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INTRODUCTION

1. The themes treated in this paper have their origin in the classical theory
of special functions, namely the functions that arise as solutions of linear differ-
ential equations with rational or algebraic coefficients. The study of special
functions certainly goes back to the work of Gauss and Kummer on the hyper-
geometric differential equation. Riemann, who followed them, had a more con-
ceptual point of view that focussed attention on the singularities of the equation
and attempted to determine their influence on the solutions. In particular the
programme of studying the solutions of linear differential equations with mero-
morphic coefficients on a compact Riemann surface undoubtedly originates with
Riemann.

If the singular points of the differential equation are all regular, the mon-
odromy group contains all the essential information. Indeed, this was the point
of view of Riemann who proceeded to calculate the monodromy group of the
hypergeometric equation. Moreover it is characteristic of a regular singular
point that, locally at that point, the formal and analytic theories coincide. The
picture changes significantly at an irregular singular point. Let P be an irregu-
lar singular point, and let us write the differential equation as a first order linear
system

(%) du/dz = A(z)u,

where z is a local coordinate at P, u isan N X1 column vector, and A is an
N X N matrix of functions meromorphic at z = 0. One then finds that, typically,
formal solutions are divergent and that the formal theory of (%) is no longer ad-
equate to obtain a full understanding of the local structure of (%) and its solu-
tions. Nevertheless the formal structure of (%) is the foundation on which one
can erect its complete study. This is due to the fact, first discovered by Poincaré,
that any formal solution of (%) is asymptotic to an analytic solution on a sector
with vertex at P, provided only that the angle of the sector is small enough.
This analytic solution is however not unique , and will in general change when
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we rotate the sector keeping P as well as the formal solution fixed; this is the
Stokes phenomenon for the system (%*). The constant matrices by which a
fundamental matrix of (%) with a prescribed asymptotic behaviour changes as
we vary the sector are called the Stokes multipliers . 1t is a fundamental theo-
rem of the subject, due to Sibuya and Malgrange, that the formal data and the
Stokes multipliers associated to (%) will determine it upto meromorphic equiv-
alence.

If one is interested in a local theory of linear meromorphic differential
equations it is natural to proceed as follows. Let us say that two systems (%)
with matrices A and B are meromorphically equivalent if there is an invertible
N X N matrix g of functions meromorphicat z = 0 such that

B = g[A] := gAg~! + (dg/dz) g-1

This definition reflects the fact that the substitution v = g u takes the system
(%) into the system (%) with B in place of A. It is important to note that if we
replace the field of germs of functions meromorphic at z = 0 by its formal
counterpart, the quotient field of the ring C[[z]] of formal power series over C,
we obtain a corresponding framework of formally meromorphic systems ()
and their formal meromorphic equivalence classes. Similarly the notion of
meromorphic equivalence of two analytic families is defined in the same fash-

ion except that the matrix g is allowed to depend analytically on the parame-
ters of the family.

Our concern in this paper is entirely with the local structure of linear
meromorphic systems. In the classical language we can describe our aims as
follows : (i) to classify the systems (%) upto meromorphic equivalence (ii) to
give the space of equivalence classes a natural structure as an analytic space
so that analytic families of systems (%) are classified upto meromorphic equiv-
alence by analytic maps into this space. It turns out that these questions are
reasonable when we consider families that are isoformal , i. e., when all the
formal invariants of the system () are fixed . We shall find that if we fix a for-
mal model and consider the pairs consisting of a system (%) and a formal iso-
morphism of it with the model, the Stokes multipliers may be viewed as the ele-
ments of the first cohomology of a certain sheaf (the Stokes sheaf) of groups
and that this space classifies such pairs upto meromorphic equivalence; and
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further that this space, which is a complex affine space Cd in a natural manner,
is the moduli space for the pairs considered above. For the corresponding
problems involving the systems themseives the answers are essentially the
same; one has to replace the affine space by a quotient of it by an algebraic
group.

Our treatment of all these questions is in the framework of vector bundles
and connections. This, or alternatively, the framework of differential modules
which we also make use of rather frequently, is the natural language to use for
studying problems of differential equations on compact Riemann surfaces, as
well as problems in higher dimensions. It is our view that it is a reasonable lan-
guage also in the local context studied in this paper. In any case it is entirely
adequate for treating all the problems that arise, including questions of moduli.

2. We now give a brief description of the organization of the paper. There
are three parts and an appendix. The parts are divided into chapters which are
in turn subdivided into sections (§). References to items within the same part
omit the part number.

Part | is an exposition of the basic theory of meromorphic connections
and their Stokes phenomena. As mentioned a little earlier, the fundamental
objects of study are germs of pairs (V, V), where V is a holomorphic vector
bundle defined on a disk A in the complex plane C containing the origin and
V is a holomorphic connection on A \ (0) which is meromorphicat z = 0. If
Vd/dz is the covariant derivative defined by the connection, then choosing a
trivialization at z = O allows us to represent it as d/dz — A(z) where A isa
matrix of size N X N with entries that are meromorphic at z = O; the horizontal
sections are then the vector functions u such that du/dz = A(z)u. In Chapter 1
we introduce the definitions and concepts and discuss the formal aspects of the
theory. To any pair (V, V) is associated a differential module over F =
Cl[z]l[z—1], its formalization , thus giving us a functor from the category of germs
of pairs to the category of formal differential modules, namely, differential mod-
ules over &F. The structure theory of formal differential modules is well known
and goes back to Hukuhara, Turrittin, and Levelt ; we formulate it in categorical
terms, essentially in the form given by Deligne. In the last section of this chapter
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we treat isoformal families of formal differential modules and prove a funda-
mental structure theorem for them. In Chapter 2 the asymptotic aspects of pairs
(V, V) are treated in detail. The basic result is Theorem 2.2.1 which asserts that
for any horizontal section o of the formalization of (V, V) we can find hori-
zontal sections s of (V, V) onsectors T with sufficiently small angles such
that s is asymptoticto o on T. Our proof follows rather closely the discussion
of Wasow [W] (§§ 12-19), but is adapted to the setting of families in which the
theorem is proved. In Chapter 3 the Stokes sheaf and the Stokes lines of a pair
(V, V) are introduced, and a formula for the so called irregularity of the pair is
proved; this is due to Deligne. The Stokes sheaf of (V, V) is a sheaf of groups
defined on the unit circle S1, and its stalk at u € S1 is the group of all germs of
automorphisms g of (V, V) defined on sectors containing u that are flat, i. e.,
that satisfy the asymptotic condition g ~ 1 on these sectors. The development
contained in the first three chapters is then used in Chapter 4 to prove the fun-
damental theorems of the subject, namely the theorems of Malgrange-Sibuya
and Deligne. Let us fix a pair (Vo, Vo) and consider the set . (Vg, Vo) of all
isomorphism classes of ((V, V), ¢) where ¢ is an isomorphism of the formal-
ization of (V, V) with that of (Vo.Vg) (we shall referto ((V, V), ¢) as a marked
pair ). The theorem of Malgrange-Sibuya (Theorem 4.5.1) gives a canonical
isomorphism of M (Vg, Vo) with the cohomology H1(S1, Stg) where Stg is the
Stokes sheaf of (Vp, Vo). This is thus the precise formulation of the resuit that
the Stokes multipliers and formal data determine the differential equations upto
meromorphic equivalence. This is then used to prove the theorem of Deligne
(Theorem 4.7.3) which gives a complete description of the category of germs of
pairs. To any pair (V, V) we can associate the sheaf of sectorial horizontal
sections ¥ (V, V) on S1 on whose stalks a filtration can be defined via the
asymptotic growths at z = 0 of the elements of the stalks. This gives a functor
from the category of germs of pairs to the category of certain types of filtered lo-
cal systems on S1, and Deligne's theorem is the assertion that this functor is an
equivalence of categories. The final chapter of this part treats a few examples
that illustrate the various aspects of the theory. In particular we give a detailed
discussion of the differential equations of Bessel and Whittaker from our point of
view, describing their formal reduction, the associated Malgrange-Sibuya map,
and the cohomology of the Stokes sheaf.
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Part Il is devoted to a detailed study of the Stokes sheaf and its coho-
mology. Chapter 1 of this part is a treatment of cohomology of groups that is
more or less self-contained; in particular we focus attention on the concept of
twisting which plays an important role later. In Chapters 2 and 3 we take up the
study of the cohomology of the Stokes sheaf St of a meromorphic pair. The
starting point is the fundamental fact that St is a sheaf of unipotent affine alge-
braic groups . Following a beautiful suggestion of Deligne we shall view this as
a sheaf of unipotent group schemes over C defined on S' and so obtain a
functor

R — St(R)

from the category of C-algebras to the category of sheaves of groups over S1.
It follows from this that the assignment

R —> H1(S1, St(R))

is a functor from the category of C-algebras to the category of pointed sets. The
fundamental theorem is then Theorem 3.4.1 which asserts that this functor is
representable by an affine space of dimension equal to the irregularity of the
endomorphism bundle . We follow Deligne in proving this theorem as a conse-
quence of a rather general result on sheaves of unipotent group schemes
(Theorem 2.4.1). This theorem deals with sheaves U of unipotent group
schemes that admit a filtration of normal subsheaves such that the successive
quotients are again sheaves of unipotent group schemes which are in addition
elementary in a certain sense; we remark that the notion of an elementary
sheaf of group schemes is to be understood in the context of the result that the
Stokes sheaf of a pair whose formalization has only one canonical level is ele-
mentary. Theorem 2.4.1 asserts that the cohomology H1(S1, ‘W) of sheaves of
group schemes U of the type considered is representable by affine space.
Theorem 3.4.1 is then proved by simply verifying that the Stokes sheaf satisfies
the conditions of Theorem 2.4.1.

Part 1ll deals with the problem of moduli. In Chapter 1 we establish the
basic result that the space H1(S1, St(Vo, Vo)) : = H! is the moduli space for the
category of marked pairs ((V, V), ¢). In Chapter 2 we consider unmarked pairs
which are intuitively more natural and examine in what sense the quotient of the
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space H1 by the automorphism group G"(Vo, Vo) : = G%o of the formalization of
(Vo, Vo), is a moduli space for the category of germs of pairs themselves.
Since G"g is an affine algebraic group and H1 is an affine space we are in the
context of algebraic group actions studied by Mumford [MF]. In particular, if G"g
is reductive (this is the case generically), we can construct a geometric quotient
in the neighbourhoods of points in H1 that lie in orbits of maximal dimension
that are closed (stable ). We give examples of stable orbits and note that if the
formalization of (Vg, Vg) has only one canonical level, then a pair (V, V) de-
fines a stable point in H1 as soon as its Galois differential group is irreducible .
For many classical families it is the case that for generic values of the parame-
ters the Galois differential group is irreducible (see [DM]).

The theory of meromorphic differential equations has a long history and a
very large number of mathematicians have contributed to its themes and results.
Even in the limited circle of ideas that are the focus of attention of this paper, the
foregoing summary has done hardly any justice to the historical aspects of the
subject. We have attempted to remedy this in an appendix that contains a brief
historical survey of the main themes of this paper; for further information and
greater perspective the reader should consult [Be] [J] [Maj] [Mal] and the refer-
ences given there.

3. We would like to express our gratitude to a large number of our friends
and colleagues in various institutions who willingly gave their time and advice
and helped us understand many aspects of this theory. Above all we would like
to thank Professor Deligne who generously gave us his ideas to work with and
who helped us when we had difficulties in understanding them. In particular,
his letters to Malgrange [De 2] and to one of us [De 3], in which he sketched the
essential outlines of his way of viewing and proving the fundamental theorems
of the subject, were indispensable for us during the preparation of this paper.
We have followed his approach in our proof of the representability theorem for
the cohomology of the Stokes sheaf, not only because it is more beautiful and
more elegant than our original method worked out in [BV 4], but also because of
the fact that it is the only way we know to prove this theorem in the ramified case
([BV 4] treats only the unramified case). We are very grateful to him for giving us
permission to use his ideas and write up his results. We would like to thank
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Professor Sibuya for the extensive discussions we had with him during his visits
to UCLA in 1983 and 1988-89; Professors Malgrange and Ramis for the
discussions at Strasbourg and Kyoto; Professors Levelt and van den Essen for
the discussions at Nijmegen; and to Professors Balser, Duval, Lutz, Jurkat,
Ramis, and Sibuya for their participation in an informal seminar at UCLA during
October-April of 1986. Finally we would like to thank the authorities of the Nato
Institute on deformation theory held in Il Ciocco, ltaly, in the Summer of 1986,
and the authorities of the Taniguchi Symposium held in Katata, Japan, in the
Summer of 1987, for inviting us to participate in their conferences and present
the results that form the essential content of this paper.
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PART | : MEROMORPHIC CONNECTIONS

AND THEIR STOKES PHENOMENA

1 MEROMORPHIC CONNECTIONS, DIFFERENTIAL EQUATIONS,

AND DIFFERENTIAL MODULES

1.1. As we have mentioned in the introduction, the themes treated in this
paper originate from very classical questions concerning systems of linear
meromorphic differential equations. However to get a deeper understanding of
these problems it is essential to study them on Riemann surfaces, and more
generally, on complex manifolds of arbitrary dimension. Indeed, the idea that
Riemann surfaces form a natural setting for problems of ordinary differential
equations appears already in the works of Riemann (perhaps only implicitly; cf.
the various articles, notes, and fragments in his Collected papers), Fuchs,
Poincaré, Thomé, and many others. Unfortunately the classical language is not
adequate for working in this more general context, and it becomes necessary to
use the more modern point of view of vector bundies with connections, or
equivalently, of differential modules. This section contains a brief discussion of
these languages leading to a presentation of the formal theory of linear mero-
morphic differential equations from the categorical point of view. The categori-
cal approach that we have decided to take has the advantage that it allows one
to formulate all the relevant results in a form that is not only the most elegant
and far-reaching but also the most suitable for use in global situations. As one
of the best illustrations of this point of view we recommend to the reader
Deligne's solution of the Riemann-Hilbert problem [De 1].

We start with the framework of vector bundles and connections which
provides a coordinate free and geometric language for treating problems of lin-
ear differential equations in the complex domain. We assume that the reader is
familiar with this language, but for the sake of completeness we shall begin with
a brief review of its main features that we shall need (see [De 1]). We shall al-
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ways be in the holomorphic category unless we indicate otherwise. To any
complex manifold X one can associate the category of pairs (V, V) where V
is a vector bundle on X and V is a connection on V. This category is
equipped with @, ®, *, and Hom, according to the following definitions (see
[De 1], p.8) :

Ve(s1@s2) = V1,e(s1) €D Va,e(s2), V=viPV2
Ve(s1 s2) = Viels1) Q) s2+51QQ) Vo e(s2), V = ViQV2

Ve(h)(s1) = Vae(h(s1)) — h(Vie(s1), V = Hom (V4,V2)
(V*¥)e(s*)(s) = — s*(Ve(s)) + &((s*(s))

Here ¢ is an arbitrary vector field and V¢ is the covariant derivative in the di-
rection of ¢. A local section u of (V, V) is said to be horizontal if Ve¢u=0 for
all ¢. ltisclearthatamap h (V{—> V2) is a morphism from (V1, V1) to
(V2, V2) if and only if h is a horizontal section for V = Hom (V4, V2). This
simple fact is however absolutely fundamental because it allows one to reduce
questions about morphisms to questions about horizontal sections; we shall
make frequent use of this principle in this context as well as in others. If we
choose local coordinates x;, on X and a local trivialization for V, the covariant
derivatives V), corresponding to 9/0xy = d, may be written as oy— A, where

the Ay, the so-called connection matrices , are N x N matrices of holomorphic
functions of the x, . The connection V is said to be flat or integrable if its cur-

vature is zero, the condition for which in local coordinates is
Iy Ay —9uAy + [Ap, A1 =0 (1< uv =N)

These are the classical Frobenius conditions of integrability that are necessary
and sufficient for the system of partial differential equations

Vyu = dpu—Ayu =0 (1 =p=N)

that describe the horizontal sections to have unique local solutions for arbitrary
initial data. Thus, for flat connections, the sheaf of germs of local horizontal
sections is a local system of rank N, the rank of the bundle. Here we use the
term local system of rank N on X in its usual sense, namely, a sheaf of vector
spaces defined on X which is locally isomorphic to the constant sheaf with co-
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efficientsinCN ,1 <N <oo(cf.[Del],p 3). W enotethat the integrability con-

dition is automatic in dimensonl ,i.e.,whenX i sa Riemannsurface. W e
shall b e exclusivel y concern®e ! with thiscase. Th eflatpairs(V ,V)for ma ful |
subcategory closed under E , * ,an d Hom .

LetX b ea Rieman nsurface.Fo rx e X ,letE xb ethealgebraof
germso fanalyti c functionsa tx , T7ilx, itsquotientfieldo fgermso ffunction s
meromorphicatx ,and Ex . "utx. th e corresponding sheavesonX .Fo ra vec -
tor bundleV ofrankN definedonX le tEX(V )b ethe EAmodul eo fgermsof
holomorphic sectionsofV atx , Tux(V) ,the N-dimensional vector space ove r
the field Tyl xo fgermsof meromorphic sectionsofV atx,and Ex(V) . TTIx(V),
the correspondin g sheaves . fW i sa sufficientl y smal | ope n neighborhoo do f
X, any basisof7n >x(V) definesa trivializationo f the restrictionofV toW \ {x }.
We shal | refe r to such trivialization s as {meromorphic ) triviaiizations atx .l fV
isa connection defined o ntherestrictionofV to W\{x} ,wesaythatV o rthe
pair(V ,V)i s meromorphic atx i fleave sTTIXO/ )invariantforany loca |
vector fiel d holomorphi catx ; thisis®quivalentto the requirementthatfor some
(any) loca l uniformisantz a tx ,andwithrespecttosome (any )loca |Itrivi-
alizationofV a tx ,thecovariantderivativeVd/d z ha sthe form

Vd/dz= d/id z- A(z) ,A e g “(N,<1LX);

here gA(N , Tulx )i stheLie algebraof N* N matrice sover <nix.B y using trivi-
alizationsitis easytosee th e ®quivalence betwee nthe abstractlanguageand
the classical oneo f Systemso fdifferential @quations . Thus, once we choosea
trivializtion, the horizontal loca | sections may b e identifiedwithN x 1 vectorsu
satisfying th e Syste mo f ordinary differential @quation s

du/dz= Au.

If we conside r anothe r connectionV wit hV'd/d z= d/dz- A \thenthepairs
(V,V)an d(V , V) ar elocall yisomorphicatz = 0 i fandonlyifthe matrice s
Aan dA *arerelatedby

B=g [A]: =g Ag-1+ (dg/dz)g-1( ge GL(N, mx)).

if we thinkofA an dA 1 as connection matrices, theng ma ybeviewedas th e
gauge transformationtha  tdefinesthe bundleautomorphism.l fVian dV 2
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