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EQUIVARIANT MULTIPLICITIES ON COMPLEX VARIETIES 

W. Rossmann1 

0. INTRODUCTION. The purpose of this paper is to introduce the 
concept of equivariant multiplicity of a non-degenerate fixed-point of an 
algebraic torus acting on a complex analytic variety, to prove some 
its basic properties, and to give some applications. As in the 
classical case, there is an algebraic and an analytic definition of 
multiplicity; their equivalence is perhaps the main point here. 

The concept of equivariant multiplicity is not abstruse. In its 
algebraic form it was introduced by JOSEPH [9] and, in a special 
case, gave rise to the Joseph polynomials, of importance for the 
representation theory semisimple Lie groups. In its analytic form 
the concept is present, though unrecognized, in the localization formula 
of equivariant cohomology, when this formula is extended to 
varieties (as will be done here). The case of Schubert varieties is 
particularly noteworthy, because there the equivariant multiplicity 
sheds some light on a construction of BERNSTEIN-GELFAND-GELFAND [3] 
through a result of ARABIA [1]. These matters will be explained in 
more detail below. 

1. MULTIPLICITIES OF R,H-MODULES. Let H=(Cx)r be an algebraic 
torus acting algebraically on . We may assume that action is of 
the form 

h-Czj,..., zjy) = (h°izi, ... , h^z^) 
or 1 

for certain characters h —• h of H. Generally we write characters eA : H — C* as 
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eA(h) = hA = eA(x) if h = expx 

with x6/i, "the Lie algebra of H. The A £ h* we call weights, a term 
also applied to the eA. 

Let R = RN denote the graded ring of polynomials in z19 ... , zN 
The group H acts on R through its action on z = (zj,..., z^) : 

(h.f)(Z) =f(h-'.Z). 

By an R,H-morfu/e we mean a graded R-module M which is also an H-

module so that 

h-(fm) = (h-f ) (h-m). 

In addition we require: 

(i) M is finitely generated as an R-module. 

(ii) M is locally finite and holomorphic as H-module. 

The conditions imply that M has finitely many generators as R-

module which may be chosen to be weight vectors for H. 

R,H-modules admit a character theory. To explain the 

construction we remark that the most natural definition of ch^ as a 

formal Poincaré series 

CHM =EA (dimMA)ex (1.1) 

may not make sense, since the dimension of the weight spaces MA = { m € M | 
h-m = hAm } may well be infinite. We therefore proceed somewhat 

ind i rectly. 

(1.1) Lemma. To every R.H-module one can assoc iate a fract ional  

virtual character ch^ of H, uniquely characterized by the  

following properties. 

(i) If M is finite dimensional . then chM is the usual 

character of H. 

( i i ) Add it ive : If 0-+P-+M-+Q-+0 is exact. then 

chM = chp + chg. 

(iii) Multiplicative: If F is a finite-dimensional H-module, 

^hen C^M<S>F ~ cnMchF' 

Furthermore. cnjv/ is. °f the form 

chAi - JL 
~ D 

where f = 2ACAEA with cA E Z (f in ite sum) and D = I~Ijb(l "~ e *) • 

Explanation. A fractional virtual character of H is by definition a quotient of 

virtual characters Ĵ A MA e* (finite sum, mA E Z) with denominator 
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not identically zero. x<<It may bex<<<interpreted as formal object or 
as (densely defined) function on H. x<<We shall take the latter 
point of view. 

The tensor product M <g> F (over C) of a finitely generated R-
module M and a finite-dimensional H-module F is an R,H-module in 
an obvious way. 

Proof. Assuming a character theory with the stated properties 
exists, CNM may be calculated as follows. As mentioned, one may 
choose a finite set of generators for M over R consisting of 
weight vectors for H to obtain a map 

R <8> F, —• M —• 0 
Applying the same process to its kernel (which is also finitely 
generated, since R is Noetherian) one constructs a resolution 

• • • ->R<g>F-->R<g>F.->M-+0. 
By Hilbert's Syzygy Theorem (ZARISKI-SAMUEL [13], p.240) , this 
resolution breaks off at the (N-fl)-st step: 

0 —• R <8> FN+1 • -*R<g>Fp->R<g>Fi-> M -+0. 
Because of the additive and multiplicative properties on ch, 

chM N+l 
k=l 

(-1) ch/T chF . 
Each cnFk *s a genuine character. To find the character of R we 
momentarily identify Rjfc = R/(zî ij , zyy) an<̂  consider the exact 
sequence 

0 -+ ẑ R* —• Rj. —• Kk,j -> 0 
As R,H-module, ztRA is the tensor product of the R-module Rk and 
the one-dimensional H-module of weight —<*k- In view of the 
properties of ch, 

— Of i 
ch^ = (1 — e *) cĥ  where chk is the character of R̂ . Thus ch0 = yYlk(l ~e *))cnAT » 

i.e. ch R = -A-, where D= T\,(l—e **) . There results the formula 
chM = f D wx,;:<w< 

where f = 2(^!®(E(^!® cnp ŝ "the required type. 
chM is therefore uniquely determined by the properties 

(i) — (iii) of the lemma. Changing point of view, one may define chM 
by (1.2): standard arguments from homological algebra show that ch 
is well-defined and has the required properties. 

The weights of H on an R,H-module M are of the form A = A;— (a sum 
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of aA?s) where "the Xj are "the weights of some generators of M as R-
module. Assume there are elements x £ h so that Reot(x) > 0 for 
all k. The mult ipl icites dimMA are then necessarily finite and 
for such x € h the character chM(expx) is given by the convergent 
series 

A(X) 
chM(expx) = £A (dimMA)e 

This will be called the convergent case. That case prevails in 
particular when the action of H onM = £ Mt.M = £ Mt.M = £ Mt. contains the scalar 
multiplications, i.e. when h contains an element x̂  so that 
a*(xi) = 1 ̂ or al1 k. In general this situation may be achieved by 
replacing H by H x Cx where s G Cx acts by multiplication on and 
by s"* on the k—th graded piece of an R,H-module M = £ Mt. 

The following lemma is due to JOSEPH [9] (in the convergent 
:ase; the general case is a consequence thereof) 

(1.2) Lemma. Let M be an R.H-module. J its annihilator in R, and 
n the Krul1-dimension of R/J. Write 

x< < 1 • D <x<<<x< (finite sum. cA € Z) , 
and def i ne a homogeneous polynomial e^ of degree N —n on h by 

GM - (N-n)! 'A cAA"-» (1.3) 
Then 

chM (expx) = 1 
T(X) eM(x) +o(|x|"-)) (1.4) 

where ?r(x) = Ylk<xk (x) 

Definition. GM i s cal led the H- equivariant multivlicitv of the R. H-modu le M. 

Remark. In the convergent case the polynomial eM may also be defined 
by a classical construction of Hilbert and Samuel, as follows. 
Fix x G h with ak (x) < 0 for all k (convergent case) and consider 

chM(expx) = £A 
chM(expx) = £A 

(1.5) 
as function of s. (The sum is finite because of the condition on 
x.) JOSEPH [9] shows that asymptotically as s —*• oo this function 
is of the form 

eAf(x) sn 
TT(X) n! + °0"); (1.6) 
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where eM is given by (1.3); w and n are defined as above. 
Furthermore, in the convergent case eM is always non-zero; but 
in general e^ may be zero. 

The classical case of Hilbert and Samuel concerns H = Cx 
acting onchM(expww by scalar multiplication and M = R/J , J a homogeneous 
ideal. eM may then be thought of as a number: eM (x) = eM-xN~n ; 
as number, eM is the classical multiplicity defined in algebraic 
geometry: it is the multiplicity of the point-0 on the affine cone in 

defined by the homogeneous ideal J or, equ ivalent ly, the degree 
of the corresponding proj ective variety in CP^. (MUMFORD [10], 
§6C.) These remarks explain the notation and terminology 
introduced above, 

Comment. In contrast to the classical case, the function of s 
defined by (1.5) is generally not polynomial for large s. 
(Otherwise e^(x)/7r(x) would have to be integral for ak (x) 6 N 
(HARTSHORNE [8], p.49), which is generally not the case.) 

2. MULTIPLICITIES ON H-VARIETIES. Let X be an N-dimensional 
complex analytic manifold, with a holomorphic action by H= (Cx)r. 
Let Z be an H-stable n-dimensional analytic subvariety of X. Let 
p be a fixed-point of H on Z. One may introduce analytic 
coordinates z = (z2, ... , zN) around p = (0, ... , 0) on X so that the 
action of H on X is locally of the form 

chM(expx) = £A (dimMA)e 
chM(expx) = £A (dimMA)e We shall say that such a coordinate system linearizes the H action 

around p. (It may be constructed using the exponential map of a 
Kahler metric which is invariant under the compact real form of 
H.) al9 ... 9 aN are the weights of the linear action of H on the 
tangent space of X at p; if they are all non-zero we say that 
the fixed-point is non-degenerate. In this situation we shall define a 
notion of equivariant multiplicity of p on Z, related to the classical 
notion of multiplicity of a point on a complex analytic variety. It 
will help to first recall the classical notion. We give two 
(equivalent) definitions of the classical multiplicity ep of p on Z in X . 

Algebraic definition. ep i_s the multipl icitv of the local ring 0Zp as 
an QYp - module. fMUMFORD [10], p.121). 
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Analytic definition. ep i s given by the formula 
eP — lim ~4r v c—K) €2n znBc 

<x< (2.1) 

where B€ = { ||z|| < e} is the e-bal 1 in a coordinate system 
z,, ... , zN around p = (0, ... , 0) and u is the (1,1) form 

wx< 1 '27ri 'k 
dzt dzt (2.2) 

(GRIFFITHS-HARRIS [6] , p. 391) . 

We now turn to the equivariant case. In the situation described 
above, let ®Xp denote "the local ring of X at p, Jkxp its maximal 
ideal. The associated graded ring 

xvw< 
oo 
k=0 

chM(expx) 
= £A (x<di 

may be identified with the graded ring of polynomials in zi,--,z^ 
and the graded local ring of Z at p, gr0^y, is an grOjp,H-module 
in the sense of section 1. 

Again we give two definitions of the equivariant multiplicity ep of p 
on Z in X. 

Algebraic definition. ep is the mult ipl ic itv of grOZp as an grOjf p, H-
module. 

Analytic definition. ep is given by the formula 

e?(x) 
7Tp(x) w< _1_ 2n 'ZflB€ U,(x)» 

(2.3) 

Here TCP = Ylkak as before . x € h is assumed to satisfy ak (x) ^ 0 
for al 1 k. Be = { ||z|| < e} is any suff icientlv smal 1 e-bal 1 in 
a coord inate system z1, ... , zN around p = (0 , ... , 0) which  
1inearizes the H-action. ^(x) is the (1.1)-form 

u,(x) = 1 
2?ri w < 

-t 
k(x) dzjdzj . (2.4) 

(The products of differential forms are exterior products.) 
The integral on the right side of (2.3) is independent of c 
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(as will be shown') 

The equivalence of the definitions will be proved after some 
remarks. 

Remarks. (1) In limits of integrals of the type met in the analytic 
definition of ep, the variety Z may be replaced by its tangent 
cone C at p, as explained in GRIFFITHS-HARRIS [6], p.391, and 
proved in detail in THIE [12]. Because of homogeneity, the 
integral in formula (2.1) then becomes independent of e, just like 
the integral in (2.3). After passing to the tangent cone the 
formulas (2.1) and (2.3) may therefore be written 

and 
ep = 

>cns1 
< (2.5) 

ep(x) 
TTP(X) w< 

JCriB; 
"(x)n (2.6) 

The tangent cone C must then however be counted with the 
appropriate multiplicity, i.e. the integral over C must be 
interpreted as an integral over the cycle associated to C as 
scheme (FULTON [5] , p. 15; on p. 79 Fulton defines ep by the projec­
tive equivalent of (2.5)). 

(2) The equivariant multiplicity reduces to the classical 
multiplicity in case H = Cx acts by scalar multiplication in the 
linearizing coordinates. Starting with any variety and any point 
thereon, this situation may be achieved by passing to the tangent 
cone. In this way the classical multiplicity may be considered a 
special case of the equivariant multiplicity. 

(3) ep depends on the embedding of Z in the manifold X, 
although the quotient ep/7rp depends only on the action of H on Z. 
(It is for this reason that " in X" was added to " equivariant multiplicity ofp 
on Z" .) Numerator and denominator of ep could be unambigously 
normalized by passing to the smallest subspace of the tangent 
space of X at p which contains the tangent cone of Z. (This is 
precisely the Zariski-tangent space of Z at p.) The effect of the 
normalization is to cancel those factors ak for which zk = 0 on the 
tangent cone from numerator and denominator of GP/TTP . 
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(2.1) Theorem. The two definitions of " equivariant multipliait?' are 
eau ivalent, 

The proof will consist of a reduction to the classical case, 
We shall need a lemma. 

(2.2) Lemma. Let x G h with ak (x) pure 1 y imaginarv and ^ 0 for al 1 
k. Dénote bv Lx (resp. i(x)) the Lie derivative (resp. inner  
mult iplication) bv the correspond ing vector field on X. Let #(x) 
be anv C°° one-form defined in a ne ighbourhood of p on X, except at 
p itself. so that 

M ( x ) = 0,<x<< and i(x)*(x) = 1 . 
Such forms ex i st. and if B i s any sufficientlv smal1 ne ighbourhood 
of p in X, then 

d(ZC\B) 
0(x)(d0(x)r' (2.7) 

is independent of 0 and B (with the stated properties) and equals 

(27Ti)n 
2n ZfiB€ 

W(x)- (2.8) 
for anv suff i c i ent1v smal1 

The proof of the lemma is an exercise with the equivariant Stokes' 
Theorem. It will be clearest to explain the procedure in some 
greater generality. (The method is not new: it originates in a 
paper of BOTT [4] and was further developed by BERLINE-VERGNE [2] 
and others.) 

Let v be a C vector field on X. (Here X need only be a 
real C°° manifold.) Introduce the equivariant exterior derivative operator dv 
on (generally inhomogeneous) C°° differential forms u> on X by the 
formula 

dvu = du; + i (v)u> 
It satisfies (dv) = do i (v) + i (v) od = Lv , the Lie derivative, and 
dv(a(3) = (dwa) /? + (-l)aa (d/?) if a is homogeneous of degree a. (All 
products of forms are exterior products.) The equivariant Stokes's Theorem 
says : if T is a piecewise C00, finite m-chain on X which is 
tangential to v, then 

dvw 
1 r wx 

LO 
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for every C°° form u;. (Proof: "the second su mm and of dvu = 

do; + i(v)u> vanishes in degree m = dimT on T9 in view of the 

"tangential" condition. —The integral of an inhomogeneous form is 

the integral of its component in the appropriate degree.) 

We now turn to the proof of the lemma. Fix x € h with ak (x) ^ 0 
for all k. Assume given 6 = 0(x) with Lx9 = 0 and i (x)9 = 1. The 

integral (2 .7) may be written as 

Jd(ZflB) 
o^dey1 = (—1) *"i 

0(ZriB) 
0(1 + US)'1 

where the inverse is taken in the exterior algebra: 

(i +doy1 = wx<x$^ùw< 

Observe that 1 + dO = dx0 and dx(0(l + dO)'1) = dx(0(dx0)'*) = 1 . So 
dx(0(l +d̂ )"i) is 0 except in degree 0. The independence of B of the 
integral (2 .7) is therefore immediate from the equivariant Stokes' 

Theorem. 

To see the independence of 09 suppose 01 and 02 are two forms 

with the required properties. Choose coordinate balls BjC B2. 

Construct a third such form 0 so that 

0 0, on dBj 
Ì02 on dB2 

This is possible: Since atk (x) is imaginary for all k, the real 
one-parameter group exp(Rx) generated by x is a circle and the 

form 0 may be taken as 0 = Cj02 + c202 where c2 is an exp(Rx) -

invariant C°° function which = 1 on dBj and = 0 on dB2, c2 is 
defined similarly, and Cj+Cj=1. Because of the independence of 

B: 

'd(znB) 
0(d0)n-t w< 

d(ZnB) 
0j(d0jy1 j = 1 ,2 . 

It remains to prove the last assertion of the lemma. For that 

purpose we construct a particular form 0 as follows. Set 

ajb = ajt(x). Write f for the holomorphic vector field on X 

corresponding to x £ h: 

0(d0)n-t0(d0)n-t0(d0)n 
0(d0)n-t0(d0)n-t0(d0)n 
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and define (1,0)-form <p = <p (x) by 

<P = %4-Zidzj, . 
' k k 

Then 0 = 0(x) = (p/\\z\\2 is defined except at p and has the required 
propert ies: 

Le0 = 0, 0(d0)xwwn-t 

Observe that d<p =2?ri u where w = o»(x) is the form defined earlier, 
Furthermore, 0= <p/e2 on dBe and d0 = d<p/c2 = 2ici w/c2 there. Thus 

tpCdtpy1 
0(d0)n-1 = _1_ e2n d(znB€) 

tpCdtpy1 

w< i <x< znBf 
(dp)« 

<x< (2*i)n xwxn< JZflBe 
tpCdtpy1 

This finishes the proof of the lemma. 

We now turn to the proof of the theorem. To prove the equivalence 
of the two definitions we may replace the variety Z by its tangent 
cone at p: For the algebraic definition this is evident because 
the tangent cone is exactly spec of the graded ring 

tpCdtpy1 
tpCdtpy1 

on 
k=0 
tpCdtpy1tpCd 
tpCdtpy1tpCd 

(2.9) 

where Jkzp = J&>Xp®Zp *s ̂ ne maximal ideal of the local ring 
(MUMFORD [11], p.302 or FULTON [5], p.435). For the analytic 
definition the corresponding passage to the tangent cone was 
already mentioned. 

We shall therefore now assume that Z, as scheme, is a cone in 
X = defined locally at p = 0 by a homogeneous ideal J of 
R = grOXp. To prove the equivalence of the algebraic and analytic 
definitions we have to show that 

[ZnBi] 
tpCdtpy1 

w< e(x) TT(X) (2.10) 
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e(x) is the multiplicity of the O^,H-module (2.9); [ZflBj cycle 
associated to ZnB, (FULTON [5]). u/(x) is the form: 

W(x) = 1 
r2ni 'k <*k 

1 
xx 

tpCdtpy1t (2.4) 

Both sides of (2.10) are rational in x; it therefore suffices to 
prove (2.10) for x in a Zariski dense subset of h. 

Since the cone Z is invariant under the action of Cx, we may 
now assume that the action of H on X = contains the scalar 
multiplications: otherwise we replace H by HxCx. Denote by x2 an 
element of h which generates the scalar multiplications: (̂ (xj) =1 
for k = l,2,...,N. The elements x € h satisfying 

aA(x) GN for k = 1,2, ...,N (2.11) 
are now Zariski-dense in hi If a polynomial vanishes on all of 
these points, then it vanishes at x+ sx2 whenever ak (x) GZ for all 
k and sGN is sufficiently large. Hence it vanishes identically 
on x 4-sXj, sGC, hence at all such x, hence identically. 

Fix x G h satisfying (2.11) and set aA(x) = aA, at G N. 
Introduce new variables w- and define a map f: w —• z by setting 

tpCdtpy1 (2.12) 
The map f: CN —> CN is finite of degree p = fi^a^ ( = TT(X) for the 
fixed x) . Under this map the action of the Cx on the z through 
the one-parameter group generated by 2?rix, 

ê '-z = exp(27ritx)z = (e*™'^, ... , e^'^'z^) , 
corresponds equivariantly to the action of Cx on the w by scalar 
multipiication. 

Choose a form 0 = 0(2îrix) as in the lemma for the action of 
Cx on the z and set e = e(x), p = x(x) . After cancelling a factor 
(l/27ri)n, the equation (2.10) to be proved becomes 

Ô [ZnB] 
tpCdtpy1tp x< e 

P ' 
(2.13) 

Let 0=f*0 be the pull-back of 0. 0 is then a form of the 
type required by the lemma for the multiplication action of Cx on 
the w. Let B be a sufficiently small neighbourhood of z = 0, B 
its inverse image. Let Z = f"7Z denote the inverse image of Z under 
(2.13) as scheme (FULTON [5]). 
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The ring C[w] is free over f *C [z] = C [wa] (with basis 
consisting of the monomials wJlJ...wjyjV with nij < a2, ... , m^ < a^ ) . The 
cycle [ZflB] = [f'̂ ZflB)] is therefore the flat pull back [ZDB] = 
f * [ZHB] and 

f ,f * [ZHB] = (degf) [ZDB] = p [ZDB] 
(FULTON [5], Lemma 1.7.1, p.18 and Proposition 8.3 (c), p.140.) 
Thus 

0[ZnB] 
0(d0)w-' 1 

df .f * [ZflB] 
exp(27ritx)z 
exp(27ritx)z 

_ _1_ ~ p d[ZnB] 
f^oidoy1) 

_ 1 - -p d[zn§] 
e^dey1 (2.14) 

The lemma now applies to both sides of this equation and gives 

' [ZHB,] 
w(x)n w d[znB] 

e^dey1 

_ 1_ - p d[znB] 
e^doy1 

_ i - p" [ZflB,] 
u>(x)w (2.15) 

where B1 is the ball {||w|| < 1} and u> the form (2.4) corresponding to 
the multiplication action of Cx on the w. Thus 

wx< 1 27Ti 'k dwtdwt 

is the form entering into the analytic definition of the classical 
multiplicity, and we get 

rzriB," u>(x)n =e, 
(2.16) 

the classical multiplicity of 0 on the cone Z. It remains to 
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calculate e. 
Let J be the ideal in R = {polynomials in z} which defines Z 

locally at 0, J = JR the ideal it generates R = {polynomials in 
w} . (R is considered a subring of R via z = wa). J is the ideal 
of definition of Z, and e is the (classical = equivariant) multipli­
city of R/J. J is a direct sum 

J = 
mJ.<ai 

ch-(h) -ch3(h) = 

Thus the R,Cx-module character (= Poincaré series) of J is 

ch,(h) = Chj(h) 
mj<a; 

ch-(h) -ch3(h) = 
ch-(h) -ch3(h) = ch-j(h) nt(i -hat) ch-(h) -ch3( 

Therefore 
chft/3(h) = ch-(h) -ch3(h) = l-ch3(h) H4(l-h*) ch-(h) -ch3() 

=ch-(h) -ch 
(2.17) 

Write R,Cx-module characters in the form ch^ = f/D as in Lemma 
(1.2), and R,Cx-module characters similarly as ch^=f/D. Here 
D(h) = nA(l - ha*) and D(h) = (1 - h)^. One finds from (2.17) 

chR/3(h) = 1 -fj(h) D(h) 
fR/J(h) 
D(h) 

Hence ^^/j = "̂ R/J " From Lemma 2 of §1 one finds that the R,CX-
multiplicity e of 
R/J equals the R,Cx-multiplicity e of R/J: 

e = e (2.18) 
From (2.14) - (2.18) follows the desired formula (2.11). 

This proves the equivalence of the algebraic and analytic 
definitions of ep(x) and completes the proof of the theorem. 

3. THE LOCALIZATION FORMULA. The Localization Formula of 
equivariant cohomology may be stated as follows (BERLINE-VERGNE 
[2]). 

Let T be a real torus acting on a compact. oriented man ifold 
M of dimension 2n. Assume al1 fixed-points of T are non-
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degenerate. Let x 6 t be a regular element and /i(x) a C°° form 
on M satisfying dr/i(x) = 0. Then 

w<x< 
^$w< < 

x<x<< 
P 

x<o 
T, (x) 

^mcb< (3.1) 

sum over al1 fixed-points p of T. 
Explanation. Around a fixed-point p of T one may introduce positively 
oriented coordinates xi, ...,x̂ n around p on M so that expx € T acts 
by the rotation 

cosflt (x) — sintfjL (x} 
sin^t(x) cos^(x) 

in the x/b»xn-/-/fe — plane. The ock = i0k are the weights of T on the 
tangent space at p, and the fixed point p is non-degenerate if these 
weights ak are all non-zero (for every fixed-point p). An element 
x € t is regular if ak (x) ^ 0 for every ak . dr = d + i (x) is the 
equivariant exterior derivative, as explained in connection with 
the Lemma (2.2). /ip(x) is the value at p of the degree-zero 
component of the (inhomogeneous) form jz(x) . 
Remark. The formula concerns only one vector field at a time; T can 
therefore be replaced by any compact Lie group, since any one-
parameter subgroup is then contained in a torus. 

We shall prove an analogous localization formula when the smooth 
manifold M is replaced by a possibly singular complex variety. 
For this purpose we have to consider integrals over chains T, 
namely the chains [ZDB] cut out from the fundamental cycle of a 
complex variety by a coordinate ball B. Such chains satisfy the 
following regularity condition. For every C°° form yj 

€—>0 €* TflBe 
%l> = 0 for k < dim T. (3.2^ 

Here Bc denotes the e-bal1 in an arbitrarily chosen coordinate 
system about an arbitrarily chosen point of X. The intersection 
rnBe may be defined using a subdivision of T. That the condition 
(3.2) is satisfied for the fundamental cycles of complex analytic 
varieties is clear from the usual proof of local integrabi1ity 
over such cycles (GRIFFITHS-HARRIS [6], p.32). (It is in fact 
more generally satisfied when T is a subanalytic chain on a real 
analytic manifold, as one can see in HARDT [7]) 
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(3.1) Localization Formula. Let H be a complex torus acting  

holomorphicallv on a complex man ifold X, Z a compact subvarietv of 
X of dimension n. Assume al1 fixed-points of H are non- 

degenerate . Let x G h be a regular element and /i(x) a C°° form on X 
depending holomorphicallv on x € h and satisfying dx/*(x) = 0. Then 

w<xc 
$*;:< <x 

<x<cc x< 
P 

ey(x) 
»>(x) 

^(x) , (3.3) 

sum over al 1 fixed-points p of H on Z. ep is the equivariant  
multipl icitv of p and irp = n¿a¿ the product of the weights of H on  
the tangent space of X at p. 

Proof. The method (which goes back to BOTT [4]) is the same as for 
the formula (3.1). We give the argument here in order to indicate 

how the regularity property (3.3) is used and how e,>(x) comes in. 

Let /i(x) be a form on X of the prescribed kind. It is enough 

to prove the formula (3.3) when ak (x) is imaginary and non-zero foi 

all weights ak at all fixed-points p. Fix such an x € h. Around 

each fixed point p one can then find a C°° one-form 0 = 0(x) which 
has the properties of the Lemma (2.2) : Lx$ = 0, i(x)0 = l. These 

local 0 may be patched together with the help of an exp(Rx)-

invariant partition of unity to obtain a globally defined 0 with 

the same properties. As noted before, dx0 = (1 + d0) has the 
exterior inverse 

(1 +Ó0)-1 = £ (-l)*(d*)* • 

Set fi = /i(x) for the fixed x. Since dx/i = 0 one finds that 

d*(0(<M)'V) = A*. 

The equivariant Stokes' Theorem now gives 

Jz 
xw 

P 
1 im c—>0 Z-ZnBc(p) 

d*(0(d*0VV) 

1 im 
P 0(ZnBc(p)) 

Z-ZnBc(p) 

p,k 
(-1)*" 1 im 

6—>0 l0(ZnBe(p)) 
0(d0)kfi . 
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Bc(p) is a coordinate e-bal 1 around p. We take the coordinates 

zl9 ... , zN around p to be linearizing and we assume that there t' 
form 0 is the one constructed in the proof of the Lemma (2.2): 

0 = <p/\\z\\2 where 

Z-ZnB ] -irkzkdzk • 

Then the above integral becomes 

Z A* = 
xc< 

Z-ZnBc( 1 ìm 1 
2(k+l) a(znBc(p; 

y?(d̂ )A/i 

p,k 

(-Dt+i 1 im 1 
2(1+1) ZriBe(p) 

à(<p(d<p)kn) 

<x< 
p 

(-l)t+i 1 im 
C-+0 

1 
6*» lznBc(P) 

d(̂ (dV?)n-V) 

because of the regularity property (3.2). The only component of 

/i which contributes to the last integral is the component in 

degree zero; in the limit, it may be evaluated at p and taken out 

from the integral. This gives 

x< 
<x < 

P 
("I)" »P 1 im 1 

2n JznBe(p) 
Z-ZnBc( 
Z-ZnBc( 

In the notation of §2, dip = (l/2?ri)a;. Thus the last equation is 

exactly the desired formula (3.3) 

(3.2) Example: Schubert varieties. Let X = G/B be the flag 

manifold of a semisimple complex algebraic group G. Let H be a 

Cartan subgroup of G contained in the Borel subgroup B. For each 

element w€W (the Weyl group of G, H) denote by Zw corresponding 
Schubert variety. Let A*(x) De a form on X as in the Localization 

Formula: /*(x) depends holomorphical ly on x G H and satisfies 

dr/i(x) =0. Assume in addition that /i(x) is invariant under the 

action of W on X and h 
w-/i(x) = /i(w-x) 

(As usuai, the action of W on X depends on the choice of a compact 

form K of G: w-(kB) = kwB for k G K and wGW.) 

In this situation there is an explicit formula for the 

integrai of /i(x) over Zw, due to 
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ARABIA [1] : 
wx< 

<x< 
/i(x) = A„,/iy(x) (3.4) 

where n= /(w) = dimZw. 

Explanation. Aw is "the operator on holomorphic functions on h 
introduced by BERNSTEIN-GELFAND-GELFAND [3]: for a reflection sQ 
in a simple root a, As = Aa is defined by 

Aa = -g-(sa — l) . (3.5) 
(Weyl group elements are here considered as operators on functions 
on h: W'f(x) = f(w_ix).) For general w€W, 

Aty — Aâ  "** Aorn (3.6) 
where w = &&1 ••• san is any reduced expression for w as a product of 
simple reflections. fiy (x) is the component of degree zero of the 
form A*(x) at the point py = yB of X = G/B. Written out explicitly, 
the formula (3.4) reads 

x< 
x< 

/i(x) 
y 

Z-ZnBc(p)Z-ZnBc(p) 
Z-ZnBc(p)Z-ZnBc(p) 

(3.7) 
where 

<x< xv< <Z-ZnBc(p)W<< 
__i (3.8] 

sum over all sequences (si> ••• , sn) with ŝ- = sttj- or 1 and s; ••• sn = y. 
The corresponding points py = yB which occur in the sum (3.7) are 
precisely the fixed-points of H on Zw. If one compares (3.7) with 
(3.3) one comes to the conclusion that 

qy,w — K 1) ~ir (3.9) 
where ey is the equivariant multiplicity at py and 7r the product of 
the positive roots. This conclusion presupposes that there are 
enough form p(x) of the required kind so that the rational 
functions qW|y on the right side of (3.7) are uniquely determined 
when the left side is known for all such ^(x). This is indeed the 
case: If f(x) is a holomorphic function on h one can construct a 
form /of the required type by the equivariant Chern-Weil 
homomorphism of BERLINE-VERGNE [2]) with the property 
fij(x) =f(y"i-x), as explained by ARABIA [1]. 

The formula (3.9) shows that the rational functions c\y>w can 
be written with denominator TT , a property which can be proved in 
other ways, but is not evident from their definition (3.8). 
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