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Minimal K-types for GL n over a p-adic field 
by Roger Howe and Allen Moy 

The beauty and simplicity of the representation theory of compact Lie 

groups has been an inspiration for well over half a century. Indeed, it was 

Harish-Chandra's desire to carry over the principles and philosophies of 

representation theory for compact semisimple groups to noncompact 

semisimple groups which led him to his extraordinary work. Thus, for 

example, Weyl's beautiful character formula for irreducible 

representations of compact semisimple groups inspired Harish-Chandra's 

classification of the discrete series for noncompact semisimple Lie 

groups [HC]. 

In another vein, D. Vogan [V] has defined the notion of a minimal or 

lowest K-type for real reductive groups and shown that minimal K-types 

can be made to play a role in the representation theory of real reductive 

groups analogous to the role played by highest weights in Cartan's 

classification of the finite dimensional irreducible representations of a 

semisimple Lie algebra. 

For reductive p-adic groups, it has been observed (see [Mu]) that in 

certain cases the restriction of an irreducible admissible representation 

K of a reductive group G to an open compact subgroup L c G contains a 

representation Q of L which possesses particularly nice properties. For 

example, it has been conjectured that every irreducible supercuspidal 

representation of G is induced from some open compact mod center 

subgroup. On the other hand, the problem of describing those 

representations of G which contain a given representation Q of some 
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compact open group L is very difficult for arbitrary Q. However, for nice 

representations Q, it is possible to give a good accounting of the 

irreducible admissible representations of G which contain Q upon 

restriction to L. In [S,Mc], such a description is given for the trivial 

representation of a maximal compact group K c G by performing an 

analysis of the structure of the Hecke algebra H(G//K) of K-spherical 

functions. More recently, Kazhdan-Lusztig and Ginsburg [KL1 ,KL2,G] have 

given a penetrating classification (in the split case) of the 

representations of G which possess a nonzero Iwahori fixed vector. 

In [H], an approach to the classification of representations of G=GLn(F), 

F a p-adic field, was proposed based on defining the nice representations 

in terms of "dual blobs" in Mn(F) satisfying certain geometric conditions. 

For many of these Q's it was shown in [HM1] that K(G//L,Q) is in fact 

isomorphic to a Hecke algebra H(G7/L',1), where G'=GLm(E) for some 

extension E/F with n=m[E:F]. 

In [My], the dual blobs of [H] were given a more precise formulation. 

Certain pairs (L,Q) consisting of an open compact group L and a 

representation Q of L were singled out and called minimal K-types. 

There, it was conjectured that every irreducible admissible 

representation of G contains a minimal K-type. 

Here we prove this conjecture. The proof we present is actually our 

second proof. Our first proof was combinatorial and somewhat 

complicated. In searching for a more conceptual argument,the second 

author conjectured Theorem 2.1 of this paper. The first author later 

found the proof given in section 2. In the interim, C. Bushnell learned of 

the conjectured result from the second author, and also was able to 
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prove it. In fact, Bushnell's proof has priority over the one given here. An 
earlier version of this paper contained both our first and second proofs. 
However, in the interests of simplicity, the first proof has been deleted. 
It may be of some interest to experts, and is available from the authors. 

A proof of the existence of minimal K-types, based on Theorem 2.1, 
is given in section 3. Section 4 discusses some complementary results. 

In a sequel [HM2], to this paper, we use the existence of minimal K-
types to extend considerably the range of the theory of Hecke algebras 
isomorphisms initiated in [HM1]. This extended theory allows us to give a 
classification, complementary to that of Bernstein-Zelevinsky, [BZ.Z] of 
the representations when n<2p (where p is the residual characteristic). 

1. Statement of the existence of minimal K-types 
In this section we introduce some notation and review the statement 

of the existence of minimal K-types. 

Let R denote the ring of integers in a p-adic field F, p the prime ideal 
of R, and 03 a prime element in p. Let q be the order of the residue field 
F q=R/p. A lattice in V=Fn, the space of column vectors, is a free R-
submodule L of rank n. A periodic lattice flag L in V is a sequence of 
lattices { Lj | i G 2 } such that L j + 1 £ Lj and L i + m = roLj for some fixed 
positive integer m. The integer m is called the period of the lattice flag 
L. It is clear that m<n. For a fixed lattice flag L, let 

(1.1) R = { X G Mn(F) | xLjC L,} 
and 

(1.2) P = ( X G Mn(F) | xLjC L k 1 } . 

The ring R is a hereditary order of Mn(F) and V is its topological radical. 
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We refer to [R] for properties of hereditary orders. The group of units J 

of R is a parahoric subgroup of GLn(F). Define a filtration Jj (i>0) of J by 
(1.3) J0 = J and Jj = { 1+x | x £ P' } for i>0 . 

The Jj's are of course normal in J. They are a special case of similar 
filtrations defined by Prasad and Raghunathan (see [PR]) for the 
parahoric subgroups of a reductive group. The minimal K-types are 
representations of the Jj which are trivial on Ji+1. The structure of 
J/Jj+1 is given as follows: 

Case 1: i=0. The quotients Vt = Lt/Lt+1 (1<t<m) are all the irreducible 
modules of TL. They can be viewed as Fq-vector spaces and 

JcM = rii<t<mGL(Vt) . 
This description of J0/Ji as a reductive group over Fq in particular 
allows us to speak of cuspidal representations of J0/J1 -

Case 2: i>1. The map x —>1+x from P1 to Jj gives an isomorphism 

between P'/Pl+1 and J/Jj+1. It is well known that this map in fact allows 

one to realize the character group of Jj/Jj+1 as P '/P 1+1. One fixes a 

character % of F with conductor p and identifies a coset x=x+P 1 + 1 with 

the character 

(1.4) Qx(y) = %( tr(x(y-1) ) y E Jj . 

Let L be a periodic lattice flag. A coset x = x+ P l+ in P ' is said to be 

nondegenerate if x does not contain any nilpotent elements. 

We remark that if x is nondegenerate, then the minimal valuation of 

the eigenvalues of any representative of x is -i/m (see the remark after 

Proposition 2.2). 
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A minimal K-type is a pair (Jj.Q), consisting of a parahoric filtration 
subgroup Jj and an irreducible representation Q of Jj, trivial on Ji+1, and 
satisfying one of the following criteria: 

a) If i=0, then Q is a cuspidal representation 
b) If i>0, then Q=QX for some nondegenerate coset x of 

P i + 1 inP"'i. 
We now state the main result of the paper. 

Theorem 1.1. Given any irreducible admissible representation (TI,V) 

of G=GLn(F), there is a minimal K-type (Jj,Q) such that the restriction of 
K to Jj contains Q. 

We prove Theorem 1.1 in section 3. 

2. A theorem on hereditary orders 
The main result of this section, Theorem 2.1, was conjectured by the 

second author. It was first proved by C. Bushnell [B]. The proof presented 

here was independently but subsequently found by the first author. The 

fundamental mechanism is the same at that of [B], However, the authors 

hope this proof may illuminate certain details of the phenomenon in 

question. In particular, we point out that the thinning process of 

Proposition 2.3 and the refinement process of Proposition 2.4 are 

canonical constructions. Also, Proposition 2.2 shows that the optimal 

jVm' does not depend on the fine structure of the lattice flag defining R 

but only on the eigenvalues of elements of x+PJ+1. 
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Theorem 2.1 Let Ti be a hereditary order with period m and radical P. 

Suppose x=x+PJ+1 is a coset of PJ. If x contains a nilpotent element, 

then there is a hereditary order R' with radical P' and period m' such 

that for some j ' we have x+PJ+1 c P,J and j/m <jVm'. 

In order to prove Theorem 2.1, we begin by establishing some 
notation and a few preliminary results. Let L = { Lj } be a periodic 
lattice flag with period m, and let R and P be as in section 1. Consider 
the quotients 

(2.1) Lj = Li/Li+1 . 
The Lj are all vector spaces over Fq. Multiplication by to induces 
isomorphisms 

(2.2) 5 :L j -^Li+m. 
We use the maps GJ to identify Lj and Lj+m. Given i e 2 , let i denote its 
image in 2/m2. Let 

(2 .3) C - X T e z/mZ cT = 10£i<m : T : 
Of course, L is a vector space over Fq. Consider End(L). We have 

(2.4) End(L) = X f J Hom(L|,Lj) . 
Given x G End(L), we say x is homogeneous of degree k if 

(2.5) x(Lj) c [j+k. 
Denote the space of such x by End(L)^. Then, clearly 

(2.6) End(L)k = X j Hom(L-,Li+k) and 

End(L) = X R End(L)R . 
Furthermore, under multiplication in End(L), we have 

(2.7) End(L)k End(L)T c End(L)k + T . 
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Given x G PJ, it is obvious that x defines a map 

(2.8) xf: LT —> LT + J . 
It is also clear that 

(2.9) XJ 3 = 5 Xj+m ; 

hence the xi+am ( a G 2 ) collapse to define a map 

(2.10) xT:LT ^ L ? + j . 
Taking the direct sum of the xj , we see that x defines a mapping 

(2.11) x = X f ><i e End(L)j c End(L). 
The following facts are not difficult to verify (see chapter 9 in [R]) 

(2.12) i) if VE Li+1l then Pj(v) = Li+J 

ii) the map x —> x defined by (2.11) is an isomorphism 

p i / p j + 1 _^ End(L)j 

iii) the diagram 
pj @ pk _^ pj+k 

I i 
End(L)| ® End(L)^ —> End(L)j + R 

where the horizontal arrows are given by 
multiplication and the vertical arrows by the 
reduction mapping (2.11), commutes. 

Statement (2.12ii) says given x G End(L)j and j e j , there is a unique 
coset 

(2.13) x+ Pj+1 in PJ 

such that x reduces to x via the mapping (2.11). 

Proposition 2.2 Consider x G PJ and the coset x=x+ Pj+1 . 
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a) If x G End(L)j is nilpotent, say xa=0, then for any i and k>0 

(2.14) i) (x+Pj+1)ak (L0 c Li+akj+k , in particular 

ii) (x+Pj+1)mak (Lj) c GJ(aj+1)kLi. 

b) Let L be a lattice in V such that Lj => L 2 Li+1. Then 

(2.15) (x+ Pj+1) (L) = x(L) + Li+j+1 . 

In particular, if L/Li+1 <t ker xj, then 

Li+j D (x+ Pj+1) (L) 2 LI+J+1 . 

However, if L/Li+1 c ker x,, then 

(x+P'+1)(Li) = Li+j+1 . 

Proof. Equation (2.15) is clear from (2.12i), and inclusion (2.14) 

follows directly from (2.15) and (2.12iii). • 

Remark. Suppose x is not nilpotent. Then y=xmcfj G R., and mod P, y is 

a nonnilpotent element. The eigenvalues of y are integral over R, and at 

least one eigenvalue has valuation 0. This means the minimal valuation 

of an eigenvalue of x is j/m. 

Let L = { Lj } and L' = { L'j } be two periodic lattice flags. We say L' 

is a refinement of L if each Lj is an L'j. for suitable i\ Suppose L' is a 

refinement of L. We may reparametrize L' so that L'0=L0. If m' is the 

period of L\ then 

Lm = raLo = raL'o =Lm. . 

For 0<i<m, there are integers q so that L| = L'Cj. Thus, the flag {L'/GSLQ} 

of subspaces of L0/C5L0 defines a refinement of the flag {Lj/roLo}. 

Conversely, given a refinement of the flag {Lj/G5L0}, there exists a unique 

refinement L' of L such that 

i) L'0 = L0 and 
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i i ) the flag {L'J/GJLQ} is the given refinement of {Lj/roL0} . 
Again, let L' be a refinement of L. With Cj as in the previous 

paragraph, we have 

(2.16) a) L - 5L IeZ/mZ Lf 

^ = ^ i ' £ Z/m'Z C'i' 

b) CI = SCi<r<c i+1 Cf-
If L' is a refinement of L, we call L a thinning of L' 

Consider L as above. Let X c Mn(F) be a set of operators on V. Assume 
X is a compact subset of Mn(F). We say X is taut with respect to L if given 
any Lj G L, there is an Lj G L SO that 

(2.17) X Lj = Lj . 
In other words, if Lj is the smallest element of L such that X Lj c Lj, 
then in fact X Lj = Lj. If X is taut with respect to L, then the mapping 

(2.18) G(X) : Lj - ) X L j 

defines a mapping from L to itself. We denote also by G(X), the map 

induced by CJ(X) on the index set 2 of L, i.e. G(X)Lj = L Q(X)(i)- Since X 

Li+1 c X Lj and X(Li+m) = X(G3Lj) = GSX(LJ) the following two properties of 

G(X) are clear 

(2.19) a) G(X) is order preserving, i.e. G(X)(i+1) > G(X)(i) 

b) G(X) is periodic, i.e. G(X)(i+m) = G(X)(i) + m . 

Define X to be completely taut with respect to L if the map G(X) is a 
bijection. 

Proposition 2.3 a) If X c Mn(F) is taut with respect to L, there is a 

thinning L' of L such that X is completely taut with respect to L\ 
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b) If X c Mn(F) is completely taut with respect to L, and j is the 
largest integer such that X c p j , then 

(2.20) a(X)(Li) = XLj = Li+j 
for all i E 2. 

c) If X is completely taut with respect to L, and j is as in b), then j 
may be calculated by the formula 

(2.21) Xam(Lj) = G3ja Lj 

for any i G Z and any positive integer a. Here, m is the period of L. 

Proof. By (2.19b), we see that G(X) factors through the quotient map 

2 —> 2/m2, i.e. (I(X) is effectively a mapping on the finite set 2/m2. 

A mapping \X of a finite set S to itself is a bijection if and only if it is 

either a surjection or an injection. Moreover, the restriction of JLX to the 

non-empty [X-invariant set ^a>0 |^a(S) will always be a bijection. We 

apply this to 2/mZand Q(X). Choose in 2/m2 any G(X)-invariant non­

empty set A on which CT(X) is bijective. Select from L, the Lj with i e A. 

This gives us a thinning L* with respect to which X is completely taut. 

This proves a). If X is completely taut with respect to L, then CI(X) 

defines a bijection of 2 to itself. According to property (2.19a), this 

bijection is order preserving. Whence, it is the form of a translation by 

j for some j . This j is just the integer described in b). Finally, (2.21) is 

an immediate consequence of iterating (2.20) am times. This completes 

the proof of the proposition. • 

Proposition 2.4 Consider L as in Proposition 2.2. Then, there is a 

refinement L' of L with respect to which X = x+PJ+1 is taut. 
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Proof. Consider the reduced map x E End(L)j. For each summand L- <- L, 
consider the flag defined by the subspaces 

(2.22) xa(Lr _.) a G 2 and a>0 

This is a flag because 

х*+'(Ц_(й+Пт) = S-(S(LT_ÍH + 7ií)) с х-(Ь_й7). 
Moreover, by its definition, we see that x maps the flag in L- to the 

analogous flag in LT,-r, i.e. 

(2.23) x(x*(L, R7)) =x^(LT+T ,.+ T)T). 
According to the discussion of refinements, there is a refinement L' of 

L so that the elements of L' contained between Lj and Lj+1 define the 

flag (2.22) in Lj. Equation (2.23) combined with (2.15) show that 

x+P^+1 is taut with respect to L. • 

Proof of Theorem 2.1. Indeed, Proposition 2.4 allows us to pass to a 

refinement L" of L with respect to which x+P^+1 is taut. Proposition 

2.3 then allows us to pass to a thinning L' of L" so that x+P +̂1 is 

completely taut with respect to L\ Choose Li} L'h and b so that 

Lj 3 L'h ^ G5bLj. By (2.21) and (2.14ii), for any positive integer k, we 
have 

(̂aj+1)mk|̂  —j xmm ak|_. ^mm'ak î £jJmakl_' 3 G3J'mak+b|_. 
Thus, j'mak+b > (aj+1)m'k, i.e. (j'/nV) + (b/mm'ak) > (j/m) + (1/ma). 

Since k is an arbitrary positive integer, we conclude 

j'/m' > j/m + 1/ma 
This completes the proof of Theorem 2.1 
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3. Proof of existence of minimal K-types 

We refer to section 1 for the context and notation. We begin with 

Proposition 3.1 Suppose VJ|+1 * {0} and i>1, then either 

i) there is a nonzero v in VJ|+1 transforming under Jj/Jj+1 by a minimal 
K-type character Qx , or 

JV+1 
ii) there is a parahoric filtration subgroup J> such that V ^{0} and 

i'/m' < i/m, where m (resp. m') are the periods of the lattice flags 
corresponding to Jj and J> . 

Proof. Pick a nonzero v in VJ'+1 transforming under J/Ji+1 by a character 
Qx, where x = x+P~l+1. If x does not contain a nilpotent element then Qx 
is a minimal K-type character. Thus, we can assume x does contain a 
nilpotent element. Let m be the period of the lattice flag used to define 
Jj. By Theorem 2.1, there is a hereditary order R' with period m' and an 
integer -i ' such that x c P and -i/m < -i'/m', i.e. i'/m' < i/m. Observe 
thatP'"'' D x+P"i+1 means P'' ' z> P"i+1- Then 

p'i'-(m'-i) = { y G Mn(F) | tr(yP,_i') c R } 

c {yG Mn(F) | tr(yP"i+1)c R } = pi-1-(m"1)) 

and so P,j'+1 c Pj. Thus, JV+1 c Jj and for z in V'v+\ we have 

TT(1+Z)V =X( t r ( xz ) ) . 

Since x c PM' we have xz lies in P'1. This means tr(xz) e p and so v is 

fixed by J'j.+r This proves the proposition. • 

We now give a proof of Theorem 1.1. 

Proof of Theorem 1.1. The set of periods of hereditary orders in Mn(F) 
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is the set of integers from 1 to n. In particular, the set 
D = { i/m | i is a positive integer and m a period of a hereditary order } 

is a discrete set. Let Pj be a parahoric filtration subgroup for which 
Vpi * {0}. Combining Proposition 3.1 with the discreteness of D, we see 
that there is a parahoric subgroup Jj such that either i>1 and (TU,V) 
contains a minimal K-type of the form (Jj,Qx) or i=0 and VJl * {0}. In 
the latter case, by philosophy of cusp forms, (71,V) contains a minimal 
K-type (J0,^)- This completes the proof of Theorem 1.1. • 

4. Basic properties of minimal K-types 
It is natural to ask: when can two minimal K-types (Jj,Q) and ( J ' , , ^ ' ) 

both occur in an irreducible admissible representation (TU,V). The next 
theorem gives a necessary condition for this to occur. 

Theorem 4.1 Suppose (71,V) is an irreducible admissible representation 

of G=GLn(F) and the two minimal K-types (Jj,Q) and (JY,Q') both occur in 

(TC,V). Then either i and i' are both greater than zero, so Q=QX, Q'=QX. and 

some element of x is conjugate to some element of x', or both i and i' are 

zero and J0/J-j = J'0/J'i, Q = 
Proof. The proof is based on the principle of intertwining [H], which we 
now recall. Let WQ (resp. WQ«) be irreducible Q. (resp. Q') subspaces of 
V. Decompose V as a J'-module, and let EQ« be a J'-module projection of 
V onto WQ». Since (7t,V) is irreducible, there exists a g in G such that 
the map 

I = EQ- 7c(g) : WQ - > WQ-

is nonzero, and for h in Jj C\ gJ'j-g"1 we have IQ(h) = fT(g-1hg)I. We 
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consider three cases according to whether i and i' are both greater than 

zero, one is equal to zero, or both are zero. 

Case 1: i, i' > 1. Let x = x+P~,+1 and x' = x,+P'"l+1 be the cosets which 

give the characters Q. and Q' respectively. By the intertwining principle 

just explained, the two characters 

1+y -> 3C(tr(xy) ) and 1+y -> X( tr(x'g-iyg) ) 

agree on Jj P gj'j.g-1. This means 1 = %( tr( (x-gx'g-1)y )) for all y in 

P1 Pi gP''g"1. It follows that tr( (x-gx'g-1)y ) must lie in p for all y in 

P' Pi gP''g"1. Hence, (x-gx'g-1) lies in P 1+1 + gP' l+1g'1, i.e. x and gx'g-1 

intersect. 

Case 2: i > land i'=0. Here we need to show that (Jj, Qx) and (J'0,^') 

cannot both occur in (rc,V). Observe that if (J'0,^') occurs in (n,\f), then 

the trivial character of occurs in n. The trivial character of is 

represented by the coset P'° in P'"1. By the same reasoning as in case 1, 

P'°and gx'g-1 must intersect. This is impossible, since the valuations 

of eigenvalues of elements in P'° are greater than or equal 0 and the 

minimal valuation of the eigenvalues of each element of x' is -i/m < 0. 

Case 3: i, i'=0. The reasoning is again based on the intertwining 

principle and indeed it has already been proved by Harish-Chandra using 

the Bruhat decomposition of G (see [HM1]). • 

As an immediate corollary we have 

Corollary 4.2 If (Jj,Q) and (JY.Q1) are minimal K-types which both 

occur in the irreducible admissible representation (TI,V) and m,m' are 

the periods of the lattice flags attached to Jj, JV respectively, then 
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i/m = i'/m'. 

The argument in the proof Theorem 4.1 is easily adapted to show 

Theorem 4.3 Suppose (71,V) is an irreducible admissible representation 

of Gln(F). Let (Jj,Q) be a minimal K-type which occurs in K. If JV+i. is 

another parahoric filtration subgroup such that VJ,'+1 * {0}, then i/m 

<i7m\ where m and m' are the +periods of the corresponding lattice flags. 

Moreover, if i>0 and equality occurs, then the JV/JV+i"sPace VJ|,+1 is a 

sum of minimal K-types . If i and i' are zero, there is a parahoric 

subgroup J"0 c J0 and a cuspidal representation Q" of J"0 such that the 

J'o/J'i components of VJ|,+1 all occur in the induced representation B of 

Q" from J"0 to J0. 
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