,l) (the last one is 

isotopic to HD(2,3)). 

(c) Any two Heegaard decompositions of genus 2 of M3 = 5(0; eo; ai/p, ±l /a , ± l / r ) are 

isotopic (namely to HD{\,2)) except in the case when 

(i) M is the Brieskorn manifold F(2,3,a) = {z G C3 | z\ + z\ + zj = 0,||z|| = 1 } with 

gcd(3,a) = 1 and a > 7; 

(ii) M is the algebraic manifold W(2,4,6) = {z G C3 | z\ + (z\ + z\)z2 = 0,||z|| = 1 } with 

gcd(2,6) = 1 and 6 > 5. 

In each exceptional case M admits, up to isotopy, an additional Heegaard splitting which is not 

isotopic to HD(\,2). (They^tre also the examples o/[BGMj.) 

If two Heegaard decompositions of M are homeomorphic then they are isotopic, except in 

the case when there is a homeomorphism of M mapping one exceptional fibre to another one, 

that is, for example, when a/p = f3fq mod 1. CH 

This theorem has been obtained by Moriah [Mor 2] using some calculations of number theory 

and by Boileau-Collins-Zieschang [BCZ] applying Dehn's solution of the conjugacy problem for 

Fuchsian groups. 

There is an easy way to construct Heegaard decompositions of a Seifert manifold by looking 

at some particular arcs on the orbit space of the Seifert fibration, see 1.10 and [BoiZj. By 

definition, the orbit space of S(a/'p,¡3jq) is a disc D with two exceptional points corresponding 

to the exceptional fibres. We denote the projection by 7r : 5(a/p,¡3/q) —> D. Let us consider 

three circles c0,cs, on D with the properties that 7T_1(c0) is a torus parallel to the boundary of 

5(a/p, 3/q) and that 7r_1(c5) (resp. 7r_1(cj)) bounds a regular neighbourhood of the exceptional 
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Fig. 4.9 

fibre of order p (resp. q). Furthermore, let a0,as,aT be three pairwise disjoint arcs on D joining 
the three circles: a0 joins c$ to c ,̂ as (resp. ax) joins cs (resp. CT) to c0. See Fig. 4.9. 

4.12 The standard Heegaard decompositon HDo of genus 2 of S(a/p,j3/q) is obtained 
as follows (see [BoiZ, 1.3]): Let H2 be the handlebody in S(a/p,f3/q) formed by the regular 
neighbourhoods of the exceptional fibres (bounded by 7r-1(cs) and 7T_1(CT)) joined by a reg­
ular neighbourhood Z of an essential arc of the annulus 7r-1(ao). The complement of H2 in 
S(a/p, j3/q) is the union of (51 x S1) x [0,1] and a 2—handle D2 x [0,1] corresponding to a 
regular neighbourhood of 7r_1(ao) — Z, that is this 2—handle is a regular neighbourhood of the 
fibred annulus 7r_1(ao) cut along a regular neighbourhood of the essential arc joining 7T_1(CT) 
to 7r_1(cs). This gives the standard presentation of the group G(p, q). 

4.13 The Heegaard decomposition HDT of genus 2 corresponding to the Heegaard di­
agram (Wqj6(v_1,3p; A, —), where Aa = 1 mod p is obtained as follows: Let Y2 be the surface 
of genus 2 obtained by glueing the torus TV~1(CT) to the torus 7r-1(c0) by the boundary of a 
regular neighbourhood U of an essential arc of the annulus 7r-1(aT). This surface Y2 bounds a 
handlebody in S(a/p,¡3/q): As first meridian disc take 7r-1(a7i) — U; the second is a meridian 
disc of the regular neighbourhood of the exceptional fibre of order p bounded by the torus ob­
tained from 7r_1(co) and 7T_1(CT) after cutting along the annulus 7r_1(aT). Therefore the two 
cores of the two handles of H2 obtained in this way are 1) the exceptional fibre of order p and 
2) a section w of a regular neighbourhood of the exceptional fibre of order q (which is a section 
of the fibration induced by 7T_1(CT); it intersects the boundary of 7r-1(aT) in one point). More­
over, the complement of H2 has the form (S1 x 51) x [0,1] union a 2—handle D2 x [0,1] which 
corresponds to a regular neighbourhood of a meridian disc of 7T_1(CT). It is not difficult to show 
that this Heegaard decomposition has the diagram (Wq {̂v~l, sp); A, —). The third Heegaard 
decompostion is obtained by joining 7r~1(cs) and 7r_1(c0). For more details see [BRZ 2]. 

The Heegaard decomposition HD(l,2) is obtained from HDQ by filling in the neighbourhood 
of the third exceptional fibre of type 7/r, that is, one of the handlebodies consists of the regular 
neighbourhoods of the graph consisting of the two exceptional fibres of type a/'p and 3/q and an 
"unknotted" arc joining them and the other is the closure of its complement. The decompositions 
i/D(2,3) and Z/D(3,1) correspond to HDT and HDs, respectively. 
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