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Introduction to Mixed Hodge Modules

Morihiko Saito
RIMS Kyoto University
Kyoto 606 Japan

In this note we give an elementary introduction to the
theory of Mixed Hodge Modules [S1-5]. Philosophically the
Mixed Hodge Modules are the objects in char. 0 which cor-
respond to the perverse mixed complexes in char. p (cf. [B2]
[BBD]) by the dictionary of Deligne [D1]. For the definition
of Mixed Hodge Modules we have to use essentially the theory
of filterd D-Modules and vanishing cycle functors. But in
this note we try to avoid the technical difficulties as much
as possible; e.g. the knowledge of D-Modules is not supposed
in §1-2.

§1. How to use Mixed Hodge Modules.

1.1. Let X be an algebraic variety over @ assumed always
separated and reduced. We associate to X 1its cohomology
groups H'(X, Z) functorially, and Deligne's fundamental

result [D1] says that these cohomologies carry the natural
mixed Hodge structure functorially. This result can be gene-
ralized to homologies, local cohomologies [loc. cit] and Borel-
Moore homologies [B1] etc. But to do so more systematically
and generalize these results, e.g. to define the pure Hodge
structure on intersection cohomologies, we can argue as follows.

1.2. We first make refinement of the cohomology theory due
to Verdier etc. 1Instead of abelian groups H (X, Z) etc. we
associate to X the category DE(QX) (the derived category
of bounded @-complexes with constructible cohomologies [V1]).
Here we change the coefficient Z by @ for the relation
with the perverse sheaves. Then these categories are stable
by the natural functors like f, ,f, ,f*, et D, v,

g’ 7g,1°
®,8,Hom, where f 1is a morphism of varieties and g is
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M. SAITO

a function. Here ¢g,1 is the unipotent monodromy part of
¢g (cf. [D3] for the definition of vanishing cycle functors
wg s ¢g ). As to the direct images and the pull-backs we
have the adjoint relations (cf. [V2]):

1
(1.2.1) Hom(fr*M,N) = Hom(M,f N) Hom(f ,M,N) = Hom(M,f N)

1
and D° = id, Df,=f,D, Df*=£'D. Let Z be a closed

subvariety of X, and 1i:Z » X and ay : X » pt the natural

R = ) ! _
morphisms so that Qy = agﬁ ,IDQX = ayQ and 1,1° = RI, .

Then H®(X,Q), H.(X,®), H., (X,Q) and Hé(X,m) are respectively
the cohomologies of

(ax)*a;m, (aX)!aim, (ax)*aim and (ax)*i*i!a§m.

Moreover the restriction morphism

# @Q and f#

f X

1Ry > € :(aY)*ﬂlY + (ay), @

* X %X

is induced by the adjoint relation (1.2.1) putting M:=QY 5
N==QX==f*QY , and the Gysin morphism

f# :f!ZDQX > I)QY and f# :(ax)!I)QX d (aY)!I)mY

by the dual arguement. Note that f* =1,

and I)mx==mx(dx)[2dx] if X smooth, where dy = dim X.

In particular we get the usual Gysin morphism if X ,Y

if f proper,

are smooth and proper.

The main result of [S5, §4] (cf. also [S3-4]) is that
the above theory of @-complexes underlies the theory of
mixed Hodge Modules, i.e.

1.3. Theorem. For each X we have MHM(X) the abelian

category of mixed Hodge Modules with the functor
rat : DOMHM(X) » D2(@y)

which associates their underlying @-complexes to mixed
Hodge Modules, such that rat(MHM(X)) C Perv(mx), i.e.

146



INTRODUCTION TO MIXED HODGE MODULES

ratoH =p§prat (ef. [BBD] for the definition of Perv(mx)

e Tys T, t!, D, by
¢g’l, B, 8, Hom are naturally lifted to the functors of

D "MHM(X), i.e. they are compatible with the corresponding
functors on the underlying @-complexes via the functor rat.

and pﬁ). Moereover the functors f

As to the relation with Deligne's mixed Hodge structure
we have

1.4. Theorem. MHM(pt) is the category of polarizable @-
mixed Hodge structures.

In particular we have uniquely mHé MHM(pt) such that
rat(mH)==Q and QH is of type (0,0). Put m§==a;QH.
Then the ggggbargument gs in 1.2 applies replécing DE(QX),
mx, etc. by D MHM(X), QX’ etc. 1In particular we get the
mixed Hodge structure on the cohomology groups, etc. with
the restriction and Gysin morphisms in the category of mixed
Hodge structures (or Modules). Here we have proved a little
bit stronger result, because (ax)*a;mH, etc. are complexes
of mixed Hodge structures (compare to [B1l]). We have also
the multiplicative structure on (ax)*m§ by the morphism
in DbMHM(pt):

é*(a ). @l

H
) By = (ay,50,0 O S

H H
(ay) @y 8 (ay) By = (ay,) Oy

X

because QH

= o8 w o .
XX QXMQX , Where A :X »> XxX 1is the diagonal

embedding.

As suggested by the terminology 'mixed' (cf. [BBD]),
we have the following

1.5. Proposition. Each M & MHM(X) has a finite increasing

filtration W in MHM(X), called the weight filtration of

!
M, such that the functors M =~ wiM, GrgM are exact.

1.6. Definition. M & DbMHM(X) is mixed of weight <n (resp.

n) if Gr"i’HJM=o for 1> j+n (resp. i< j+n), and pure of

[\
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weight n if Gr‘;LIHJM=O for 1# j+n.
The followings are the analogy of [BBD].

1.7. Proposition. If M is of weight £n (resp. 2zn), so
1
are f!M, r*m (resp. r.M, £°'M).

1.8. Corollary. f,M 1s pure of weight n if M 1is pure
of weight n and f 1s proper.

1.9. Proposition. For any M€ MHM(X), GrgM is a semisimple
object of MHM(X).

1.10. Corollary. Exti(M,N) =0 for M mixed of weight =m
and N of weight 2 n, if m<n+i.

1.11. Corollary. We have a noncanonical isomorphism
= J . b
M =@& H'M[-j] in D MHM(X),

if M 1is pure of weight n.

1.12. Theorem. If M 1is pure and f 1is proper,we have a

noncanonical isomorphism in DbMHM(Y):

£M =0 HIf M[-5].
1.13. To get the decomposition theorem of Beilinson-Bernstein-
Deligne-Gabber (after taking rat), we have to explain about
the intersection complexes. Assume X is irreducible (or,
more generally, equidimensional). Let Jj:U = X be a non-
singular affine open dense subset. Then the intersection
complex 1is defined by

Icyd = Im(J,Qyldy] » J,@,0dy]) € Perv(@y),

which is independent of the choice of U, cf. [BBD]. We
define EXQHQ MHM(X) replacing QU by U}g so that
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INTRODUCTION TO MIXED HODGE MODULES

H
rat(EEXQH) =l§xm. Then lgxm” has no subobject and no
quotient object supported in XNU. In particular it is

simple and pure of weight dX’ beacuse so is mg[dx].
Substituting ngQH to M, we get the decomposition theorem
of BBDG after taking rat, and tQﬁ pure Hodge structure on
the intersection cohomology IH  X(X,@) =HI (X, IC,@). Note
that these results are generalized to the case of intersec-
tion complexes (or cohomologies) with coefficient in polari-

zable variations of Hodge structures, cf. 2.3.

As to the relation between Q§ and lgme, we have the
following

d
1.14. Proposition. HJm =0 (j>d,), GryH Xm§==o (1>d,)
3 X
and Gr” 1 *g = 1c qf.
X —X
X
In particular we get the (quotient) morphism

a
(.40 alfra ) -u el s 1e@”  in DPwEmon)

inducing the identity on U. (This morphism is unique.)

1.15. Let 1i:Z » X be a closed irreducible subvariety.

We have a natural morphism in DbMHM(X):

#
H i H . H
@y > 1,8, » 1,1C,07[-d;].
Composing this with its dual, we get the cycle class of Z:
H H H

cl, € Hom(Qy, DAy (-d,)(-2d,]1)
_ H ! H
= Hom(Q@", (ay), a,@ (-d,)[-2d,1),

H !
because DIC, A = EQZQH(dZ). Note that (ax)*aXQH corres-

ponds to the Borel-Moore homology(ef. 1.2), and if X is
smooth clg belongs to the Q-Deligne cohomology, because

Hom(@", (ay),@y(p)[2p]) C HEP(X,A(p)), cf. [B1],

where p = codim Z. (The above inclusion becomes the equal-
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ity, if X 1is smooth and proper.) Here (n) is the Tate
twist for n€ Z , and defined, for example, by X mH(n),

where QH(n) is the mixed Hodge structure of type (-n,-n),
cf. [D1]. We can show that the above construction induces

the cycle map
CH.(X) 81 ~ Hom(QY, (ay).at@(-d)[-2d])
d 4 X %X 2

and if X 1s smooth and proper, it induces Griffiths'
Abel-Jacobi map tensored by Q.

1.16. Remark. Let X be a smooth and proper variety over
L. Then we have an exact sequence (choosing 1i=vV-1 ):

0~ Py ~ HPLam) » PR + 0

2p-1 2p-1

where Py = 1P~ (x,anuP 1 (x,r) /FPu%P L (x, 1)

HP2P(x,m) = FPHAP(X,T) A HOP(X,Q).

Let f:X ~» S=IP1 be a Lefschetz pencil, and put S' =
S\ f(Sing f) so that f': X' » S' the restriction of f

over S' is smooth. Then we have
2
0 > JP(x g > P (X ,a(p)) » B P(X,@) » 0

where X, =f_1(t) for té€ S°'. For €€:Hp’p(X,Q) we choose
a 1ift & of ¢ in H%P(X,Q(p)). Restricting &% to Xt’
we get Egé H%P(X,Q(p)), and it belongs to Jp(Xt)m ir g,
is zero in H2p(Xt,Q(p)). In this case 5: determine the
normal function with value in Jp(x ). and we can show that
they give an element of Extl(mHS, ,(R2p-lf;mXJH), where

Ext1 is taken in MHM(S'); in particular, the corresponding
variation of mixed Hodge structure is admissible in the sense
of Steenbrink-Zucker [SZ]. Here note that Ef are not uni-
quely determined by &, but depend on the choice of 1ift 50
(e.g. if 2p=dimX and H2p_1(X) #0). Therefore to prove
the Hodge conjecture, we have to choose a good 1ift; other-

wise & would not belong to the image of the Abel-Jacobi

t
map . Note that for the proof of the Hodge conjecture we
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INTRODUCTION TO MIXED HODGE MODULES

can restrict to a non-empty open subset (i.e., it is enough
to construct a cycle in X'), because the Hodge conjecture is

equivalent to the following:

(1.16.1) For a smooth proper variety X and 5e,pr(x,m),
there exists a nonempty Zariski open subset U
such that the restriction of & to U 1is zero.

In particular we may assume X 1is projective using [D1].

1.17. Remark. For i :Z + X a closed immersion of varieties

we define:

LH3(X,Q(n)) = Hom(@y, 1'aja"(n)(3])

L}

A5 (X,8()) = Hom(@y, ay@(-n)[-3D).

Then they form a Poincare duality theory with support in the
sense of [BO]. In fact, (1.3.1)(Cap product with supports)

A (XaR(m) 8 1 (X,0(n)) > H, 4 (Z,0(m-n))

is given by the composition of u and i!v for u &
LHI(X,0(n))  and ve oH (X,8(m)), and (1.3.4)(Fundamental
class) is constructed in 1.15, so that (1.3.5)(Poincare
duality) becomes trivial, because Nx is the natural isomor-
phism mg 3 a)!(DH(-d)[-2d] if X 1s smooth of dimension d.
Moreover the well-definedness of the cyele map in 1.15 implies
(1.5)(Principal triviality).

1.18. The following application is suggested by Durfee.
Assume X 1is analytically irreducible (or equidimensional)

at x € X, and put J :U:= X\{x} » X and 1i:{x} » X.

By restricting X to an analytic neighborhood of {x}, we

may assume U = I xL (topologivally) by the cone theorem,
where I 1s an open interval and L 1is the neighborhood
boundary 93X . Therefore TIH(L) the intersection cohomology
of L 1is given by the cohomology of

* H _ H | H
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up to the shift of complex by r1=dx. In particular we get
the mixed Hodge structure on IH(L) and the duality of mixed
Hodge structure

IHJ(IJ GIHzn-l-J(L) + Q(-n),

because DJj,=j D and D (I_CUGIH) =I_QUGIH(n). We have also
the estimate of weight:

THI (L) 1s of weight

Jzn,

A

jJ for j<n and > j for

because the assertion for j<n follows from the isomorphism

% -H
T o1%3,IC m = 17IC,0

and we use the duality for Jj2n.

1.19. Let g Dbe a non zero divizor of F(X,~%), and put
i: Y=g (0)red
rally, M 1is pure of weight n and has no subobject sup-
ported in Y). Then we have an exact sequence in MHM(Y):

X, n=dim X and M = EQXQH (or more gene-

*
(1.19.1) 0 » i"M[-1] ~» wg’lM > ¢g’1M >0

The weight filtration W of ng and ¢g 1M are the mono-
3

dromy filtration shifted by n-1 and n . Let P denote

the primitive part of Gr?. Then we have

W :
P Gr ] M = P,Gr M for jzn
(1.19.2) ACIEEL

W oy W . *
PNGPn-1+ng,1M(J) = Grn-l-jl M[-1] for Jjz20.

For x&Y put i _:{x} > Y. If X is smooth and M = Qg[n],

we have
*. % _ mH
131*M[-1] = Q' [n-1]

and i;¢gM gives the reduced cohomologies of the Milnor
fiber around x , where ¢ M = wg #1 1M. Note that
Gr w M 1is calculated by ¢ M using (1 19 2) and 1.14 (i.e.
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INTRODUCTION TO MIXED HODGE MODULES

W W oHo oo H
n—lwg,lm'_Grn—le[n 1] IC,@). If X and Y have an

isolated singular point at x and M = ngQH, we have a nat-
ural inclusion of spectral sequences in MHM(pt):

PNGr

g7tk pdi*arWi* o1 — wli¥i*ur-1]
1 x "k X
(1.19.3) 3 ¥
-k,j+k _ L j.*,.W _ %
E] = H ixGrkwg’lM > H 1X¢g’1M
-k,j+k _ _ . _
By assumption E1 = 0 except for j=0 and j<0, k=

n-1, and we have for j # 0:

Jivn W o sy _ s %a W R, H
(1.19.4) H i Gr  ,1"M[-1] = H ixcrn_lwg’lM HO1 IC,A .
In particular dr :qu > E$+r,q—r+1 is zero except for
l-n+r,n-1-r
of 4d
r r
is independent of the two spectral sequences. Then we have

(p,q) = (1-n,n-2), and the image Ir(: E

H

Ja®. % S N J.¥ .
(1.19.5) H1 1"M[-1] = H 1X¢g’1M o HYi IC.@ for j#0

where the inclusion becomes an isomorphism for j < -1, and
Grg_l_r of the cokernel of the inclusion for j=-1 1is Ir
for r>0. We have also

. W 0,#
lx*Grn—1+kH 1xwg’1M for k>0
W _ . W 0. % H -
(1.19.6) Grn—1+kwg,1M = 1 40r _qH 1xwg,1M(BICYQ for k=0

Ly 0Tyl 1kU, M(=k)  for k<o,
(same for i*M[-l] if k=0), where the induced filtration W
on Hoi;wg,lM (or Hoi:i*M[—l]) is the weight filtration (this
is not true for HY with j#0). As a corollary, we have a
direct sum decomposition GrWHOi;q% M =L.8L! as a graded
@[N]-modules such that L. (resp. L;) is symmetric with center

n-1 (resp. n) and

_ W O, %%
PNLn—1+k = Grn—l—kH id M[-1](-k) for k20
(1.19.7) L' _
PN‘n—1+k = Ik(—k) for k>0,
using (1.19.2), cf. [S1,847. As for y , we have
g,71
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W R W
(1.19.8) Grkwg,#lM =1, GrkH i wg,#l

because supp wg #lM(: {x}. Note that if X is furthermore
3

*
smooth and n>1, HJ1X1 M[-1] = for j>1-n and we have
W -1.%
= = - . T
L. 0 and Ik Grn-l-k H “i ICYQ as is well-known o

get the information about g,#l , Wwe can also replace X
by {g==tm}C:X x T, where m is a positive integer such that
the m-th power of the monodromy becomes unipotent. Then
(1.19.7) is compatible with the join theorem of mixed Hodge
structure on the Milnor cohomologies.

Now we assume X 1is smooth, and put Z = (Sing g)red’
Z' = Z\{x} (same for X', Y') and M = m?[n]. We assume
that g 1is locally topologically trivial along Z' and

Z' is smooth. TFor =z €& Z', we assume:

(1.19.9) H_di:wg M =0, where d=a
3

Z’

(1.19.10) the monodromy of H_di:wg M is semi-simple.

Then by (1.19.9) Q?,[n-l] =Igy,QH, i.e. supp Grﬁi*M<:{x},

and for the second spectral sequence in (1.19.3), Ezk’j+k =0

except for j#0 and j<0, k=n-1. Therefore as for wg 1M
E

the same argument as above holds. As for ¢ M we have

#1
s’

the spectral sequence as in (1.19.3) with the vanishing of
El—term as above by (1.19.10), but the calculation of

W —1 * -1
Gryp_1¥g, 1M ixdyed Vg, M

is the invariant part by the monodromy along each irreducible

is not so easy. If 4 =1,

component of Z , where J:Y' - Y. But in general we have
to caluculate the cohomology of the local fundamental group
of (Z,x).

1.20. For M <DbMHM(X) and f:X > Y, g:Y > Z, we have
the (perverse) Leray spectral sequence in MHN(Z):

+
(1.20.1) qu = wPg e M — P Y(gr) M,

which degenerates at E2 if f 1is proper and M 1s pure.

1.21. For an application to the representation theory, see

(r].
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§2. Naturality.

2.1. Assume X smooth, and let MHM(X)S be the full sub-
category of MHM(X) consisting of smooth mixed Hodge Modules,
where M€ MHM(X) 1is called smooth iff rat(M) is a local
system. Let VMHS(X)ad be the category of admissible vari-
ation of mixed Hodge structures, where a variation of mixed
Hodge structure is called admissible if it is graded polari-
zable and for any morphism f :8 > X with dim S = 1, its
pull-back by f satisfies the conditions of [SZ], cf. [K2].
Then we have the equivalence of categories:

2.2. Theoren. MrIM(X)S = VMHS(X)ad .

This implies that a polarizable variation of Hodge structure

of weight n 1is a smooth mixed Hodge Module and pure of
weight n + dim X. 1In particular, the polarizable Hodge Modules
are the pure Hodge Molules by the stabilty by intermediate
direct images j!* = Im(j! > j*), and for X irreducible

we have

D ~ —44 p
2.3. Theorem. MHX(X,n) VHS(X,n dunX)gen.

Here the left hand side is the category of polarizable
Hodge Modules of weight n with strict support X (i.e.
having no subobject and no quotient object supported in

a proper subvariety of X) and the right hand side is the
category of polarizable variation of Hodge structures of
weight n-dimX defined on some nonempty smooth open sub-
set of X, whose local monodromies are quasi-unipotent.

As a corollary of 2.2, we get a canonical mixed Hodge
structure on H(X,L) if L underlies an admissible varia-
tion of mixed Hodge structure. (This result can be genera-
lized to the analytic case if X has a Kahler compatifica-
tion, using [KK].)

2.4. Let g be a function on X . Put Y =g '(0) .,
U = X\Y. Let MHM(U,Y)gl be the category whose objects
are {M',\M",u,v} where M'g MHM(U), M"€ MHM(Y), ue
Hom(wg’lM',M"), vé:Hom(M",wg,lM'(l)) such that wvu =N
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(the logarithm of the unipotent part of the monodromy, ten-
sored by (2ﬂi)_1). Then we have an equivalence of catego-

ries (compare to [V3]):
2.5. Theorem. MHM(X) = MHM(U,Y)gl.

Here we associate {MIU ’¢g 1M ,can , Var} to Mé&MHM(X).

E]
Because the definition of mixed Hodge Module is Zariski local,
every object of MHM(X) can be constructed by induction on

the dimension of support using 2.2 and 2.5.

§3. Definition.

3.1. To explain more precisely about the statements in §2,
we have to speak about the definition of mixed Hodge Modules.
For simplicity we assume X 1s smooth. The general case can
be reduced to this case using local embeddings into smooth
varieties. Let MFh(QX) be the category of filtered QX-
Modules (M,F) such that M is regular holonomic[Bo] and
GrFM is coherent over GrFQ. (We can also use analytic QX—
Modules, because the final result is the same by GAGA and the
extendability of mixed Hodge Modules.) By [K1] we have a
faithful and exact functor DR :MFh(QX) > Perv(EX), and we
define MFh(QX,m) to be the fiber product of MFh(QX) and
Perv(mx) over Perv(mx), i.e. the objects are (M,F,K) &
MF, (Dy) x Perv(@y) with an isomorphism a : DR(M) * T8 K, and
the morphisms are the pairs of morphisms compatible with a.
A filtration W of (M,F,K) is a pair of filtrations W

on M and K compatible with . Let MFhW(QX,Q) be the
category of the objects of MFh(QX,Q) with a finite increa-
sing filtration W. Then MHM(X) the category of mixed
Hodge Modules is a full subcategory of MFhW(QX,m) and

W gives the weight filtration in 1.5. For (M,F,K;W)é&
MHM(X)S we can show that (M,F,L;W) is an admissible
variation of mixed Hodge structure, where L 1is the local
system on X such that K = L[-dX] and

the functor in 2.2 is induced in this way. Here we use the
convension FpM = F"PM  and the Griffiths transversality
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INTRODUCTION TO MIXED HODGE MODULES

follows from FlngpM(: Fp+1M.

3.2. To define MHM(X), we have to define first MH(X,n)
the category of Hodge Modules of weight n , cf. [S1-2].
This is a full subcategory of MFh(QX,Q) and satisfies:

(3.2.1) MH(pt,n) 1is the category of @-Hodge structures
of weight n,

(3.2.2) If supp M = {x} for M€MH(X,n), there exists
M'¢ MH(pt,n) such that 14" = M, where
i, : {x} » X.

(3.2.3) If Mé&MH(X,n), M 1is regular and quasi-unipotent
W W . .
along g, Gring, Gri¢g’]£[6MH(U,1) for any 1,

¢
g,1
an open subset U, where W 1is the monodromy

= Im can ® Ker Var, for any g defined on

filtration shifted by n-1 and n.

Here for a closed immersion i :X > Y of codimension k
such that X = {f1=---=fk=0}, the direct image i*(M,F)

of a filtered Dy-Module is defined by

. . . _ v
(i,M= M [al,...,ak] ,F) with FoiuM = ZCﬁlvlip—k FMe@ )
where ai are vector fields such that [ai,fj] = dij’ cf.
[Bo]. We say that (M,F,K)é'MFh(QX,m) is regular and gquasi-

unipotent along g , if the monodromy of ng[-l] is quasi-

unipotent and (M,F) = ig*(M,F satisfies

£ F VO 3 FpV“*lﬁ for a>-1
(3.2.4) - -

3 ¢ F Gl Fp+1Gr3'1M for <0,

where :'Lg :X > XxLC 1is the immersion by graph of g, t is
the coordinate of T and V 1is the filtration of Malgrange-
Kashiwaral[K3] indexed by @ such that tat -a is nilpotent
on Gr%ﬁ. In this case we define

Ve LE,K) = (8_y o Gry(f,F), v K[-1])

(3.2.5) -1,~
¢g,1(M,F,K) = (GPV (M,F["l]), ¢g,lK[-1])’
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and can : Y > ¢ 1 and Var :¢g 17 P (-1) are induced

g’l g’ 3 g’l
respectively by -9 and t, where F[m]i = Fi-m' Here we

use left Q—Modules.t For the correspondence with the right
Modules we use (2°X,F)® with GPEQ;X =0 for 1i#-dy.
Actually MH(X,n) 1is defined to be the largest full subcate-
gory of MFh(Qx,m) satisfying (3,2,1-3). This is well-defined
by induction on dim supp M. (In the analytic case we have

to care about the difference of global and local irreducibi-
lity.) Let Z Dbe a closed irreducible subvariety of X.

We say that (M,F,K) has strict support Z, if M (or K) has

no subobject and no quotient object supported in a proper sub-

variety of Z and supp M = Z. Let MHZ(X,n) denote the
full subcategory of the objects with strict support Z. Then

we have the strict support decomposition

(3.2.6) MH(X,n) = & MHZ(X,n).

Z

A polarization of (M,F,K)é& MHZ(X,n) is a pairing S : K@K
1
> akm(-n) satisfying

(3.2.7) If Z = {x}, there is a polarization S' of Hodge

structure M' [D1] such that S = iX*S', where
i, and M' are as in (3.2.2).

(3.2.8) S is compatible with the Hodge filtration F, i.e.
the corresponding isomorphism K 3 (DX)(-n) is
extended to an isomorphism (M,F,X) 3 D (M,F,K)(-n).

-1
(3.2.9) For any g as in (3.2.3) such that g ~(0)<4 2z,
the induced pairing

W
n-1+1%gK[-1]

!
> aUQ(l-n-i)

W

p . iy, _
wgSO(ldQPJ) .Grn_1+ing[ 118 Gr

. )
is a polarization on the primitive part PNGrn_1+i

wg(M,F,K),

c¢f. [S2] for the definition of D (M,F,K) and pwgs. Here
the condition (3.2.9) is again by induction on dim supp M.
We say that (M,F,K)€ MH(X,n) is polarizable, if it has a
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polarization, and we denote by MH(X,n)p the full sub cate-
gory of polarizable Hodge Modules. Here a polarization of
M=&M, with M é;MHZ(X,n) is a direct sum of polarizations
on MZ'
The main result of [S2] is that MH(X,n)p is stable by
projective direct image. Here for the projection p :XxY¥Y - Y
and (M,F) €MF(Dy,
to be the usual direct image of the filtered complex DRXXY/Y
(M,F)[n] where n = dim X and

Z Z

), we define the direct image p*(M,F)

@F . M > -+ QUl@F . M]

F ptl X p+n

1
M= [FM-~>Q
[F M~

pPRxxy /v X

(Note that the assumption p smooth is not enough to get an
object of the derived category of filtered QY-Modules.)
Combining with the case of closed immersion, we get the defi-
nition of the general case (cf. [S2, §2] for a more intrinsic
definition). Then for (M,F,K)&€MH(X,n)® and f:X » Y pro-
Jective, we can prove that f*(M,F) is strict and Ejf*(M,F,K)
= (ﬂJf*(M,F),pﬂJf*K) belongs to MH(Y,n+j)P. We also verify
that Qg[dxj = (0,F,By[d, 1) € MH(X,d,)P  where Grggx=0 for p#0.

3.3. The mixed Hodge Modules are roughly speaking obtained
by extensions of polarizable Hodge Modules. Here the exten-
sion is not arbitrary and to control this, we use again the
vanishing cycle functors.

Let MHW(X) be the full subcategory of MFhW(QX,m)
such that Grg belongs to MH(X,i)p (i.e. the extension
is arbitrary). Let g be a function on X . Put (M,F,W)
= ig*(M,F,W) for M = (M,F,K,W)& MHW(X). We say that the
vanishing cycle functors along g are well-defined for M
if

(3.3.1) the relative monodromy filtration W (cf. [D2]) of
(ng,L), (¢g,1K,L) exists,

(3.3.2) F,V,W on M are compatible [S2,§1].

K=1¢ W.K. If (3.3.1-2)

Here Ling = wgw1+1x and Li¢g,l g, 11

are satisfied, we define
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"’gM = (wg(M,F,K),W), ¢g’11_VI_ = (¢g,1(M,F,K),W),

cf. (3.2.5). Let j:U = X _be an open immersion such that
the complement is a divisor. We say that the direct images
j! and j* are well-defined for M&MHW(U), if there exist
M, and M_ such that rat(M!) = J,rat(M) and the vanishing
cycle functors along g are well-defined for M, and M/

for any local (not necessarily reduced) equation of the divi-
sor. Here rat(M) =K 1if M = (M,F,K,W). We can show that
M
depend on the choice of the ideal generated by g. To avoid
this ambiguity, we take the above definition.

The category of mixed Hodge Modules MHM(X) 1is defined
to be the largest full subcategory of MHW(X) stable by the
functors Vg, b5 15 dys e @yld,] for any locally defined
function g, partial compactification of an open subset

, and M* are at most unique if we fix g , but they might

jJ:U > U" such that the complement is a divisor, and smooth
Y. Here we assume that the vanishing cycle functors along g
(resp. the direct images j! and j*) are well-defined, when
we say that it is stable by such functors, cf. [S3, S5].

3.4. Remark. The condition (3.13)ii) in [SZ] is not stable
by base change. This condition is reasonable only in the
unipotent monodromy case. In general we have to take a uni-
potent base change, or use the V-filtration and assume the
compatibility of F, W, V on Deligne's extension, because
the V-filtration is essentially induced by the m-adic filt-
ration on the pull-back by a unipotent base change.

3.5. Remark. Let Z be a projective variety with an ample

line bundle L such that Z is embedded in X = PN by

L™. Then for (M,F,X,W)e MHMZ(X) we have the Kodaira vani-

shing

i

H(z, GriDR,(M,F) 8, LE1
X e,

P ) = 0 for 1i2z20.

This implies a vanishing of Ohsawa-Kolldr (where (M,F) =

5 ;
B'f (0,,F) and Gr DRy (M,F) = RIf,uy for f£:Y » X with
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Y smooth), and that of Guillén-Navarro-Puerta
HJ(z,Grggé®IJ =0 for j>dim Z

EJGrggé =0 for j<p or j>dim Z.

We can also generalize Kolldr's torsion freeness to the proper
Kahler case using [KK]. (This can be also generalized to the
assertion for the first nonzero Hodge filtration of pure Hodge
Modules.)
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