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THE SPECTRUM OF HYPERSURFACE SINGULARITIES 

J.H.M. Steenbrink 
Mathematical Institute 
Catholic University 

Toernooiveld 
6525 ED Nijmegen 
The Netherlands 

Introduction 

Many results about the topology of complex hypersurface singularities 
have a Hodge-theoretic counterpart. The monodromy theorem for isolated 
singularities combined with the Hodge filtration on the vanishing cohomology 
have led to the notion of the spectrum ([A],[St4], [VI]). The spectrum is a 
powerful invariant, giving necessary conditions for adjacency of 
singularities. In this paper, we define the spectrum for arbitrary (i.e. not 
necessarily isolated) hypersurface singularities and investigate some of its 
properties. In particular we conjecture a Thom-Sebastiani type theorem about 
the spectrum. This formula has recently been proven by M. Saito using the 
description of the mixed Hodge structure on the cohomology of the Milnor fibre 
via his theory of mixed Hodge modules [Sal]. Moreover, we investigate the 
behaviour of the spectrum under certain deformations. We consider a 
hypersurface {f=0> in Cn+1 whose singular locus is of dimension one and 
compare this with a hypersurface {f + e£k =0} where e is sufficiently small 
and £ is a linear form which is not tangent to any component of the critical 
locus of f. We conjecture a formula for the spectrum of f + e£k which 
generalizes a formula of Yomdin [Y] for the Milnor number. We are able to 
prove this formula in certain cases, which are listed in §2. M. Saito has 
recently given a proof in the general case [Sa 2]. The corresponding formula 
for the characteristic polynomial of the monodromy has been proven by D. 
Siersma [Si 2]. 

As an application, we give an example, found together with J. Stevens, of 
two isolated plane curve singularities which have different topological types 
but equal spectra. This gives a negative answer to a question mentioned by W. 
Neumann [Nl], namely whether the real monodromy and Seifert form determine the 
(embedded) topology of an isolated complex hypersurface singularity. We also 
give an example in dimension two, which shows that even the topological type 
of the hypersurface singularity itself is not determined by these data. A 
detailed discussion of this will appear elsewhere. 

It should be remarked that the spectrum of the affine cone over a 
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projective hypersurface with only isolated singular points is independent of 
the position of these points. On the other hand, the Betti numbers of the 
Milnor fibre do depend on this position in general (a phenomenon, usually 
indicated by the word 'defect*). A. Dimca communicated to me, that he has a 
method to compute exact Betti numbers for projective hypersurfaces with 
arbitrary isolated singularities. 

The author is indebted to Theo de Jong, Duco van Straten, Le Dung Trang 
and Steve Zucker for stimulating discussions. He also thanks Dirk Siersma, M. 
Saito and Theo de Jong for pointing out some errors in an earlier draft of 
this paper. 

§1. Spectra of hypersurface singularities 

A spectrum is a set of rational numbers, counted with certain 
multiplicities. These multiplicities may be negative. Let if = the free 
abelian group on generators (a), a € Q. A typical element of ^ will be denoted 
as Yi na^a^ • We wiH consider spectra as elements of P. 

Let £ denote the category whose objects are C[t]-modules of finite length 
equipped with t-stable decreasing filtrations on which t acts as an 
automorphism of finite order and whose morphisms are C[t]-linear maps which 
are compatible with the given filtrations. A typical object of £ will 
be denoted as (H,F,y) where F is the filtration and y the automorphism given 
by the action of t. In the main application, H is the cohomology group of 
the Milnor fibre of an isolated hypersurface singularity, F is its Hodge 
filtration and y corresponds to the action of the semisimple part of the 
monodromy (the monodromy itself is not compatible with F). A sequence 

0 H' a H gg H" 0 
in £ will be called exact if the underlying sequence of vector spaces is exact 
and if a and /3 are strictly compatible with the filtrations, i.e. a(H') n FPH 
= a(FpH' ) and FPH" = |3(FPH) for all p. With this concept of exact sequence, £ 
becomes an exact category (see [Q]). 

The group y can be considered as the Grothendieck group of £ in the 
following way. Fix an integer n and let (H,F,3r) be an object of Observe 
that y acts on the subquotients Grp(H) = Fp/Fp+1 . One defines Sp (H,F,y) as 

r n 
follows. Define rational numbers a ,...,a , where s(p) = dim Grp(H), by 

l s(P)' * F 
n-p -1 a j n-p 

det" (t: f Gr ->H> 
s 

n p 
ff 

(t e -2i7ra j 
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Then 

Sp ( 
n 
:H,F,y] sg 

s 
d p 

1 
gs 

For every integer n the map Sp induces an isomorphism between KQ(£) and P. 

Changing n into n+j or shifting the filtration index by -J corresponds to a 

shift oc) (a+J) in y. 

Let f : (C* ,0] (c ,o : be a non-zero holomorphic function germ. Its 

Milnor fibre X (f ) is defined by 

X if z € 
n+1 

c z TÎ and f (z) t> 

for 0 It sg 1. The cohomology groups H [X [f ) carry a canonical mixed 

Hodge structure (see [St2] for the case that f has an isolated critical point 

at 0 and [Na]§14 for the general case). The semisimple part T of the 
s 

monodromy acts as an automorphism of these mixed Hodge structures. In 

particular, it preserves the Hodge filtration F. 

We define the spectrum of f by 

Spi (f) gs n 
hc=0 

-1 n-k Sp I 
n 
Hk XI [f. ,F T 

s 

In the case of isolated singularities, this reduces to the existing 

definition, because then Hk XI [f : o for k * n, as X(f) has the homotopy type 

of a wedge of n-spheres. 

Examples. For quasi-homogeneous isolated hypersurface singularities the 

spectrum can be calculated in the following way. Choose a basis { z a > o f 

monomials for the Artinian ring Q = C{z , . . . ,z }/{d f, . . . ,d f). For a € A put 
f 0 n 0 n 

w(a) = V n (a + l)w - 1 where w ,...,w € Q are the weights , normalized in 
i=0 i i o n 

such a way that f has degree one. Then Sp(f) = I^€A (w(a)) (see [St3] for a 

proof). In particular we obtain for the simple singularities: 

type normal form spectrum 

A 
k 

k+1 
Z 
o 

+ 2 Z 
1 + , dh 2 

Z 
n 

k 
Ji=l 

1 
k+1 + n 

2 
1 

sg 
d 

k-l Z 
0 + z 0 

2 z 
1 + 2 Z 

2 
+ + 2 

Z 
n 

4c-l 
Ji=l 

dh 
l2 + 

i 
k-l b 1] + 

n-1, 
2 

E 
6 

4 
Z 
0 

+ 
3 
z 
1 

+ 
2 
z 
2 

+ , + 
2 Z 
n 'Je- 1 . 4 5,7, 8, 1 lj 

r6n+J 
12 

1 

E 
7 

3 z ; 
o 2 
1 

+ 3 Z 
1 

+ 2 Z 
2 

+ + 2 
Z 
n 

dh 1,5, 7,9 ,11 13 17) 
r9n+j 
18 h 1 

E 
8 

5 z 
0 

+ 
3 
z 
1 

+ 
2 
z 
2 

+ + 2 Z 
n 

'Je 1,7, 11) 13 17, 19 23 ,29) 

,15n+j 
30 
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For more spectra of isolated singularities from Arnol'd's lists see [G]. 
Let f: C > C be given by f(x,y,z) = xy (type A in the notation of 

[Sil]). Then X(f) is homeomorphic to the affine variety xy = 1 in C , i.e. to * 
C x C, and the monodromy is the identity. We obtain that Sp(f) = -(1). 

Let f: C3 > C be given by f(x,y,z) = xyz (type T ). The Milnor 
fibre of f is diffeomorphic to C x C and the mixed Hodge structure on 
H1(X(f)) is purely of type (i,i) for i = 0, 1 and 2. The monodromy operator 
is the identity. Hence we obtain 

Sp dd sg 0 g 1] 
Let f : sg c be a germ and define g: .n+l C C by gi 0 » z 

n 
gs 

f sg ,z ) 
n 

If Sp (f) sg n I a (a) then Spl •(g) sg sg 
n ( a (a+i: 

We recall a few properties of the spectrum for isolated hypersurface 
singularities. It is convenient to introduce the following notions. For any 
subset B of Q or K we obtain a group homomorphism 

given by 
degB: s I 

degB 
hi 

n ( a a) g gs n 
a 

We define ji(f) = degQSp(f); for isolated singularities this is the Milnor 
number. 

The semicontinu.ity property of the spectrum ([Vl],[St4]) can be 
formulated as follows. Let ^t^t6^ be a ^amily of> functions parametrized by a 
disc such that f has an isolated critical point at 0 with f (0) = 0. Suppose o o 
that there are continuous maps x^ (0,1] > Cn+ , i = l,...,r,such that the 
x (t) are critical points of f with the same critical value and that i t 
lim^^Q x^t) = 0. We can compare the spectra of the germ of fQ at 0 and of the 
ft at the x^t). The result is: 

Theorem. For any half-open interval B of length one in R 

degg Sp (fo* ,0) > r 
4=1 deg Spi f , t x i 

(t: 

It would be interesting to have such a semicontinuity result for certain 
deformations of non-isolated singularities too. As an important example, 
consider a surface singularity in C3 which is weakly normal [vS], i.e. which 
has generically only ordinary double curves. Consider a deformation which 
admits a simultaneous normalisation. By IdJ-vS] this is equivalent to the 
condition that the singular locus varies in a flat way. Under these conditions 
the spectrum should behave semicontinuously. 
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We define the convolution operation * on f as the bilinear mapping 
*: if x if if given on generators by 

[oc) * Iß dh :<x+ß+i) 
Each pair of germs f : ~n+l dh fg (C,0) d (<r ,0) [c,o; defines a 
germ f©g: (C1 ,n+l X c1 m+1 (0,0) CO) by :f©g) z, wi f( z) + g w If f 
and g have an isolated singularity, the same is true for f©g, and, by the 
Thom-Sebastiani theorem, fi(f©g) = /i(f)jLi(g) where fi denotes the Milnor number. 

Theorem. Let f,g be as above. Then 

Sp( f©g) d Sp f s Sp( g) 

See [VI], Thm 7.3 and also [SS] for the case of isolated singularities. The 
general case is due to M. Saito (private communication). We may even include 
the case that f and/or g are zero: just define the spectrum of the zero 
function in n variables to be (-l)"(n). 

In the isolated singularity case, the spectrum is invariant under the 
reflection of if defined by (a) > (n-l-a). The examples of A and T 

00 00, 00, 00 
above show that this need not be true in general. 

For isolated hypersurface singularities (V,0) the geometric genus p (V,0) 
9 

is related to the spectrum by p = deg Sp(f) where f is a defining 
g (-1,0] 

function. Van Straten [vS] has generalized this notion to the case of weakly 
normal surface singularities and verified a similar formula. 

§2. Functions with a one-dimensional critical locus 

Let f: (cn+1 .0) (c,o: be a holomorphic function germ. The critical 
locus Z of f is the set of common zeros of the partial derivatives of f or, 
more precisely, the germ at 0 of this set. By Sard's theorem, Z Q f-1(0). We 
consider germs f for which Z is of dimension 1. 

Let Z ,...,Z be the irreducible components of Z. For each i we choose a 
1 r point P * 0 on Z and a slice U through P transverse to Z . Let g = f... : i i i & i i &i J 

(U^PJ > (C,0). Then g. is an isolated hypersurface singularity. Its 
analytic type will in general depend on the choices which have been made. 
However, two different choices give rise to germs which are fx-homotopic, i.e. 
which are connected by a family with constant Milnor number. Therefore the 
fi-class of g. is an invariant of f; it is called the transverse type of f 
along Z. (cf. [Y] or [Le 1] (1.3.1) and (1.3.2)). Because the spectrum of an 
isolated singularity depends only on its |i-class [V3], the spectrum of is 
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well-defined. 
Recall that on Z one has a sheaf of vanishing cycles $f (cf. [D]). This 

is a constructible sheaf complex (in fact a perverse sheaf) whose cohomology 
sheaves at a point of Z give the reduced cohomology of the Milnor fibre of the 
germ of f at the given point. Hence ) = 0 for P € Z \ {0} and i * n-1 
and is a local system on each Z \ {0} whose fibre at P is f i i 
H (X(g )). Remark that on Hn_1(X(g )) we have two monodromy 
transformations: the monodromy T. of the germ g. (which we call the horizontal 
monodromy) and the monodromy T (the vertical monodromy) of the local system 

f 
h 

f i which is the restriction to the punctured disk Z. :o> of 
fh ji-i fh These two monodromies commute with each other, because T. is locally 
constant on f fh f i) 

Let £ be a sufficiently general linear form on Cn+1. Then for all k 
sufficiently large and e with 0 < |e| « 1 the germ f̂  = f+e£k has ah isolated 
singularity at 0. Yomdin [Y] has proved the following formula for its Milnor 
number. 

(2.1) Theorem. For all k sufficiently large 
fh f fh fil (f + ke 'o tz: 

Here e (Z) denotes the multiplicity of Z at 0. o 

The main subject of this article concerns the relation of the spectra of f and 
f . We formulate a conjecture which we then verify in certain cases. We keep 

the preceding notations and put e 
o 

fh 
, 

b; g gk :gi: Spl :g,: g 
gk 

gk = 1 gk i j 
Moreover we write 

0 
m 

g jn-1 
4=0 >i/m G if for m € IN. 

(2.2) Conjecture. For all i there exist non-negative rational numbers a_, 
j=l, . . ., jû , depending only on the vertical monodromy such that for all k 
sufficiently large 

Sp g g Sp (f) + 
gk ij a ij 'km i 

gk 0 m 
i 
k' 

In case T 
i 

Id ve have a ij 
gk 0 for all j. 

We verify this conjecture in the cases n=l (§4), n=2 and the transverse type 
of f along each component of Z is simple (§5), n arbitrary and f homogeneous 
with transverse singularities of Pham-Brieskorn type (§6). To make the latter 
result more useful we comDute the sDectrum of a homogeneous germ f with 
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one-dimensional singular locus in §6. It is related to the spectrum of an 
isolated homogeneous singularity by the same formula as in the conjecture, 
when we substitute k = d. Moreover, in the homogeneous case, the correction 
coefficient a associated to a transverse spectrum number A is given by a = dX 
- IdA]. 

Using Le's 'carrousel* method, Siersma has been able to prove a formula 
for the zeta function of the monodromy of f which is compatible with our 
conjecture. His proof also makes it possible to specify what the numbers a_ 
in the formula should be. 

Mi ~n-l 
Choose a basis {^} for H (Xtg^) on which both horizontal and 

vertical monodromy are given by an upper triangular matrix, with diagonal 
elements £^ and TJ respectively, such that exp{-2ni\^^) - Then 
should be given by 

0 < a ij < 1 and exp -2iria gk gk 
V 

M. Saito has given a general proof of our conjecture, which however does 
not give the formula for the spectrum of a homogeneous germ f with 
one-dimensional singular locus [Sa 2]. 

We give some examples to illustrate the power of these theorems. 

1. Let f: g 
n+l ,0 <C,0) be of type A . 

00 
Then Spl f : = -( n/2) and f has 

type k-l We obtain Spl A k-l gk n/2) + (n/2 - i; g gk so a 0 
k 

works in this 
case. Indeed, the vertical monodromy is the identity here. 

2. Take f x, y) 2 x y. Then Spl f : gk (0] and the vertical monodromy is -Id. We 
take a gk 1/2 to get exactly the spectrum of f which is of type 

k 
D k+1* 

3. Take f (x,y,z] xyz. We have seen in §1 that Sp f : = -2 [1) + (0) and T 
i gk 

Id for i ̂^ 1,2,3. The germ f has tvoe T with spectrum Sp gk + 3 :o: k^^ g 
More generally, Sp T p.q.r 

k 
Spl (f) + [0] 

k,k,k 
^^ P + o: *3 q + [0) *3 r 

4. Let f € C[zQ, ...,z ] be homogeneous of degree d such that Z is of dimension 
one and the tranverse type along each component of I is Aj. Then the 
vertical monodromy is multiplication by (-l)nd. The correction coefficient a 
is equal to 0 if nd is even and to 1/2 if nd is odd. 

5. Varchenko [VI] has derived the following upper bound for the number of 
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double points on a complex projective hypersurface of dimension n-1 with only 

isolated singularities in terms of the degree d. The estimate is as follows. 

Consider a homogeneous polynomial f of degree d in n+1 variables with an 

isolated singularity at 0. Then Sp(f ) = r n+ (multiple join product) 

where y = 0 -(0). 

For nd even let I = (n/2 - 2 + l/d,n/2 - 1 + 1/d) and for nd odd let I = 

(n/2 - 2 + l/2d,n/2 - 1 + l/2d). Then the number of ordinary double points on 

a hypersurface of degree d in Pn(C) with no other singularities is not bigger 

than degT(r ). 
1 d 

This also follows from our Theorem (6.1) and (6.3). Let f define such a 

hypersurface with 6 ordinary double points. Then f defines also a singularity 

with one-dimensional singular locus, consisting of 6 lines through the origin 

and transverse type A . Let I be a general linear form. Then f + e£d+1 is an 

isolated singularity for e > 0 small enough, hence it has a spectrum which is 
effective (all its coefficients are nonnegative), because the Milnor fibre of 

an n-dimensional isolated hypersurface singularity is (n-1)-connected. 

Suppose that nd is even. By our Theorem (6.1) and (6.3) 

Sp(f + e£d+1) = /(n+1) - « [ 0 - 0 ]*(n/2 - 1) 
d d d+l 

hence the coefficient of (n/2 - 1 + 1/d) in y must be at least ô. This 
coefficient is exactly equal to degT(y ). If nd is odd, 

1 d 

Sp (f + el 
d+l 

^ ^^ 
* (n+1) 5/3 

d 
* :n/2 - i - i '2d + 08 

d+l 
* i [n/2 - 1 - 1 /21 d+l) 

and we see that the coefficient of (n/2 - 1 + l/2d) 

least ô. (This argument is due to Theo de Jong.) 

in k^^ 
*( I n+1) has to be at 

§3. Some toric geometry 

In this section we gather some results from toric geometry which will be 

used in the next sections. Our basic references are [Da 1] and [Da 2]. 

Let A be an (n+1)-simplex in Rn+1 with vertices v v in Zn+1. The 

toric variety P^ is the union of the affine open subsets = SpectA^, i = 

0 n+1. with 

A 
i 

^^ C i 
and M 

i 
^ Z 

yn+l 
^ ^^ 

^ 

IR 
+ 
v 
J 

v V 
The integral points of A correspond to a basis of the space of sections L(A) 

for a line bundle £ on P^. Each non-zero element g of L(A) defines a 

hypersurface Z. in P.. The variety P. has only quotient singularities. If g 

€ L(A) is sufficiently general, Z4 intersects the strata P of P. for T a 

face of A transversally, and Z. will have only quotient singularities too. 
A, g 
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In this situation it is called a quasi-smooth hypersurface. 

Assume from now on that ZA = Z is quasi-smooth and that all monomials 

occurring in g with non-zero coefficient lie in{v} u A where A is the face 

of A opposite to v . Then one can define an automorphism y of Z as follows. 

Without loss of generality we may assume that VQ = 0. Let i denote the linear 

form on Rn+1 which takes the value 1 on A . It takes rational values on the 

lattice of integral points. For a finite subset A of Zn+ we define o*(A) € if 

by 

^!: A] :: 
^>€A 

d P -i: 

Write e(A) = exp 27riA. By construction, Z n U = Spec Aj/(gi) where g^ = 

z . g . The map z > e(£)z defines an automorphism of which leaves ĝ  

invariant and is the restriction of a global automorphism r of Z. 

By Lefschetz' theorems tfCP-.C) a H^Z.C) for i * n, 2n+2. We let Pn(Z,C) 

= Coker [Hn(PA,C) > Hn(Z,C)] ; this is the most interesting cohomology 

group of Z. It carries a pure Hodge structure of weight n. Danilov [Da 2] has 

calculated its Hodge numbers hpq . We will derive a formula for the spectrum 

of (Pn(Z, C), F, y ) which is a little bit more explicit than Danilov*s formulas 

(which apply to a more general situation). Our formula is similar to the 

formula of [St 3]. 

(3.1) Proposition. Let A, g, i be as above, with v 
o 

^^ 0. Let 

D ù Z n+l ù ùù 
Ji=l 

t 
i 
V 
i 

0 t 
i 

1 and $ 
$ 

t 
i 

;, Z 

Then 

$ 
n 
pn z , c : kùù $ 

$$ c (D) 

Proof. First observe that Gr£pn(Z, C) = H^,n"p(Z) in the notation of [Da 2], 

(4.10). (The subscript *1 refers to the subspace on which y acts with 

eigenvalues *1). Let e € IN be defined by £(Zn+1) = e_1Z. Danilov computes the 

element Ap,n p in the group ring Z[e_1Z/Z] corresponding to the representation 

of the group of eth roots of unity on Hpjn"p(Z). The answer can be 

formulated in the following way. For A £ Zn+1 finite let 

^^ (A] Í>€A [tí c mod 1) € Z[ e 
-l. 
lZ/Z] 

For a t-simplex T b IR ,n+l with integral vertices v , 
o 

v 
n 
and m € IN define 

D ( 
m 

T) ^^w T 

"i=0 
S 
i 
V 
i 
I 0 : s 

i 
1, 

T 

-i=0 
S 
1 

b m 

w w w w [ int mx l$ Z 
,n+l 

ô ( m ff w A (D m 
w ,b Z1 

,n+U 

171 



J.HM. STEENBRINK 

Then 

/ip' ,n-p 
xw n,; -1 

n-p+i-l fdim T + 1" 
P + i + 1 

;b T) b ^^ n+l-p 
[A) 

The last equality is a nice exercise. The proof is completed by looking at the 

definition of the spectrum. • 

§4. Proof of the conjecture for curves 

Let f: 
2 

.C o: :c ,o) be a curve singularity. We decompose f into 

irreducible factors 

f 
jff 
f 
i 

.f 
r 

dd 
f . 
r+1 

.f 
r+s 

with p > 1 for i=l,...,r. Let Z be the zero set of f . Then the critical 

locus of f is ̂  u . . . u Z^ u {0}. The transverse type of f along ZJ is Ap 

The transverse Milnor fibre consists of points which are permuted by the 

vertical monodromy T . If g = f.f Pi and v = ord (g . ) , then x is the 

v^h power of a cyclic permutation of these points. Hence T depends only on 

mod p . 
2 

Let n* : Z' > C be a good embedded resolution of f, i.e. a sequence of 

blowing-ups in points such that (fir' )_1(0) is a divisor with normal crossings 

on Z'. Write 7r,~1(0) = E = U „E with E irreducible. The E are isomorphic 

to P . Let X be the strict transform of Z under n', and write 
div gss sg 

'i Pi 
X 
i i 

+ X̂€V 
e E 
a a 

For each i 6 [1, , r+s} there is a unique a l i gj V such that X 
i 

g E 
"a! i 

g (P, g * 0. 

(4.1) Lemma: v 
i 

g e 'al [ i 
mod sg 

Proof. We have v 
ì 

g ord 
o 

gk g g ord a 
p 
i 

gd on' dz 
jfd 

as X 
i 

Z 

i 
is the 

normalization. Write 

divi :f ott' ) 
i 

jf '(X€V 3 E a a 
+ X . 

i 
Then 

div wxx;^^ ^^ fxb e 
a 

,; 9 
bn, E 

a 
+ 

::,< D X . 
j J 

For i * j the components X 
i 
and X 

j 
do not intersect, hence v 

i 
< e 

oc 
< < 

<b < [ i ' 
fs 

ea( [i) 
mod sq • 

Let £ be a linear form on C2 such that the line I = 0 is not tangent to 

any branch of f. We write 

div [ion* q L + qkm m E 
a a' 

172 



THE SPECTRUM OF HYPERSURFACE SINGULARITIES 

Let k € IN be such that km > e for all a € V. Define f = f + ct for 0 < |e| 

« 1 (so that all necessary transversality properties will hold). Then in 

suitable holomorphic coordinates (u,v) on Z' around P we have 

£o7T* M, v) b u 
m 
ai 

i f oïl' [u, v) v; u 
^;: i) 

V 
pi 

v X : i v = 0 . 

(4.2: Lemma: Let m 
i 

e I 
0 V Then m 

i 
b m ,b i) 

Proof. As i is transverse to 
i 

m 
i 
b ord 

o 
;: b n ord p. U°7T' nv m , 

a( [i) ' 

We are going to construct a modification Z of Z' which gives a good 

partial resolution of f (for k fixed) in the sense that Z is admitted to 

have some cyclic quotient singularities. We use toric methods. The 

construction is analogous to the one in [Da 2, §3] to which we refer for 

proofs. 

The local situation near P is of the following type. Let f, Í € C[u,v] 

be given by f(u,v) = uevp, £(u,v) = um. For fixed k € IN we let f^Cu, v) = 

f(u,v) + e£(u,v)k = ue(vp + eu*) with A = km - e. We suppose that A > 0. 
2 

Let A c R be the Newton diagram of f , i.e. the convex hull of ((e,p) + 
2 2 k 

R+) u ((km,0) + R+). We denote its 1-dimensional compact face by T. 

Let M = Z2 n IR .(A - (km,0)), M = Z2 r\ R . (A - (e,p)). Then the toric 1 + 2 + 
2 

variety P. is the union U u U with U = Spec(C[M ]). The inclusions Z c M 
A 1 2 i i + i 

define a proper moronism 

such that -1 
P 0) c c c p\ 

p: vc Spec c [u,v] 

We need to know the order of fop and lop along the divisor Pp. Let 6 = 

gcd(km-e,p) and write km-e = 5b, p = 5a, so gcd(a,b) = 1. Choose a,/3 e Z with 

aa + 8b = 1. Put 

Ç = u 
a ß 
v Ti = u 

b -a 
V 

Then U 
1 

< U 
2 

< Spec C cxw< .-li The ideal of P n U n U is equal to £) 

Moreover, on U n U 1 2 
* 

P Cui < ß 
P 
< 
(v) < -a 

SO 

p (f < âkm » aß-OCp 
P 

< 
U) < -am ßm * 

P [f V < <l PI 
aß-ap 

+ CT) 
ßkm, 

hence ord <b [fop) ord„ w< *f on) 
k kg akm ll l [top] am. 

We conclude from this that the components of the special fibre of f̂ op 

have multiplicity 1, akm or e. Choose a common multplie d of e and akm. Let 

F 
k 

U, V, W) hg W d f V u» v 

Let A be the Newton diagram of Ffc. Then A is a face of A. The form F̂  defines 

a hypersurface U in P~ which is transverse to the strata of P~ corresponding 
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to its faces. U does not pass through the point of P~ corresponding to the 
vertex (0,0,d) which is the only point where P~ is not quasismooth. Hence U is 
quasismooth. We obtain a finite morphism 

<R: U P A 
which exhibits U as a cyclic covering of P. with covering group u , where < e 
u acts via (u,v,w) > (u,v,^w). We have a commutative diagram 
d U g p A 

w f on k 
c c 

t t d 

and U is the normalization of P4 x^C . The special fibre of w on U is a 
A C 

reduced divisor with V-normal crossings in the sense of [St 2]. 
Performing this construction in a small neighborhood IP of each point 

we obtain spaces U and U.. The integer d can be chosen in a uniform way. Put 
U = Z' \ {P ,...,P } and let U be the normalization of U x. C. This glues 
0 1 r 0 0 C 
to the U to give a diagram Z f U r i=0 u 

i 
n Z f U r i=0 u 

i 
W P 

Z' 
f OTT' k 

C • C 
We define n = n' OP. Observe that P just replaces the points pi by the curves 
Pr . Hence for each a € V, the strict transform of Ea under p is isomorphic to 

i 
E . By abuse of language we denote it by E again. So 

div f on) k 
ss ^X€V e E a a + r 

sg 
a 
i 
km . al (i P I 

i 
+ sg 

ss< i 
k) 

where X(k) is the strict transform of the ith branch of f . It is a small 
i k deformation of X for i > r and looks like a p -fold ramified covering of Xt i m i 

for i ̂  r. 
Recall from [St-Z, §3] that for each union E* of compact components of 

div(fk<>7r) there exists a filtered sheaf complex K£, supported on E* such that 

H :e' <gg s H ds XI (f kJ ,: :n cw 

where X(f ) is the Milnor fibre of f and IL, is a tubular neighborhood of E' k k E 
in Z. For divisors E" Q E' we have relative complexes K̂ ,, ^„ with support on 
the closure of E' \ E". In the case E' = E" u E , these relative groups are 
easy to compute. Let D^, D* , D" be the inverse images of Ea> E' and E" in Z. 
In D we have the finite subsets Z = D n D" and Z = D n (closure of div(w) a l a 2 a 
\ D'). Then 
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* 
H E wx v \E" bn H 

* 
(D an cw 2 , 1 V ;C). 

This is even an isomorphism of mixed Hodge structures compatible with the 
monodromy actions. On the right hand side the monodromy acts via the covering 
transformation w > e(l/d)w. 

We now choose E" : U (X€V E , a E* f E" !!! U i r i=l p. R • 
i 

(4.3) Proposition. Sp :;n n Sp (f) Sp h1 (^ ,E" ,F,T). 
Proof. By [St 2] , we have IH (E' nxw w H * X wv xw as mixed Hodge structures. 
The groups (H * IE" wc carry a mixed Hodge structure which in general will 
depend on e. If e varies, we obtain a variation of mixed Hodge structure over 
a punctured disc which has a limit when e —> 0. This limit is isomorphic to 
* 
H (X(f),C), again by the construction of [St 2]. As for each i both finite 
subsets Zi . and . of each component over Pp are non-empty, IH (K£, E„) = 0 
unless k = 1. • 

To prove the conjecture, we just have to compute Sp (H1 c > 
i 2,i wv 

where lies above Pr in Z. The result in §3 deals with 
i 

H1 :c ) 
i 

It is an 

easy exercise to take S and I into account. 
l,i 2,i Write m for m , . e for e ,.. and p for p . Put afi) a d ) ^ i 

A = z2 cv t 
i 
(e,p) + t 

2 
(km,0) 0 t 

i 
* 1. 0 t 

2 
1 

Then #A = km p-1 In the notation of §3, with xx t 
i 
>, p) + t 

2 
ikm.O) bb t 

i 
+ t 

2 we get 
Sp H1 :c n 

i 2,i 1, i cx <R( (A) 
To connect this with the formula of the conjecture, observe that A consists of 
the points (h,j) where j = l,...,p-l and h € Z n (je/p,km + je/p]. The 
transverse spectrum numbers are A = -1 + j/p . Put â  = je/p - [je/p]. Then 
â  depends only on the vertical monodromy along X. (use Lemma 1). Moreover, 
(h,j) = t (e,p) + t (km,0) with t = j/p, t = (n - a )/km where n = h -

1 2 1 2 j 
[je/p]. Hence 

xv [A) r̂ >-l 
vx 

(A j a / j km) 
x km 

This finishes the proof of the conjecture for curves. 

(4.4) Remark. There exists a slight generalization of the theorem. To 
formulate this, we recall the notions of a polar curve and the polar ratios of 
f. Let I be a sufficiently general linear form. We obtain a map germ $ = 
U,f): (C2,0) > (<C2,0) . The polar curve of f (with respect to I) is the 
union R of those components of the critical locus of $ which are not contained 
in f !(0). If (z,w) are coordinates in the target, then for each component R\ 
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of T the curve A = 
i 

<G>< wxx is tangent to the z-axis and has a Puiseux series 

z = a w 
i 
r i 

+ higher order terms 
with < 1. The polar ratios of f are the various r.. They can be determined 
in terms of a good resolution of f as follows. Let E be the exceptional 
divisor of such a resolution. Write E = U E , e = ord,, (f) and m = a€V a a E a a 
ord̂ , it). Call a € V a rupture point if Ea meets at least three components of 

IL^ E u L u X where L (resp. X) is the strict transform of £-1(0) (resp 
I (0)). Then the set of polar ratios of f is exactly the set of all m /e for 
a a rupture point of V. See [Le 2] and [St-Z]. 

4.5 Theorem. Let f: ,2 ,0) c be a germ of a plane curve singularity. 
Consider a germ 6 with the property that 

xx ord V <t>< r j 
-l for each polar ratio r̂  of f; 

i i ) for i 1, , r we can write x x x l) + vx x with x 
bv divisible by 

a 
< 

and ordQ x [2) 
ww< v ord0i hn (2) vm Ci,) i.e. the tangent cone to 

the curve defined by mj 2) is transverse to Z.J. 
Then for 0 LE « 1: 

Sp >Cf + c4>) j Sp (f! + ds 
-i=l 

<w 

,:: C-J/P. w< a ij i < 
i 

xcl^$ oc ij d Av i $k cx 3v i ff 3. 

The proof is similar to the proof of the conjecture and will therefore be 
omitted. It should be remarked that the conditions of Theorem (4.5) are not as 
sharp as possible. 

(4.6) Example. Consider the polynomial f ! (x,y) hh (x4 y2) 2 ( 2 
(x 

4, 
y ; 

2 It has a 
resolution graph as follows (the numbers between brackets indicate the 
multiplicities >1, the arrows correspond to the non-compact components) 

12) 
(2) 2 

(8) o- -o- -o :i2) 
(2: .2) 

By a small perturbation one can deform the double components either to a 
smooth branch tangent to the exceptional divisor, or to a cusp which is 
transverse to the exceptional curve. We deform two of the double curves in the 
first way and the other two in the second way. This can be done in two 
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essentially different ways: either the two cusp deformations take place on the 
same exceptional curve or not. This procedure leads to isolated plane curve 
singularities with the following resolution graphs: 

13] [26: 14] [13: 26 :26: [13. 
o -o- o o- -o- -o- -o 

12: o- 8) 
o -o 12) 12) o o -o 1? 

o- -o- -o -o- -o-
13) ^;; (14) (14: (14) 

These graphs are not isomorphic, so the topological types of these curve 
singularities are different. However, they have the same spectrum, as 
predicted by Theorem (4.5). 

§5. The surface case 

We will give an outline of the proof of the following 

(5.1) Theorem. Let f: (C3,0) > (C,0) be a germ with 1-dimensional 
singular locus 2. Suppose that the transverse type of f along each branch 
of I. is a simple plane curve singularity (in the sense of ArnoVd). Then 
Conjecture (2.2) holds for f. 

Proof. We will use the theory of embedded improvements due to Jan Stevens 
[Sv]. He shows that there exists a proper modification (sequence of 
blowing-ups) n: Y > C3 such that n: Y \ 7r_1(0) > C3 \ {0} is 
biholomorphic and such that the strict transform of {f = 0} has only a very 
mild type of singularities. E.g. if the transverse type of f is Ajt only 
ordinary double curves and pinch points remain; the latter only occur in the 
case where the transverse monodromy is -1. 

We need a slightly stronger result: a local normal form for f°7r and i<>n 
after a suitable improvement. As Stevens communicated to me, the methods of 
[Sv] lead to the following 

3 
Proposition. Let f: (C ,0) — > C be a square-free surface singularity with 
simple tranverse type. Then there exists an embedded improvement 

3 
n: Y > C of f such that the singularities of fon are of the following 
types: one has normal crossings at the points of E = ?r"1(0) different from the 
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intersection points with the strict transforms of the components of Z, and 

near these intersection points only the following types can occur: 

transverse type normal forms 

A 
k 

x I 
2 

Z 
k. 

y 
a 

x 
2 

z xy' 
2k, 

D 
k 

x ( yz 
2' 

$ E 
k, a 

X yz 
2 

xy 
2k, 

lw<^^$ k = 4: a 
x z 

3 $ xy 
3 

E 
6 

a 
x [z 

3 
E 

,4ì 

E 
7 

a 
x 

z 
l 

zy 
3, 

E 
8 

a 
x 

[z 
3 

y" 
s 
L7 

Given a sufficiently general linear form i, we may also assume that Ion - x' . 

Once these local forms have been obtained, the same toric methods as in 

§4 can be used to construct resolutions for f and f and to compare their 
k 

spectra explicitly. 

(5.2) Remark. In the case of transverse type A , we can do slightly better and 

derive a formula for Sp(f + e0) where 0 is a germ such that ordQ(0) > r"1 for 

each polar ratio r and which for each i can be written as 0(1) + 0(2)with 

0t € KZ^) and 0^ has a tangent cone transverse to Z^ As before let = 

0 (resp 1/2) if x = I (resp. -I). Then 

Sp (f + e0] $ Spl [f + 
r 
1̂=1 

(-a 
i 

$ 
i; 

* ̂ ^ 
V 
i 

with 
m 

^^ ordQ :<t> îi iùm ordQ 
Si 

1 
m z 

i 
A similar formula should hold in 

general if one requires that 0^ € I(Z ) where is chosen in such a way 

that the transverse type of f along Z^ does not change when one perturbes it 

by a germ of order m . 

(5.3) Example. We will use the formula from (5.2) to show two isolated surface 

singularities which are not topologically equivalent but have the same 

spectrum. Let i, I ,. . . ti be linear forms on C3 no three of which are 
1 4 

linearly dependent. Put f = till. The critical locus of f consists of the 
* * 12 3 4 

six lines L : ^ = I = 0 for i < j and the transverse type of f along these 
lines is A . Let 0 = l2l2 where {i, j,r,s} = {1,2,3,4}. Then 0 € I(L )2 if 

1 ij r s ij mn 

{i,j> * {m,n} and the tangent cone to 0 is transverse to L . Define 
i j ij 

vc c li ^^ 
12 

+ 0 23 + c 
13' 

+ n ,; 
14 + 0. r24 

+ ! 
;34 

*2 
^^ dd ̂^ 

"l2 
+ 0 14 

+ <t>. 13 
+ £2> :! 

23 
+ ^^ 

*24 
^ùù 

34 
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We put f. = f + e^, i = 1,2. It is clear from (5.2) that and have the 

same spectrum. However their resolution graphs are not even isomorphic. Hence 

the singularities of f_1(0) and f_1(0) at 0 are not homeomorphic by a result 

of W. Neumann [N2]. 

o 

o7 o o 

o 

o -o 

p 

O; -O -o- -o —o 

V 

resolution graph of f 
i 
-i 

[o: resolution graph of 
1 

-it o: 

§6. The homogeneous case 

In this section, we determine the spectrum of a homogeneous polynomial f 

€ C[z z ] with a 1-dimensional critical locus. Moreover, under the 

assumption that the projective hypersurface V(f) defined by f has only 

singularities of Pham-Brieskorn type, we derive a formula for Sp(f + eh, k > 

d, which proves our conjecture in this case. 

As in §4 we put y = jf"1 (-i/d) € P. By the Thom-Sebastiani theorem for 

spectra of isolated singularities we see that the germ J] " z^ has spectrum 

(n+n Because the spectrum stays constant under deformations with constant 
d 
Milnor number, any homogeneous polynomial in C[z ,...,z ] with an isolated 

# O n 
singularity at 0 has spectrum r (n+1). 

d 
(6.1) Theorem: Let f € C| z , 0 » z 

n 
be homogeneous of degree d. Suppose that 

VI (f c fs has only isolated singularities, say P , i r 
Let «CN,O 

( c ,o : be a local equation for V :f : near P . Mr ite 
i 

Sp 
3 

klh 
:ù 

mol 
ù^m Define 

a ffq dA 
ij 

vc :dA 
ff 

Then 

Sp if) w *d 
c [n+i: 

cx nn 
(A 
ij 

a 
ij 

'd f nf 

Proof. We will use a one-parameter deformation f such that f = f and f has 
^ t o t 

an isolated singularity at 0 for t * 0. 

As f is homogeneous, the mixed Hodge structure on the cohomology of its 

Milnor fibre is isomorphic to the mixed Hodge structure on the cohomology of 

the affine hypersurface VQ C <Cn+1 defined by the equation f(z) = 1. Let I be a 

linear form on Cn+ such that the corresponding hyperplane in Pn does not pass 

through any of the P^. By Sard's theorem, there exists e > 0 such that for t € 
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C with 0 < It| e the varieties Z 
T 

vx :f + tâ) c Pn and Y 
t 

Vi xn t£d 

d Z 
n+1 

C F ,n+l are non-singular. Observe that Yq is the projective closure of VQ 

and Z 
o 

n,; wxx V . 
o 

We let V wv Y 
T 

Z . 
t 

Moreover we define 

A 
€ 

;v t e CI t| e Y v w< (t) x Y 
V c A e x 

P ,n+l 

Z vw (t: X 7 c A e 
x 3n. V Y Z. 

We let 7rv, Tr̂  and denote the corresponding projections to A£. 

Let y: V > V be defined by z > Cz where C = e(l/d). Then the 
0 0 • _! 

monodromy operator Tf on H (Vq) is given by Tf(o>) = (y ) (to). This action 

extends to the whole of Y by 

d z : 
o 

: z : 
n z J 

n+1 

cx :<zo b 
n 
Z n+lJ 

and induces the identity on Z . 

Though Vq is smooth, YQ and Zq have isolated singularities at the points 

P̂ . The spaces Y and Z are smooth and we will compute the vanishing cohomology 

of the families irv and to get hold of H*(Vq) with its y-action. A 

complicating factor is the relation between the local monodromy operators 

and T4 of irv and at P and the action of y. 

The germs of TTv and at P are equivalent to cw + z 
d 
n+1 w 

x 
w and g 

respectively. The Thom-Sebastiani theorem identifies c :x < with 

8 xx-l X( w l®r where T 
d d 

< H° ( X ( 
d 
z 

and via this identification, T 
i 

o T 
i ® 

T' 

with T' the monodromy of d 
z . 

The main observation is that o o 1 j T* 

We define Wp w<w Gr 
F 
n-p c ( X ^^ ^$ Gr 

F 
n-l -Pgn-i (X I jw and let W w° e e 

W". Its filtration F is given by FPW Wp e e W". 

6.2) Lemma. Sp (f < Spl Cft) Ŝ n w , f , / : 

Proof. As y is the geometric monodromy of the germ f, the cohomological 
n *-i 

monodromy operator on H (V ) is y . The following are exact sequences of 

mixed Hodge structures which are equivariant for the action of y: 
Hk( 
c 

:v : 
t 

Hk < < z 
t 

,; :+l V 
T Hk Y : 

0 

h11 Y 
t 

e Hk XI bc Hk L+l ;b 
H11 2 

o 

x x d 
bx :x bv • h11 +1 vc 

0 
In the first sequence t can take all values in A^. In the second and third 

ones Hk(Yt) and Hk(Zt) carry the limit mixed Hodge structure associated to the 

degenerations 7ry and respectively. We get 

Sp Cft] x Sp f : x SPR 
n 

n,$ V $ $ 7 
ddq 

$ Sp 
n 
Hn V 

o 
F,9r 

^^ 

To compute this, we have to express the difference of Gr pHn(Vt) and GrpHn(VQ) 

in the Grothendieck group of C[t]-modules, where t acts as y . For this we 

use the exact sequences above and the duality between Grp^CV^) and 

Gr£~pH"(Vt). This duality gives rise to an isomorphism of Cft]-modules, if we 
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let t act as y* on Gr*~pHn(V ). This follows from the fact that y* preserves 
F c t 

the cup product form and acts trivially on H n(Vt). We obtain 

Gr£H"l 
V w Gr£H"< bcc c: << ' V i 

c V < 
;,^ù •pH"i 

c V 

^^ 
ù 

-1 kGr ;-pH-,n+k Y : 
t ;, 

w< 
-1 kGr 

F 
n̂-p̂ n+k tzt) 

- 1 : kGr 
F 
n-pun+k 

Y 
o 

+ ùù ( -1 : |kGr 
,n-pHn+k̂  

V 

^^ : 
;xw ; - V i (x :! + 4 GrF 

-p-lgn-l (X( (g() 

in K(<C[t]), where t acts as y*. This proves our lemma. 

For each i we choose a basis bbn j = i c for jjB-1 (X( << in such 

a way that T I 
i 

c 
U ' 

c e b 
ij 

b 
sij 

and that FPgn-l (X( wx is spanned by the < 

for which n-p-2 < A 
ij 

< n-p-1 We also choose a basis 0 , l d-l for r such 
d that R 

V < e -k/ x cv 
k 

Then a basis for W consists of the elements . and 
11 

w ®fl 
k 
for i c 1 r J v 1 li and k 1. d-l. Observe that ^ € Wp 

o A^ € (p-l,p] and that y (C^) = C^- By the Thom-Sebastiani result for the 

Hodge filtration (see [V2, Th. 7.3]) we find that ? «*k e Wp # A^ + k/d € 

(p-l,p], and r*(C .®# ) = £ ®T'(# ) = e(-k/d)£ ®# . 
i j k ij k i j k 

For fixed i,j, consider the subspace W^ of W spanned by 5^®^,..., 
€ ®# . Let A' = n-2-A . Then Sp(g ) = V (A' ) because Sp(g ) is 

d-l ij ij i ^j ij i 
invariant under the reflection (a) > (n-2-a) of if (see [V2, §1.7]. Choose p 

such that A € (p-2,p-l]. Then A' € [n-p-1,n-p). Let k = max {k € Z U . + 
ij ij » *J ij 

k/d * p-1}. Then £ € Wp so Sp(C€ ,F,y ) = (n-p). For k * k. , £ .®# € 

Wp and Sp(CC ®# ,F,r ) = (n - p + k/d). For k > k , £ .®# e Wp and ^ j k i j i j k 
Sp(C^ij®^,F,y ) = (n - p - 1 + k/d). Adding these up we obtain 

Sp [W 
ij 
,F, a 

g c n g p g 1 + g 
ij 

g g 
d 

Put a' i j 
sg dA' 

i j 
[dA' 

i j 
Then one checks easily that 

n P 1 + s 
"ij 

'd lù A' i j 
s a 

i j 
'd. 

This finishes the proof of the theorem. 

(6.3) We can now verify the conjecture in the case that f is homogeneous with 

one-dimensional singular locus such that each germ ĝ  (notations as above) is 

analytically equivalent to a Pham-Brieskorn polynomial, i.e. a polynomial of 

the form J " . The proof is similar to the case n = 1 so we just sketch 

the argument. 

Let f € C[z z ] be our polynomial. Let TT': Z' > Cn+1 be the 

blowing up of the origin. Assume that the coordinates on C were chosen in 

such a way that (1:0:...:0) is a singular point of V(f). The strict transform 
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Z' of the component of 2(f) corresponding to this singularity of V(f) will 

intersect the exceptional divisor Eq of n' in a point P. An affine coordinate 

neighborhood of P in Z' is Spec C[ 
0 ,u J 

n 

* 
with n' ( 

,; w 
0 

;v w< nb u u o j 
for J = 1, . . . ,n. Then n'*i w w udf 

0 
:i,u , 

i 
u . 
n 

By hypothesis, there is an 

analytic coordinate transformation è of Cn such that f l.u 
l' u J 

n 

v 
a 
i + 

+ 
a 
n for suitable a , l 

.a , 
n 

xw x 
* wc Thus, for each sufficiently 

general linear form I on cn+1 
we can find analytic coordinates y y 

* 
centered at P such that n* 

f) 
d 
yo yl 

a 
i + + yn 

a 
n. and n' w xwkl Now we 

can use the same toric methods as in §3 to blow up Z' further and verify the 

conjecture. 

(6.4) The following argument shows that the in the formula depend only on 

A and the transverse monodromy along 5^. (Here the transverse type may be an 

arbitrary isolated singularity.) Near a point P as above, n* (f) is of the 

form ydg(y ,...,y ). The transverse Milnor fibre is given by g(ya, . . . ,y ) = 
0 1 n i n 

tyQ . The vertical monodromy x which is induced by letting yQ turn around 0 
once in a counterclockwise direction, therefore is equal to T , and its 

th 9 
eigenvalues are the d powers of the eigenvalues of T . In particular, if T 

th 9 
is unipotent, each eigenvalue of T is a d root of unity and hence all a 

g 1J 
are zero. 
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