Sampei Usui
 Type I degeneration of Kunev surfaces

Astérisque, tome 179-180 (1989), p. 185-243
http://www.numdam.org/item?id=AST_1989__179-180__185_0
© Société mathématique de France, 1989, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

TYPE I DEGENERATION OF KUNEV SURFACES

Sampei USUI

Dedicated to Professor Friedrich Hirzebruch on the occasion of his sixtieth birthday

Introduction.

In this article we determine completely the main components of type I degenerations of Kunev surfaces, i.e., degenerations of Kunev surfaces with finite local monodromy. The main results here were already announced in [Us. 4] only with some idea of froofs.

A Kunev surface X is defined as a canonical surface, i.e., canonical model of a surfaces of general type, with $x\left(\theta_{X}\right)=2$ and $\left(\omega_{X}\right)^{2}=1, \omega_{X}$: the dualizing sheaf, which has an involution σ such that $Y^{\prime}:=X / \sigma$ is a $K 3$ surface $w i t h$ rational double points (R.D.P., for short). It is well-known that X has only R.D.P. hence ${ }^{\omega} x$ is a line bundle. It is also known that the linear system $1 \omega_{X}^{* 2} \mid$ gives a finite Galois cover $f: X \longrightarrow P^{2}$,

This research is partially supported by Grant-in-Aid for Scientific Research C-62540122 from the Ministry of Education of Japan, Japan Association for Mathematical Sciences, CNRS of France and Max-Planck- Institut für Mathematik in West Germany.
factoring through Y^{\prime}, with Galois group (Z/2Z) ${ }^{\oplus}$ whose branch locus consists of two cubics ΣC_{j} and a line L satisfying the condition:
(0.1) $\quad \Sigma C_{j}$ has only simple singularities. $\quad C_{1} \cap C_{2} \cap L=\varnothing$.

The pull-back of L on the minimal model Y of Y, is reduced. Conversely, given two cubics ΣC_{j} and a line L on p^{2} satisfying (0.1), we can reconstruct a Kunev surface X in the following way:
i) Take a double cover Y, of P^{2} branched along ΣC_{j}. Then Y^{\prime} is a K3 surface only with R.D.P.
ii) Let Y be the minimal model of Y^{\prime}. Set $\alpha_{1}: Y \longrightarrow P^{2}$. Let $E_{i}(1 \leq i \leq 9)$ be the exceptional curves for α_{1} whose multiplicity in $\alpha_{1}{ }^{*} C_{j}$ is odd. These are called distinguished (-2)-curves.
iii) Take a double cover X, of Y branched along $\alpha_{i}{ }^{*} L+\Sigma E_{i}$. Then the canonical model X of X^{\prime} becomes a Kunev surface.

By the structure of Kunev surfaces above, we can construct their coarse moduli space in two ways; by the geometric invariant theory applied for the branch loci $\Sigma C_{j}+L$, and by the period map for K3 surfaces Y. In order to see it more precisely, set

$$
\begin{aligned}
& \mathscr{Y}:=\left\{\Sigma C_{j} \in \operatorname{Sym}\left|0_{p} \mathcal{Z}(3)\right| \mid \Sigma C_{j} \text { has only simple singularities }\right\} \text {, } \\
& \pi^{*}:=\mathbb{S} \times 10_{p^{2}}(1) 1 \text {, } \\
& \text { \# }:=\left\{\Sigma C_{j}+L \mid \Sigma C_{j}+L\right. \text { satisfies (0.1)\}. }
\end{aligned}
$$

Recall the fact that a plane sextic curve is properly stable with respect to the natural action of $S L_{3}(C)$ if and only if it has only simple singularities (cf. [H.2], [Sh]). Hence we can see in the first method that

$$
\Re:=\Theta / \mathrm{SL}_{j}(\mathrm{C})
$$

is the coarse moduli space of triples ($Y^{\prime}, \alpha_{1}^{*} \theta_{P_{2}}(1), \Sigma_{1}^{9} E_{i}$), which are called $K \rho$ surfaces of Kunev tyhe, and that the coarse moduli space of Kunev surfaces is
$M=\mu / \operatorname{SL}_{3}(\mathrm{C})$.
On the other hand, by the second method, the projection
$\Phi_{2}: \Re \longrightarrow \Re$
can be seen as a period map of the second cohomology for Kunev surfaces. This is proved by suitable versions of the Torelli theorem and surjectivity of the period map for K3 surfaces of Kunev type and the lattice theory of Nikulin in [T.2] and [Mo.2] (there are some ambiguous points in the former; the latter is rigorous) (cf. (2.8)). This together with the Kulikov list of degenerations of K3 surfaces ([Ku], \{PP]) implies
$m^{*}:=\ell^{*} / \mathrm{SL}_{3}(\mathrm{C})$
is a partial compactification of obtained by adding those points which correspond to type I degenerations of Kunev surfaces.

Now we define two functions on $\boldsymbol{*}^{*}$ by
$m\left(\Sigma C_{j}, L\right):=\Sigma_{P \in P^{2}} \min \left\{I\left(P, L \cap C_{j}\right) 1 j=1,2\right\}$,
$n\left(\Sigma C_{j}, L\right):=\#\left\{t r i p l e\right.$ points of C_{j} on $\left.L, j=1,2\right\}$,
where $I\left(P, L \cap C_{j}\right.$) is the intersection multiplicity of L and C_{j} at $P \in P^{2}$. It is easy to see that the value of $m()$ (resp. $n()$) is $0,1,2$ or 3 (resp. 0,1 or 2). These functions induce ones on \Re^{*} and they define two stratifications:

$$
\begin{aligned}
& \text { 卯* }=\varphi_{0} \amalg \varphi_{1} \amalg \varphi_{2} \quad \text { where } \quad \varphi_{m}=\left\{s \in \boldsymbol{S}^{*} \mid m=\min \{2, m(s)\}\right\} \text {, }
\end{aligned}
$$

The main result in this paper is stated as
(0.2) In the above notation, the partial compactification \mathbf{n}^{*} is divided into five parts by the above stratifications and they correspond to two series of degenerations:

The period maps of the second cohomology for respective surfaces are essentially equal to the restrictions of the projection

$$
\Phi_{2}: \mathbb{N}^{*} \longrightarrow \Re
$$

by the Mayer-Vietoris sequence and the Clemens-Schmid sequence and $\Phi_{2} I_{y_{m}}, \Phi_{2} l_{g}$ and $\Phi_{2} l_{y_{m}}{ }^{n} g_{n}$ have pure relative dimension $2-m$, 2-n and $2-(m+n)$ respectively (Theorem (2.6), Corollary (2.10)).

Here we use the terminology a numerical XS surface with one double fiber, which means a minimal elliptic surface with $\mathbf{p}_{\mathrm{g}}=1$, $q=0$ and $c_{1}^{2}=0$ and with one double fiber. For $\Sigma c_{j}+L \in 火^{*}$, the minimal model \hat{X} of the corresponding surface can be obtained in an analogous way as the reconstruction (i)-(iii) above of Kunev surfaces, i.e., we can construct a diagram:

where Y^{\prime} is the double cover of P^{2} branched along $\Sigma C_{j}, Y$ is the canonical resolution of $Y^{\prime} \longrightarrow P^{2}, X^{\prime}$ is the double cover of Y branched along $\alpha_{1}^{*} L+\Sigma_{1}^{9} E_{i}, X^{*}$ is the canonical resolution of $X^{\prime} \longrightarrow Y$, and \hat{X} is the minimal model of X^{*}. Diagram (0.3) suggests an idea of a proof of (0.2). The essential part is the computation of the branch locus $\alpha_{1}^{*} L+\Sigma E_{i}$ on the minimal K3 surface Y.

Historically the phenomenon of appearrence of positive dimensional fibers of a period map is first observed for Kunev surfaces in [T.1], [Us.1] and [Us.2] (for Todorov surfaces, in [T.2]) then for elliptic surfaces with $p_{g}=q=1$ in [Sa.M]. It is new for numerical $K 3$ surfaces with one double fiber. The present result (0.2) explains uniformly these phenomena by degeneration (Corollary (2.13)).

We explain here the background of Kunev surfaces. The minimal model of a Kunev surface is simply connected surface with $p_{g}=c_{1}^{2}=$ 1. Let 筷 be the coarse moduli sapce of surfaces with $p_{g}=c_{1}^{2}=$ 1, then 筷 is irreducible, rational and with dim $\mathrm{g}_{\mathrm{M}}=18$ which contains Kunev locus with codimension 6 ([Ca.1], [Ca.2]). On the Hodge theoretic view-point, these surfaces are interesting materials. After Kunev constructed an example of Kunev surface as a counterexample to the infinfitesimal Torelli theorem, the following
results are known:
(0.4) The generic infinitesimal Torelli theorem holds for surfaces in ([Ca.1]).
(0.5) The period map Φ_{2} of surfaces in $\dddot{M}^{(1)}$ has some positive dimensional fibers ([T.1], [Us.1], [Us.2]; [T.1] treats only Kunev surfaces).
(0.6) in in \quad is characterized by $\operatorname{dim} \Phi_{2}^{-1} \Phi_{2}([X])=2$, which is the maximal dimension of the fibers of $\boldsymbol{\Phi}_{2}$ ([Us.1]).
(0.7) The infinitesimal mixed Torelli theorem holds for pairs (X, C) of surfaces X in and their canonical curves C (Us.3]).
(0.8) The generic mixed Torelli theorem holds for Kunev surfaces ([L], [SSU]; there is a point about monodromy which is not clear in [L].
(0.9) There exists a Zariski open subset W of such that $\Phi^{-1} \Phi(W)=W$, where $\Phi: \tilde{\mu} \longrightarrow \Gamma \backslash D$ is the mixed period map ([SSU]).

Hence, in order to solve the mixed Torelli problem for surfaces

(0.10) A compactification of the mixed period map $\Phi: \widetilde{m}$ $\Gamma \backslash D$.
(0.11) The monodromy Γ in (0.9), where we used a geometric one.
(For a general reference of the above as well as for the terminology such as mixed period map, mixed Torelli etc., see [SSU].) Problem (0.10) is one of the motivations of the present work. Our result here is not its answer but a by-product.

Section 1 is preliminaries. We shall recall the canonical resolution of a double cover and related results, the Clemens-Schmid
sequence and monodromy criteria, the canonical bunde formula for elliptic surfaces and definitions of Kunev surfaces and numerical K3 surfaces and some of their properties for our later use.

In Section 2 , we shall construct an integral family of surfaces $f: X \longrightarrow U$ over a fixed K3 surface of Kunev type, which is a type I degeneration of Kunev surfaces. We shall state Main Theorem (2.6) and explain this result perspectively in the framework of a type I partial compactification \Re^{*} of the coarse moduli space 师 of Kunev surfaces (Corollary (2.10)). We shall also explain uniformly the phenomenon of appearence of positive dimensional fibers of the period maps for Kunev surfaces, numerical K3 surfaces with one double fiber and elliptic surfaces with $p_{g}=q=1$. The main part of the proof of Theorem (2.6) will be postponed to Sections 4 and 5.

In Section 3, we shall study locally over the singular point P of $\Sigma C_{j}+L \subset P^{2}$ for $\Sigma C_{j}+L \in \#^{*}$ and give tables of configurations of $\Sigma C_{j}+L$, the branch loci $B_{Y}(P)$ on the minimal K3 surfaces Y and the canonical divisors $K_{X_{i}}(P)$ of type I
degenerations of Kunev surfaces corresponding to $\quad \Sigma C_{j}+L$. All of these will be described locally over the critical points P in this section. The result here plays the key role in the proofs of Theorem (2.6.3).

Section 4 contains a proof of Theorem (2.6.3). We shall use the local classification in Section 3 as well as an elliptic fibration on the minimal model \hat{X} induced by the pencil of lines on P^{2} through a critical point P of $\Sigma C_{j}+L$ for $\Sigma C_{j}+L \in \varphi_{m} \cup g_{n}$ ($\mathrm{m}>0, \mathrm{n}>0$) .

S. USUI

Section 5 contains tables of global configurations of $\Sigma \mathrm{C}_{\mathrm{j}}+\mathrm{L}$ ϵK^{*}, the branch loci B_{Y} on the minimal K3 surfaces Y and the canonical divisors of the minimal model \hat{X} of type I degenerations of Kunev surfaces corresponding to $\Sigma C_{j}+L$. These tables give another proof of Theorem (2.6.3), which is clumsy but elementary and fruitful.

We use the following terminology:
(-1)-curve : an irreducible exceptional curve of the first kind on a smooth surface.
(-2)-cuque $:$ an irreducible rational curve with selfintersection -2 on a smooth surface, i.e., a nodal curve.
$(n)-(6 i) \operatorname{section}: ~ a(b i) s e c t i o n$ of a fibration on a smooth surface with self-intersection n.
$A D D E D I N P R O O F:$ Because of the reason of publication, we shall publish Section 5 separately elsewhere. The present article consists of Sections 1-4, which is logically self-contained. The author is grateful to the referee for pointing out a careless mistake in (2.5) as well as typographical errors in the old version.

1. Preliminaries.

(1.1) Ganonical resolution. In this subsection, we shall summarize the process of a canonical resolution and related results in [H.1] in a slightly general form for our later use.

Let Y be a smooth surface, $B=\Sigma b_{i} D_{i}$ an effective divisor on Y and \mathcal{F} a line bundle on Y such that $O_{Y}(B)=\mathcal{F}^{\boldsymbol{\theta} 2}$. Then we can associate the double cover $X=\operatorname{Spec}\left(\theta_{Y} \oplus \mathcal{F}^{-1}\right) \longrightarrow Y$ branched along B, where ${ }^{\theta_{Y}} \oplus \mathcal{F}^{-1}$ is endowed an 0_{Y}-algebra structure by $s: \mathcal{F}^{\otimes(-2)} \longrightarrow O_{Y}$ for $s \in H^{0}\left(Y, \mathcal{F}^{\otimes 2}\right)$ with $\{s=0\}=B$. If $\quad B$ is non-reduced (resp, reduced but singular), X is non-normal (resp. has isolated singularities).

The process to obtain the canonical resolution X^{*} of X is as follows:
0) Set $Y_{0}=Y, \quad B_{0}=B_{o d d, r e d}:=B-2 \Sigma\left[b_{i} / 2\right] D_{i}$ and $\mathcal{F}_{0}=\mathcal{F}$ $\theta_{Y}\left(-\Sigma\left[b_{i} / 2\right] D_{i}\right)$, and take the double cover $X_{0}=\operatorname{spec}\left(\theta_{Y} \oplus_{\mathcal{F}^{-1}}\right)$ branched along B_{0}. Let $p_{0}: X_{0} \longrightarrow X$ be the birational morphism induced by $\mathcal{F}_{0} \longleftrightarrow \mathcal{F}$.
i) Let $q_{1}: Y_{1} \longrightarrow Y$ be a blowing-up with center at a singular point P_{1} of B_{0}. Let e_{1} be the multiplicity of $P_{1} \in$ B_{i} and $E_{1}=q_{i}^{-1}\left(P_{1}\right)$ the exceptional divisor. Set $B_{1}=q_{1}^{*} B_{0}$ $2\left[e_{1} / 2\right] E_{1}$ and $\mathcal{F}_{1}=q_{i}^{*} \mathcal{F}_{0} \otimes O_{Y_{1}}\left(-\left[e_{1} / 2\right] E_{1}\right)$ and take the double cover $X_{i}=\operatorname{spec}\left(C_{Y_{1}} \oplus \mathcal{I}_{1}^{1}\right)$. Let $p_{1}: X_{1} \longrightarrow X_{0}$ be the birational morphism induced by $\mathscr{F}_{1} \longrightarrow \mathrm{q}_{1}^{*} \mathfrak{F}_{0}$.

After a finite number, say n, of repetition of the process i, we get a non-singular model $X^{*}:=X_{n}$ which is called the canonical
resolution of x. The whole procedure is given by the diagram:
(1.1.1)

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{Y}_{0} \stackrel{\mathbf{q}_{1}}{\longleftrightarrow} \mathrm{Y}_{1} \stackrel{\mathbf{q}_{2}}{\longleftrightarrow} \ldots \stackrel{\mathbf{q}_{\mathrm{n}}}{\longleftrightarrow} \mathrm{Y}_{\mathrm{n}}=: \mathrm{Y}^{*} \\
& B_{i}=q_{i}^{*} B_{i-1}-2\left[e_{i} / 2\right] E_{i} \\
& \mathcal{F}_{i}=q_{i}{ }_{i} \mathcal{F}_{i-1} \otimes O_{Y}\left(-\left[e_{i} / 2\right] E_{i}\right) \quad(1 \leq i \leq n)
\end{aligned}
$$

A singularity at a point on a reduced curve is called simhe if its multiplicity is not greater than three and if it is not an infinitely near triple point. Note that, in the procedure of the canonical resolution (1.1.1), the curve B_{0} has at most simple singularities if and only if $\left[e_{i} / 2\right]=1$ for all i.
(1.1.2) Lemma. In the above notation, if B_{0} has at most simple singularities, then the canonical resolution of X coincides with the minimal resolution of X and we have

$$
\mathrm{K}_{\mathrm{X}}{ }^{*}=\varphi^{*}\left(\mathrm{~K}_{\mathrm{Y}} \oplus \mathcal{f}_{0}\right), \quad \text { where } \varphi: \mathrm{X}^{*} \longrightarrow \mathrm{Y}
$$

If, moreover, Y is a minimal $K 3$ surface and $p_{g}\left(X^{*}\right)=1$, then $q\left(X^{*}\right)=-\left(\left(B_{0}\right)^{2} / 8+2\right)$.
1007. The first assertion follows from $K_{Y_{i}} \otimes \mathcal{F}_{i}=q_{i}^{*}\left(K_{Y_{i-1}}\right.$ \mathcal{F}_{i-1}) and this follows from the remark just before this lemma (cf. [H.1]). We shall prove the second assertion. By construction,

$$
\begin{aligned}
h^{i}\left(\theta_{X} *\right) & =h^{i}\left(\theta_{Y_{n}}\right)+h^{i}\left(\mathcal{F}_{n}^{-1}\right)=h^{i}\left(\theta_{Y_{n}}\right)+h^{2-i}\left(K_{Y_{n}} \bullet \mathcal{F}_{n}\right) \\
& =h^{i}\left(\theta_{Y}\right)+h^{2-i}\left(K_{Y} \otimes \mathcal{F}_{0}\right)=h^{i}\left(\theta_{Y}\right)+h^{2-i}\left(\mathcal{F}_{0}\right) .
\end{aligned}
$$

Since $h^{i}\left(\theta_{X}\right)=h^{i}\left(\theta_{Y}\right)=1$ for $i=0$, 2 , we see $h^{i}\left(\mathcal{F}_{0}\right)=0$ for $\mathrm{i}=0$, 2. Hence, by the Riemann-Roch theorem on Y, we have

$$
q\left(X^{*}\right)=h^{1}\left(\mathcal{F}_{0}\right)=-\chi\left(\mathcal{F}_{0}\right)=-\left(\left(\mathcal{F}_{0}\right)^{2} / 2+\chi\left(\theta_{Y}\right)\right)=-\left(\left(B_{0}\right)^{2} / 8+2\right) .
$$

QED.
(1.2) Glemens-Yckmid sequence and monodromy criteria. We shall summarize the Clemens-Schmid sequence and related results ([Cl.1], [Sc]) in the form for our later use. There are good expositions on this topic in [P] and [Mo.1].

Let U be the unit disk. Let $f: \mathscr{X} \longrightarrow U$ be a semi-stable degeneration of surfaces, i.e., f is a proper flat holomorphic map, X is a Kähler manifold, $X_{t}:=f^{-1}(t)$ is smooth for $t \neq 0$ and $X_{0}:=f^{-1}(0)=\Sigma V_{i}$ is a reduced divisor with simple normal crossings. In this situation, we have the Clemens-Schmid exact sequence

$$
\text { (1.2.1) } 0 \longrightarrow H_{l i m}^{0} \xrightarrow{\beta} H_{4} \xrightarrow{\alpha} H^{2} \xrightarrow{l} H_{l i m}^{2} \xrightarrow{N} H_{l i m}^{2} \xrightarrow{\beta} H_{2}
$$

where
$H_{l i m}^{i}=H^{i}\left(X_{t}, Q\right)$ endowed with the limiting mixed Hodge structure, $H^{i}=H^{i}\left(X_{0}, Q\right)$ endowed with the functorial mixed Hodge structure of Deligne [D],
$H_{i}=H_{i}\left(X_{0}, Q\right)$ endowed with the dual mixed Hodge structure,
$N=\log T$ for the local monodromy T acting on $H_{l i m}^{i}$,
$\beta, \quad \alpha, \quad t$ and N are morphisms of mixed Hodge structure of type $(-2,-2),(3,3),(0,0)$ and $(-1,-1)$ respectively.

As a corollary of the Clemens-Schmid sequence, we have:
(1.2.2) Lema-Definition. In the above notation, $N^{3}=0$ and $p_{g}\left(X_{t}\right) \geq \Sigma p_{g}\left(V_{i}\right)$ always hold. $\quad N^{2}=0$ if and only if $H^{2}(\Gamma)=0$ for the dual graph $\Gamma \quad$ of $\quad X_{0}=\Sigma V_{i} \quad N=0 \quad$ if and only if $\quad p_{g}\left(X_{t}\right)$
$=\Sigma p_{g}\left(V_{i}\right)$. The semi-stable degeneration $f: X \longrightarrow U$ is called type I (resp. II, III) if $N=0$ (resp. $N \neq 0$ and $N^{2}=0, \quad N^{2} \neq 0$ and $N^{3}=0$).
(1.3) Gome results for ellihtic fibrations. We include here the canonical bundle formula [Ko. 2 , Theorem l2] and the positivity of the direct image of relative dualizing sheaf [Ue, Remark in Appendix] for elliptic fibrations for our later use.

Let X be a non-singular compact complex surface and let $f: x$
$\longrightarrow \Delta$ be a relatively minimal elliptic fibration, i.e., a general fiber of fis a non-singular elliptic curve and no fiber of f contains (-1)-curves.
(1.3.1) ganonical bundle formula. The canonical bunde K_{X} of an elliptic surface X has the form

$$
K_{X}=f^{*}\left(K_{\Delta} \otimes\left(R^{1} f_{*} \theta_{X}\right)^{-1}\right) \theta \theta_{X}\left(\Sigma\left(m_{i}-1\right) F_{i}\right)
$$

where $m_{i} F_{i}, i=1,2, \ldots, n$, are all multiple fibers. The line bundle $R^{1} f_{*} \theta_{X}$ is dual to $f_{*} \omega_{X / \Delta}$ where $\omega_{X / \Delta}=K_{X} \otimes\left(f^{*} K_{\Delta}\right)^{-1}$, and $\operatorname{deg} R^{1} f_{*} \theta_{X}=-x\left(\theta_{X}\right)$.

A simpler proof of the above formula can be found in [Ue, Appendix].

For the degree of the line bundle $R^{1} f_{*}{ }^{0} X$, or equivalently of $f_{*}{ }^{\omega} X / \Delta$, we can see more:
(1.3.2) ositivity of $f_{*}{ }^{\omega} x / \Delta$. We have $\operatorname{deg} f_{*}{ }^{\omega} X / \Delta{ }^{2} 0$.

The equality holds if and only if the elliptic fibration $f: X \longrightarrow \Delta$
has constant J-invariant and has only multiple singular fibers of type $m^{I} 0$ (for the notation, see [Ko.1]).

There is a full proof of (1.3.2) in [BPV, p.110] by reducing the assertion to the case of a semi-stable fibration.

By the definition of the Kodaira dimension, the following assertion can be obtained as an exercise of intersection theory (for a proof, see, e.g., (BPV, p.194]).
(1.3.3) If a non-singular compact complex surface X has Kodaira dimension $K(X)=1$, then X is an elliptic surface.
(1.4) Some surfaces and their hroherties. We include here the definitions of somewhat unfamiliar surfaces and their properties which will appear later.
(1.4.1) Definition. A Kunev surface x is a canonical surface with $x\left(\theta_{X}\right)=2$ and $\left(\omega_{X}\right)^{2}=1, \omega_{X}$ the dualizing sheaf, which has an involution σ such that X / σ is a K3 surface with at most rational double points (R.D.P. for short).

Let \hat{X} be the minimal model of a Kunev surface X. The following properties are known ([Ca.l]):
(1.4.2) \hat{X} is simply connected. $p_{g}(\hat{X})=1 . \quad c_{1}^{\hat{1}}(\hat{X})=1$.
(1.4.3) The canonical model X can be represented as a weighted complete intersection of type (6,6) in $P(1,2,2,3,3)$ with at most R.D.P., whose partially normalized equations are

$$
\begin{aligned}
& \mathbf{f}=\mathbf{z}_{3}^{2}+\mathbf{f}^{(3)}\left(\mathbf{x}_{\delta}^{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \\
& \mathbf{g}=\mathbf{z}_{4}^{2}+\mathbf{g}^{(3)}\left(\mathbf{x}_{\delta}^{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)
\end{aligned}
$$

where $\operatorname{deg} x_{0}=1$, deg $y_{i}=2 \quad(i=1,2), \operatorname{deg} z_{i}=3(i=3,4)$, and $f^{(3)}$ and $g^{(3)}$ are cubics in $y_{0}:=x_{0}^{\hat{0}}, y_{1}, y_{2}$.
(1.4.4) Definition. A minimal surface X is called a numerical $\mathrm{K} \boldsymbol{\rho}$ surface if $\mathrm{p}_{\mathrm{g}}=1, \quad \mathrm{q}=0$ and $\mathrm{c}_{1}^{2}=0$.

The following are known:
(1.4.5) Every simply connected numerical K3 surface X belong to one of two oriented homotopy types according to its Whitney class, i.e., $c_{1}(X) \bmod 2([M i])$.
(1.4.6) A simply connected numerical K3 surface is characterized as either a K3 surface or an elliptic surface with $\mathbf{p}_{g}=1$ and $q=0$ which has at most two multiple fibers and, in the case that there are two, their multiplicities are mutually prime ([Ko.3, Proposition 1, Lemma 6]).
(1.4.7) Remark. Kodaira [Ko.3] called a simply connected surface with the same oriented homotopy type as a $K 3$ surface a homotohy $火 9$ surface. By definition, a homotopy K3 surface (resp. K3 surface) is equivalent to a simply connected numerical $K 3$ surface with $c_{1}(X) \equiv 0 \bmod 2 \quad\left(r e s p . \quad c_{1}(X)=0\right)$. While we shall come across numerical $K 3$ surfaces with one double fiber later.
2. Construction of families of surfaces and statements of the main results.
(2.0) In this section, we shall construct families of surfaces which are degenerations of Kunev surfaces over a fixed K 3 surface and state the main results. We postpone the proof of Theorem (2.6.3) in Section 4 and Section 5, where we shall give two different proofs after a preparation in Section 3.
(2.1) Let X be a Kunev surface defined in (1.4.1). Then by (1.4.3) the bicanonical bundle $\omega_{X}^{\otimes 2}$ gives a Galois cover $X \longrightarrow P^{2}$ with Galois group $(\mathbf{Z} / 2 \mathrm{Z})^{\oplus 2}$. The branch locus consists of two cubics $C_{1}=\left\{f^{(3)}\left(y_{0}, y_{1}, y_{2}\right)=0\right\}$ and $C_{2}=\left\{g^{(3)}\left(y_{0}, y_{1}, y_{2}\right)=0\right\}$ and a line $L=\left\{y_{0}=0\right\}$. The $K 3$ surface $Y^{\prime}:=X / \sigma$ can be seen as a weighted complete intersection of type (6) in $P(1,1,1,3)$ defined by an equation $h=u^{2}+f^{(3)}\left(y_{0}, y_{1}, y_{2}\right) g^{(3)}\left(y_{0}, y_{1}, y_{2}\right)$ with $\operatorname{deg} y_{i}=1 \quad(0 \leq i \leq 2)$ and $\operatorname{deg} u_{3}=3$. By construction, the K3 surface Y^{\prime} with R.D.P. is the double cover of P^{2} branched along the two cubics ΣC_{j}, hence ΣC_{j} on P^{2} has only simple singularities.
(2.2) For sextic curves on \mathbf{P}^{2}, curves with at most simple singularities coincide with properly stable curves with respect to the action of $\mathrm{SL}_{3}(\mathrm{C})$ ([H.2], [Sh]). Set

$$
\begin{aligned}
& \mathscr{Y}=\left\{\Sigma C_{j} \in \operatorname{Sym}^{2}\left|0_{p^{2}}(3)\right| \mid \Sigma C_{j} \text { has only simple singularities }\right\} \\
& \Re=\mathbb{S} / \mathrm{SL}_{\mathfrak{y}}(\mathrm{C})
\end{aligned}
$$

Then, as a consequence of Theorem (2.6.3) below \Re can be seen as the coarse moduli space of the polarized K3 surfaces with R.D.P. which are quotients of Kunev surfaces X by their involution σ
plus the data of the distinguished (-2)-curves defined in (2.4.2) below (cf. (2.7), (2.8) below). We call the K3 surfaces equipped with these data $火 \rho$ surfaces of Kunev tyhe. We have a projection $p: \quad \longrightarrow \quad \because,[X] \longmapsto[X / \sigma]$.
(2.3) For any fixed $\Sigma C_{j} \in \mathbb{S}$, we define functions in $t \in P^{2}$ by

$$
\begin{aligned}
& m(t)=\Sigma_{P \in P^{2}} \min \left\{I\left(P, L_{t} \cap C_{j}\right) \mid j=1,2\right\}, \text { and } \\
& n(t)=\#\left\{\text { triplepoints of } C_{j} \text { on } L_{t}, j=1,2\right\}
\end{aligned}
$$

Notice that if C_{j} has a triple point then C_{j} consists of three distinct lines with a common point. These functions define two stratifications of $\quad \stackrel{V}{P^{2}}$:
$\stackrel{V}{\mathbf{P}^{2}}=S_{0} \amalg S_{1} \amalg S_{2}$, where $S_{m}=\left\{t \in \stackrel{\mathbf{P}^{2}}{\mathbf{v}} \mid \mathrm{m}=\mathrm{min}\{2, \mathrm{~m}(\mathrm{t})\}\right\}$.

Notice that codim $S_{m}=m$, $\operatorname{codim} T_{0}=0$, and $\operatorname{codim} T_{n}=n \quad i f \quad T_{n}$ is non-empty $\quad(n=1,2)$.
(2.4) For $\Sigma C_{j} \in \mathbb{G}$, we denote by Y the minimal K3 surface which is obtained as the minimal resolution of the double cover of P^{2} branched along ΣC_{j}. Let $\alpha_{1}: Y \longrightarrow P^{2}$ be the projection and E_{i} be the exceptional curves for α_{1}, i.e., (-2)-curves. Then we have the following lemma whose proof is easy and we omit it.
(2.4.1) Lema The sets $\left\{E_{i}\right.$ \| the multiplicity of E_{i} in the total transform $\alpha_{1}^{*} C_{j}$ is odd $\} \quad(j=1,2)$ coincide and the number of their elements is nine.
(2.4.2) Remark The nine (-2)-curves in the above lemma is an
equivalent datum to the one of the distinguished hartial
desingularization of a K3 surface of Kunev (more generally, Todorov) type in [Mo.2]. We call the former the distinguished (-2)-curves. They appeared in A.D.E. configuration of exceptional curves over R.D.P. as in Table (3.2.2) in Section 3.
(2.5) Let M be a line on P^{2} which is not contained in $\left(C_{1} \cap C_{2}\right)^{V}$, and let $U:=\stackrel{V}{P^{2}-M}$ be the affine plane. We reorder the numbering so that $E_{i} \quad(1 \leq i \leq 9)$ are the nine distinguished (-2)-curves on Y, and set $\delta_{i}=U \times E_{i} \quad(1 \leq i \leq 9)$. Denote by \mathscr{L} $C U \times P^{2}$ the total space of the universal family of lines on P^{2} over U. We can construct families of surfaces $f: X \longrightarrow U$ and $\mathfrak{f}: \tilde{X} \longrightarrow U$ in the following way:
0) Set $\alpha=1 \times \alpha_{1}: U \times Y \longrightarrow U \times P^{2}$.
i) Let $B: y \longrightarrow U \times Y$ be the blowing-up along $\alpha^{-1} \mathscr{L} \cap$ $\left(\Sigma_{i} \delta_{i}\right)$. Denote by $r_{i}(1 \leq i \leq 9)$ the exceptional divisors.
ii) Take the double cover $\gamma: \bar{x}, \longrightarrow y$ branched along $(\alpha \beta)^{-1} \mathscr{L}$ $+B^{-1}\left(\Sigma \delta_{i}\right)$.
iii) Let $\delta: \bar{X}, \longrightarrow \bar{X}$ be the contraction of $(\beta \gamma)^{-1}\left(\Sigma \delta_{i}\right)$.
iv) Let $\varepsilon: X \longrightarrow X$ be the contraction of $\delta \gamma^{-1}\left(\Sigma H_{i}\right)$. (In the notation above, we use $\alpha^{-1} \mathscr{L}$ etc. as the proper transforms.)

(2.6) Theorem. In the above notation, $f: \mathscr{X} \longrightarrow U$ is an integral family of degenerations of Kunev surfaces over the fixed $\Sigma C_{j} \in \Re . \quad$ This family has the following properties:
(1) The singularity of the total space \mathscr{X} consists of disjoint nine compounds Veronese cone over $\left(S_{1} \amalg S_{2}\right) \cap U=\left(C_{1} \cap C_{2}\right)^{V} \cap U$, i.e., analytically isomorphic to the product of a line and the cone over the Veronese embedding of $P^{2} \subset P^{5}$ by $10 p^{2}(2) 1 . \quad \varepsilon: \bar{x} \longrightarrow \boldsymbol{X}$ is a desingularization and the exceptional divisor $\quad \mathbb{X}, i \quad$ is a family of P^{2} over a line in $\left(C_{1} \cap C_{2}\right)^{\vee} \cap U(1 \leq i \leq 9) . \quad K_{\tilde{\mathscr{V}}}=\mathscr{L}_{\tilde{\mathfrak{Z}}}+$ $\Sigma \boldsymbol{r}_{\overline{\mathfrak{x}}, \mathrm{i}}$.
(2) The fiber $\tilde{X}_{t}:=\mathcal{f}^{-1}(\mathrm{t})=\mathrm{v}_{\mathrm{t}}+\Sigma \mathbf{W}_{i, t}$, where v_{t} is the main component, i.e., the component with $p_{g}=1$, and $W_{i, t}:=$ $\boldsymbol{V}_{\mathfrak{X}, \mathrm{i}} \mid \tilde{X}_{t}$. Hence the dualizing sheaf of V_{t} coincides with $\mathcal{O}\left(\mathscr{L}_{\mathfrak{X}} \mid \mathbf{V}_{\mathbf{t}}\right)$.
(3) V_{t} is a (singular) Kunev surface, numerical K3 surface with one double fiber, K3 surface, elliptic surface with $p_{g}=q=1$, or splitting abelian surface according to $t \in S_{0} \cap T_{0}, S_{1}, S_{2}$, $S_{0} \cap T_{1}$, or T_{2}.

Prof of (1) and (2). In the notation in (2.5), notice that \mathscr{L} and $U \times\left(\Sigma C_{j}\right)$ intersect transversally on $U \times P^{2}$ hence so do $\alpha^{-1} \mathscr{L}$ and $\left(\Sigma_{1}^{9} \mathcal{\delta}_{i}\right)$ on $U \times Y$. This implies that $\alpha^{-1} \mathscr{L} \cap\left(\Sigma \mathcal{\delta}_{i}\right)$ consists of nine disjoint P^{1}-bundles over the lines $V_{k} \cap U$ on U, $P_{k} \in C_{1} \cap C_{2}$. Therefore the branch locus $(\alpha \beta)^{-1} \mathscr{L}+B^{-1}\left(\Sigma \delta_{i}\right)$ on 9 is a smooth divisor. It follows that ${ }^{9}$. is smooth.

Since $\delta_{i}=U \times E_{i}$ and E_{i} is a (-2)-curve on Y, we see $N_{\delta_{i}} / U \times Y{ }^{\otimes} \theta_{E_{i}} \simeq \theta_{P^{1}}(-2)$. Hence $B^{-1} \delta_{i}$ on 9 is a $P^{1-b u n d l e}$ whose normal bundle restricted to any fiber is isomorphic to $\boldsymbol{O}_{\mathbf{p}}(\mathbf{(- 2)}$. This implies that $(B \gamma)^{-1} \mathcal{E}_{i}$ on \mathscr{X}^{\prime} is a P^{1}-bundle over U whose normal bunde restricted to any fiber is isomorphic to $\boldsymbol{\theta}_{\mathrm{p}}(-1)$.

Thus we get a smooth variety \bar{x} in Step (iii).
The P^{1}-bundle $\alpha^{-1} \mathscr{L} \cap \mathcal{\delta}_{i}$ over the line $P_{k} \cap U$ has
 ${ }^{0} p_{1}(-2)$ and $\alpha^{-1} \mathscr{L} \cap \delta_{i} \cap(H \times Y)=E_{i} \quad$ transversally, for any line H on U other than $P_{k} \cap U$, and $N_{H \times Y / U X Y}{ }^{0} \theta_{E_{i}} \simeq \theta_{P 1}$. Hence r_{i} is a $\quad \Sigma_{2}$-bundle over $\quad \mathrm{P}_{k} \cap \mathrm{U}$, where $\Sigma_{2}:=\operatorname{Proj}\left(\theta_{P^{1}} \oplus \theta_{P^{1}}(-2)\right)$. This implies that $\gamma^{-1} \boldsymbol{r}_{i}$ is a Σ_{1}-bundle over $V_{k} \cap U$ intersecting with $(\beta \gamma)^{-1} \delta_{i}$ along the P^{1}-bundle over $\quad P_{k} \cap U$ whose fiber is the $(-1)-s e c t i o n ~ o n ~ \Sigma_{1}$. Thus we get a P^{2}-bundle $\delta \gamma^{-1} r_{i}$ over the line $\quad V_{k} \cap U$ on \bar{X} in Step (iii).

Since $N_{H \times Y / U \times Y}{ }^{*}{ }^{\theta_{E}}{ }_{i} \simeq \theta_{P 1}$ as above, $B^{-1}(H \times Y)$ intersects with $\|_{i}$ along a (2)-section on Σ_{2} over the point $H \cap P_{k}$, hence $(B \gamma)^{-1}(H \times Y)$ intersects with $\gamma^{-1} \Psi_{i}$ along a(4)-bisection on Σ_{1}. Therefore $\delta(\beta \gamma)^{-1}(H \times Y)$ intersects with $\delta \gamma^{-1} \boldsymbol{r}_{i}$ along a conic on P^{2} over the point $H \cap \stackrel{V}{P}_{k}$. Thus we see that $\delta \gamma^{-1} \mathbf{r}_{i}$ contracts to a compound Veronese cone over the line $V_{k}^{V} \cap U$ in Step (iv).

Now the other assertions in (1) and (2) follow easily by the adjunction formula.

QED .
(2.7) Set

$$
\forall^{*}:=\left\{\Sigma C_{j}+L \in \operatorname{Sym}^{2}\left|\theta_{p^{2}}(3)\right| \times 1 \theta_{p^{2}}(1)| | \Sigma C_{j} \in \Phi\right\}
$$

(for the notation \mathbb{S}, see (2.2)).
Now we consider the functions $m(t)$ and $n(t)$ in (2.3) as functions $m\left(\Sigma C_{j}, L\right)$ and $n\left(\Sigma C_{j}, L\right)$ on ℓ^{*} and define

$$
\sharp:=\left\{\Sigma C_{j}+L \in \ell^{*} \mid m\left(\Sigma C_{j}, L\right)=n\left(\Sigma C_{j}, L\right)=0\right\}
$$

where Y_{U} is the double cover of P^{2} branched along $\Sigma C_{j, 0}$,
Y_{0} is the minimal resolution of Y_{0}^{\prime} on which sit the nine distinguished (-2)-curves $\Sigma E_{i, 0}$ coming from the nine ordinary double points on Y,
$X_{\hat{0}}^{*}$ is the double cover of the minimal K3 surface Y_{0} branched along $B_{Y_{0}}:=\alpha_{1}^{*} L_{0}+\Sigma E_{i, 0}$, and
X_{0} is the contraction of the nine (-1)-curves on X_{0}^{*}

$$
\text { lying over } \Sigma E_{i, 0} \text { on } Y_{0}
$$

Set

$$
\begin{aligned}
& \Lambda:=H^{2}\left(Y_{0}, Z\right) \\
& \lambda:=\operatorname{class}\left(\alpha_{1}^{*} \theta_{P^{2}}(1)\right) \in \Lambda \\
& N:=\left\{\xi \in \Lambda \mid \xi \cdot \lambda=\xi \cdot E_{i}=0 \quad(1 \leq i \leq 9)\right\}
\end{aligned}
$$

Notice that

$$
\{\omega \in P(N \otimes C)|\omega \cdot \omega=0, \omega \cdot \bar{\omega}\rangle 0\}
$$

has two connected components, interchanging by complex conjugation. Choose the component D containing $H^{2,0}\left(Y_{0}\right)$, a heriod domain. This choice is called the sign structure.

Now let Y^{\prime} be any $K 3$ surface with R.D.P., $\mu: Y \longrightarrow Y^{\prime}$ the minimal resolution and $\left\{D_{k}\right\}$ the set of exceptional (-2)-curves for M. Set

$$
I^{2}\left(Y^{\prime}\right):=\left\{\xi \in H^{2}(Y, Z) \mid \xi \cdot D_{k}=0 \text { for all } k\right\}
$$

A marking of Y, is an embedding of lattice

$$
\varphi_{0}: I^{2}\left(Y^{\prime}\right) \longleftrightarrow \Lambda
$$

for which there exists an isometry $\varphi: H^{2}(Y, Z) \longrightarrow \Lambda$ such that $\left.\varphi\right|_{I^{2}\left(Y^{\prime}\right)}=\varphi_{0}$.

Glueing together local deformations by virtue of a suitable versions of the Torelli theorem and surjectivity of the period map for K3 surfaces with R.D.P., we can construct the universal family $g: ~ y, \longrightarrow D$ of marked K3 surfaces of Kunev type and a relatively ample line bundle $L_{a y}$, on 9 , whose first Chern class on each fiber is mapped to λ by the marking. Here the markings of the fibers are required to have images in the span of λ and N, and to send the holomorphic 2-forms on the minimal model of each fiber into D (cf. [Mo.2, §7]). This yields a P^{2}-bundle

$$
P\left(g_{*} L_{a y},\right) \longrightarrow D
$$

Let r be the Zariski open set of $P\left(g_{*} L_{a y}\right.$, consisting of those points (ω, L_{ω}) which satisfies the condition: the pull-back $\mu^{*} L_{\omega}$ of the divisor L_{ω} on the minimal model $\mu: Y_{\omega} \longrightarrow Y_{\omega}$ of the K3 surface has at most simple singularities and it is disjoint from the distinguished (-2)-curves on Y_{ω}.

We denote by f the subgroup of the orthogonal group $O(\Lambda)$ of the K3 lattice Λ consisting of those elements which preserves the polarization λ, the (unordered) set of distinguished (-2)-curves $\left\{E_{1}, \ldots, E_{9}\right\}$ and the sign structure. By definition there is the natural homomorphism $\Gamma \longrightarrow O(N) /\{ \pm 1\}$, where $O(N)$ is the orthogonal group of the lattice N. We denote its image by Γ. Then we can see that the action of Γ on D lifts to the P^{2}-bundle $P\left(g_{*} L_{a y},\right) \longrightarrow D$ which preserves the open set r and that the quotients $V / \Gamma \longrightarrow D / \Gamma$ are the coarse moduli spaces of Kunev surfaces and $K 3$ surfaces of Kunev type, which are irreducible (cf. $[M o .2,(7.3),(7.5),(7.8)]$).
(2.9) Thus we get the coarse moduli spaces in two ways, via geometric invariant theory and via period map:

As a consequence, we see in particular that the partial compactification \mathbf{N}^{*} of consists of all the points whose period is an interior point of $D / \Gamma=\Re$, i.e., type I degenerations.

By construction, the functions $m\left(\Sigma C_{j}, L\right)$ and $n\left(\Sigma C_{j}, L\right)$ on ** defined in (2.7) and (2.3) induce ones on $P\left(g_{*} L_{a y}\right.$, $)$ and on ξ^{*},
 (2.3):

$$
\begin{array}{ll}
\Re^{*}=\varphi_{0} \amalg \varphi_{1} \amalg \varphi_{2} & \text { where } \varphi_{m}=\left\{s \in M^{*} \mid m=m i n\{2, m(s)\}\right\} \\
\Re^{*}=g_{0} \amalg g_{1} \amalg g_{2} & \text { where } g_{n}=\left\{s \in \Re^{*} \mid n=n(s)\right\}
\end{array}
$$

Theorem(2.6.3) implies:
(2.10) Corollary. The partial compactification ** of the coarse moduli space of Kunev surfaces consists of all the points of type I degenerations and ${ }^{*}$ is divided into five parts

$$
\boldsymbol{\varphi}_{0} \cap \boldsymbol{g}_{0}=\text { 留, } \quad \varphi_{1}, \quad \varphi_{2}, \quad \boldsymbol{g}_{1} \cap \boldsymbol{\varphi}_{0}, \quad \boldsymbol{g}_{2}
$$

whose points correspond to Kunev surfaces, numerical K3 surfaces with one double fiber, K3 surfaces, elliptic surfaces with $p_{g}=q=1$, and splitting abelian surfaces respectively. y° is a Zariski open subset of consisting of those points which correspond to smooth Kunev surfaces, i.e., the canonical model is smooth.
(2.11) In the remaining part of this section, we shall explain uniformly by Theorem (2.6.3) the appearance of positive dimensional fibers of the period map for the second cohomology of Kunev surfaces, numerical $K 3$ surfaces with one double fiber and elliptic surfaces with $p_{g}=q=1$. These phenomena were observed separately before in [T.1], [Us.1], [Us.2] for the first surfaces and in [Sa.M] for the third. It is new for the second surfaces.

Let $f: X \longrightarrow U$ and $\mathscr{f}: X \longrightarrow U$ be the families of degenerations of Kunev surfaces constructed in (2.5) for a fixed
$\Sigma C_{j} \in \mathbb{G}$. Starting from these, we can construct semi-stable degenerations as follows (cf. [Us.5]):
(2.11.1) gase $t \in S_{1}$: We may assume that ΣC_{j} are smooth cubics intersecting transversally because other cases are limit of this. For a general point $t_{0} \in S_{1}$, say $t_{0} \in P \subset\left(C_{1} \cap C_{2}\right)^{V}$, let U^{\prime} be a small polydisk neighborhood with center $(0,0)=t_{0} \in U$. Then the restriction over U, of the family $\underset{\mathbf{f}}{ }: \mathbb{X} \longrightarrow U$ gives a semi-stable degeneration of Kunev surfaces over U ' whose singular fibers lie over the line $\quad \mathrm{P} \cap \mathrm{U}^{\prime}=\{(\mathrm{t}, 0)| | t \mid<1\}$. For $(t, 0) \in$ v $P \cap U^{\prime}$, the fiber $\mathbb{X}_{t, 0}:=\tilde{f}^{-1}(t, 0)=V_{t, 0}+W_{t, 0}$ where $V_{t, 0}$ is a minimal numerical $K 3$ surface with one double fiber and $W_{t, 0} \simeq P^{2}$. The double locus $V_{t, 0} \cap W_{t, 0}$ is a smooth bisection with self-intersection -4 on $V_{t, 0}$ and a smooth conic on $W_{t, 0}$. (2.11.2) qase $t \in T_{1} \cap S_{0}: \quad$ For a general point $t_{0} \in T_{1}$, say $t_{0} \in Q$ for the triple point $Q \quad o f \quad C_{j}$, take a small polydisk neighborhood U^{\prime} with center $(0,0)=t_{0} \in U$. Then the restriction over U, of the family $f: \mathscr{X} \longrightarrow U$ (equivalently, $\underset{f}{ }: \widetilde{X} \longrightarrow U$) gives a degeneration of Kunev surfaces over U ' whose singular fibers are non-normal and lie over the line $Q \cap U^{\prime}$. Extending the base to the double cover $\pi: U \frac{1}{2} \longrightarrow U^{\prime}$ branched along the line v $\hat{Q} \cap U^{\prime}$ we can construct a semi-stable family $\hat{f}: \hat{X} \longrightarrow U \frac{1}{2}$ whose singular fibers lie over the line $\pi^{-1}\left(\mathbb{Q} \cap U^{\prime}\right)=\{(s, 0)| | s \mid<1\}$. For $(s, 0) \in \pi^{-1}\left(\mathbb{Q} \cap U^{\prime}\right)$, the fiber $\hat{X}_{s, 0}=\hat{f}^{-1}(s, 0)=\hat{\mathbf{v}}_{s, 0}+\hat{W}_{s, 0}$ where $\hat{\mathbf{v}}_{\mathbf{s}, 0}$ is a minimal elliptic surface with $p_{g}=q=1$ and with a section which is a smooth elliptic curve with self-intersection
-1 and $\hat{W}_{s, 0}$ is a rational surface constructed, for example, from P^{2} by blowing-up twice at each of the four 2-torsion points on a smooth cubic endowed with a well-known abelian group structure. The double locus $\hat{\mathbf{V}}_{s, 0} \cap \hat{W}_{s, 0}$ is the section mentioned above on $\hat{\mathbf{V}}_{s, 0}$ and the proper transform of the above cubic on $\hat{W}_{s, 0}$.
(2.12) Recall the spectral sequence for a reduced simple normal crossing variety $Z=\Sigma Z_{k}$:

$$
E_{1}^{p, q}=H^{q}\left(Z^{[p]}, Q\right) \Longrightarrow E^{p+q}=H^{p+q}(Z, Q)
$$

where $Z^{[p]}=\underset{k_{0} \leq \ldots . \leq k_{p}}{\text { II }} X_{k_{0}} \cap \ldots \cap X_{k_{p}}$.
It is known that it degenerates at $E_{2}=E_{\infty}$ (cf. [D], [GS]). Applying this to $Z=\widehat{X}_{t, 0}$ or $\hat{X}_{s, 0}$, the singular fibers of the semi-stable degenerations in (2.11), we can observe easily in both cases that $E_{2}^{2}, 0=E_{2}^{\frac{1}{2}}{ }^{1}=E_{2}^{1}, 2=0$ hence we have an exact sequence (2.12.1) $0 \longrightarrow H^{2}(Z) \xrightarrow{\nu} H^{2}\left(Z_{1}\right) \oplus H^{2}\left(Z_{2}\right) \longrightarrow H^{2}\left(Z_{1} \cap Z_{2}\right) \longrightarrow 0$.

On the other hand, since the local monodromies of the
semi-stable families in question are trivial, the Clemens-Schmid sequence (1.2.1) becomes in both cases

$$
\text { (2.12.2) } 0 \longrightarrow \mathrm{H}_{\mathrm{lim}}^{0} \longrightarrow \mathrm{H}_{4} \longrightarrow \mathrm{H}^{2} \xrightarrow{t} \mathrm{H}_{\mathrm{lim}}^{2} \longrightarrow 0 .
$$

The morphism of Hodge structure (H.S. for short) v in (2.12.1) relates the variation of Hodge structure (V.H.S. for short) associated to the smooth family $\left\{V_{t, 0}\right\}|t|<1 \quad o f$ numerical K3 surfaces with one double fiber (resp. $\left\{\hat{\mathbf{v}}_{\mathrm{s}, 0}\right\}|s|<1 \quad$ of elliptic surfaces with $\left.p_{g}=q=1\right)$ with the V.H.S. associated to the flat family $\left\{\widehat{X}_{t, 0}\right\}|t|<1 \quad$ (resp. $\left\{\hat{X}_{s, 0}\right\}|s|<1$) and they coincide essentially because $W_{t, 0}$ (resp. $\hat{W}_{S, 0}$) is a rational surface hence its associated V.H.S. is trivial. While the morphism t in
(2.12.2) relates the V.H.S. associated to the flat family $\left\{\tilde{X}_{t, 0}\right\}$ (resp. $\left\{\hat{X}_{s, 0}\right\}$) with the variation of limiting H.S. associated to the 2-parameter family of semi-stable degeneration of Kunev surfaces $\left\{\hat{X}_{t, t},\right\} \quad\left(r e s p, \quad\left\{\hat{X}_{s, s},\right\}\right.$), taking limit as $t^{\prime} \rightarrow 0 \quad\left(r e s p, \quad s^{\prime} \rightarrow\right.$ 0), and they coincide essentially because H_{4} in (2.12.2) carries a trivial H.S. in both cases.

Thus we get:
(2.13) Corollary. In the above notation, the following assertions hold and they are related by degeneration as above:
(1) The 2-parameter smooth families $\left\{\tilde{X}_{t, t},\right\}_{t} \neq 0$ and $\left\{\hat{X}_{s, s},\right\}_{s} \neq 0$ of minimal Kunev surfaces have $2-d i m e n s i o n a l$ moduli and the associated V.H.S. are trivial.
(2) The 1 -parameter smooth family $\left\{V_{t, 0}\right\} \quad o f$ minimal numerical K3 surfaces with one double fiber has l-dimensional moduli and the associated V.H.S. is trivial.
(3) The 1 -parameter smooth family $\left\{\hat{\mathbf{v}}_{s, 0}\right\}$ of minimal elliptic surfaces with $p_{g}=q=1$ has 1 -dimensional moduli and the associated V.H.S. is trivial.

9100f. The assertion on the V.H.S. has already proved before the corollary. As for the assertion on the moduli, the case (1) is obvious by construction (cf. (2.2)). The case (2) follows from an observation that the moduli of the double fiber of $v_{t, 0}$ varies (cf. Proposition (4.3) and its proof). The case (3) follows from an observation that the moduli of the section of $\hat{\mathbf{v}}_{\mathrm{s}, 0}$ varies (cf. the proof of Proposition (4.3)). QED.
3. Local study over critical points.
(3.0) Let $\Sigma_{1}^{2} C_{j}$ be two cubics on P^{2} with at most simple singularities, i.e., $\Sigma \mathrm{C}_{\mathrm{j}} \in \mathbb{S}$ in the notation of (2.2), and let L be a line. In this section we study locally over the singular points of $\Sigma C_{j}+L$ on P^{2}. The tables obtained in this section will play the key role in both proofs of Theorem (2.6.3) in Sections 4 and 5.
(3.1) For the cubics ΣC_{j}, we constructed the minimal K3 surface Y and the families of surfaces $\mathfrak{f}^{\prime}: \mathbb{X} \longrightarrow \longrightarrow \mathbb{U}, \mathfrak{f}: \mathbb{X} \longrightarrow$ U and $f: X \longrightarrow U$ in (2.5). Let V^{\prime}, V and X be the main components of the fibers $\mathscr{f}^{-1}(t), \mathscr{f}^{-1}(t)$ and $f^{-1}(t)$ over the point $t \in U, L_{t}=L$, respectively. Then the morphisms γ, δ and ε in Steps (ii), (iii) and (iv) in (2.5) induce the morphisms (abuse of the notation):

$$
\text { (3.1.1) } Y \stackrel{\gamma}{\rightleftarrows} v^{\prime} \xrightarrow{\delta} v \xrightarrow{\varepsilon} x .
$$

By construction, we see that δ and ε in (3.1.1) are birational morphisms and that γ is the finite double cover branched along B_{Y} $:=\alpha_{1}^{*} L+\Sigma_{i}^{9} E_{i}-2 \Sigma_{i} E_{i}$, where in the last term the index i runs over the set $\left\{i \mid 1 \leq i \leq 9, E_{i} \subset \alpha_{1}^{*} L\right\}$. Here we use the notation $\alpha_{1}: Y \longrightarrow P^{2}$, the canonical resolution of the double cover Y, of P^{2} branched along ΣC_{j}, and $E_{i}(1 \leq i \leq 9)$, the nine distinguished (-2)-curves, in (2.4).

The minimal model \hat{X} of X is obtained by the successive contraction of (-1)-curves, starting from the canonical resolution x^{*} of the double cover γ in (3.1.1). This procedure is indicated by the diagram:
(3.1.2)

where $\pi_{1}: X^{*} \longrightarrow \hat{\mathbf{x}}_{1}$ is the successive contraction of the (-1)-curves each of which is mapped to a singular points of $\Sigma \mathrm{C}_{\mathrm{j}}+\mathrm{L}$ on P^{2} and $\pi_{2}: \hat{X}_{1} \longrightarrow \hat{X}$ is the successive contraction of the (-1)-curves each of which is mapped onto the line L on $\mathbf{P}^{\mathbf{2}}$.

We use the notation:
(3.1.3)

$$
B_{\mathbf{Y}}:=\left(\alpha_{1}^{*} L+\sum_{1}^{9} E_{i}\right)_{\text {odd }, \text { red }}=\left(B_{\mathbf{Y}}^{\prime}\right)_{\text {odd }, \text { red }} .
$$

Here, for an effective divisor D, (D) odd, red means the reduced divisor whose support consists of those components with odd multiplicity in D.
(3.2) Notice that, in Diagram (3.1.2), all the processes but $\pi_{2}: \hat{\mathbf{x}}_{1} \longrightarrow \hat{\mathbf{x}}$ are local over a singular point of $\Sigma \mathrm{C}_{\mathrm{j}}+\mathrm{L}$ on P^{2}. For a singular point $P \in \operatorname{Sing}\left(\Sigma C_{j}+L\right)$, we denote by $\alpha_{1}^{*} L(P)$ (resp. $B_{Y}(P), K_{\hat{X}_{1}}(P)$) the pull-back of the line $\alpha_{1}^{*} L$ on Y (resp. the divisor B_{Y} on Y in (3.1.3), the canonical divisor ${ }^{K} \hat{X}_{1}$ of \hat{X}_{1}) restricted over an open neighborhood of the point $P \in P^{2}$. We can classify the singular points $P \in \operatorname{Sing}\left(\Sigma C_{j}+L\right)$, where ΣC_{j} has at most simple singularities, and compute the divisors $\alpha_{1}^{*} L(P)$, $B_{Y}(P)$ and $K_{\hat{X}_{1}}(P)=\pi_{1} \varphi{ }^{*} B_{Y}(P) / 2$ locally over the point P. Note that the last equality follows from the observation that $B_{Y}(P)$ has at most simple singularities which is a consequence of the computations.

All of these classification and computations are elementary, hence we give here the tables. For the computation of $B_{Y}(P)$, we use Table (3.2.2) below of the distinguished (-2)-curves.

In order to divide the cases, we define functions $m_{P}\left(\Sigma C_{j}\right.$, L) and $n_{P}\left(\Sigma C_{j}, L\right)$ in $P \in P^{2}$ and $\left(\Sigma C_{j}, L\right) \in \ell^{*}$ by $m_{P}\left(\Sigma C_{j}, L\right)=\min \left\{I\left(P, L \cap C_{j}\right) \mid j=1,2\right\}$,
 otherwise.

Hence the summations of these functions over $P \in P^{2}$ give

$$
\begin{aligned}
& m\left(\Sigma C_{j}, L\right)=\Sigma_{P \in P^{2}} m_{P}\left(\Sigma C_{j}, L\right) \\
& n\left(\Sigma C_{j}, L\right)=\sum_{P \in P^{2}} n_{P}\left(\Sigma C_{j}, L\right)
\end{aligned}
$$

(see (2.7)). We also use the following notation:
$L_{Y}:=\alpha_{1}^{-1} L \quad$ the proper transform of L on Y,
$L_{\hat{X}_{i}}:=\pi_{i}\left(\alpha_{1} \varphi\right)^{-1} L \quad$ the proper transform of L on \hat{X}_{i}.
(3.2.1) Case $m_{P}\left(\Sigma C_{j}, L\right)=n_{P}\left(\Sigma C_{j}, L\right)=0$ and $P \in \operatorname{Sing} C_{i}$ $\left(C_{2}+L\right):$

$1 \quad A_{1}$
0
$2 \mathrm{~A}_{1}$
0

0
$2 \mathrm{~A}_{2}$
0

0
$2 A_{3}$
0

0
$2 D_{4}$
0

(3.2.4) Case $n_{p}\left(\Sigma C_{j}, L\right)=1$:
$\alpha_{1}^{*} \mathrm{~L}$ with
multiplicity, $B_{Y}(P)$: bold curves

(3.2.5) Case $m_{p}\left(\Sigma C_{j}, L\right)=1$:

$$
\alpha_{1}^{*} L \quad \text { with }
$$

multiplicity,
on $\mathbf{P}^{\mathbf{2}}$

$I\left(P, C_{1} \cap C_{2}\right)$
$=a$

$\pi_{1}\left(\alpha_{1} \varphi\right) * L$ on \hat{X}_{1}, $K_{\hat{X}_{1}}(P)$: bold curves with multiplicity,
() : self-intersection

$\pi_{1}\left(\alpha_{1} \varphi\right)$ * on X ,
$K_{\hat{X}_{1}}(P)$: bold curves with multiplicity,
() : self-intersection
Case
a = 1:

$\mathrm{L}=\left.\mathrm{C}_{1}\right|_{\mathrm{P}} ^{\mathrm{C}_{2}}$

I($\mathrm{P}, \mathrm{Ci} \mathrm{Cl}_{2}$)

$$
=\mathbf{a}
$$

$=a$

Case
$a=1:$

TYPE I DEGENERATION OF KUNEV SURFACES

on \mathbf{P}^{2}
Set
$a:=I\left(P, C_{1} \cap C_{2}\right)$
(
on \mathbf{P}^{2}
$\alpha_{1}^{*} L$ with
multiplicity,
$\pi_{1}\left(\alpha_{1} \varphi\right) * L$ on \hat{X}_{1},
$K_{\hat{X}_{1}}(P)$: bold curves
with multiplicity,
() : self-intersection

(a;b,c)
$=(2 ; 3,2)$

$$
\text { Case } \begin{aligned}
& (a ; b, c) \\
= & (2 ; 2,2):
\end{aligned}
$$

Case (a;b,c)

$$
=(a ; 2,2)
$$

$$
\text { with } a \geq 3:
$$

$a=I\left(P, C i \cap C_{2}\right)$
$\geq I\left(P, L \cap C_{2}\right)$
$=2$

(*)

(*)

(*)

(*)

(*)

0
S. USUI

(*)
$C_{1}\left\{\begin{array}{c}C_{i} \\ C_{i=L} \\ P\end{array}\right.$

0

(*)

(Curves with (*) are unstable as plane curves of degree 7, cf. [Se].)
(3.3) Observation. We employ the above notation. By Tables in (3.2), we can observe the following:
(1) In all cases, the divisor B_{Y} on the minimal K3 surface Y has only simple singularities and the canonical divisor ${ }^{K} \hat{X} \quad$ of the minimal model \hat{X} is connected and not multiple.
(2) In the case $m\left(\Sigma C_{j}, L\right)=n\left(\Sigma C_{j}, L\right)=0, \alpha_{1}^{*} L$ has only simple singularities on the minimal K3 surface Y and the morphism $\pi: X^{*} \longrightarrow \hat{X}$ in Diagram (3.1.2) contracts only the nine (-1)-curves coming from the nine distinguished (-2)-curves on Y.
(3.4) Proposition. In the above notation, if $m\left(\Sigma C_{j}, L\right)=$ $n\left(\Sigma C_{j}, L\right)=0$, the corresponding \hat{X} is the minimal model of a Kunev surface.

9roof. We use the notation in Diagram (3.1.2). Denote by \mathcal{F} the line bundle on Y such that $O_{Y}\left(B_{Y}\right)=\mathcal{F}^{\otimes 2}$. Then, since $V^{\text {, }}=$ $\operatorname{spec}\left(\theta_{Y} \oplus \mathcal{F}^{-1}\right)$, we have

$$
x\left(\theta_{\hat{\mathbf{X}}}\right)=x\left(\theta_{\mathbf{V}},\right)=x\left(\theta_{\mathbf{Y}}\right)+x\left(\mathcal{F}^{-1}\right)=2+x(\mathcal{F}) .
$$

By the Riemann-Roch theorem on Y,

$$
x(\mathcal{F})=(\mathcal{F})^{2} / 2+x\left(\theta_{Y}\right)=\left(B_{Y}\right)^{2} / 8+2=\{2+9(-2)\} / 8+2=0 .
$$

On the other hand, since $K_{X} *=\varphi^{*} g$ by Observation (3.3.2) and Lemma (1.1.2), we see

$$
\begin{aligned}
c_{1}^{2}(\hat{X}) & =c_{1}^{2}\left(X^{*}\right)+9=\left(\varphi^{*}\right)^{2}+9=2(\mathcal{F})^{2}+9=\left(\mathrm{B}_{\mathrm{Y}}\right)^{2} / 2+9 \\
& =\{2+9(-2)\} / 2+9=1 .
\end{aligned}
$$

Let X be the canonical model of \hat{X}. Then, by construction and Observation (3,3,2), the bicanonical map f of \hat{X} is a morphism which factors as

$$
\mathbf{f}: \hat{\mathbf{X}} \xrightarrow{\mathbf{f}_{1}} \mathbf{X} \xrightarrow{\mathbf{f}_{2}} \mathbf{Y}^{1} \xrightarrow{\mathbf{f}_{3}} \mathbf{P}^{2}
$$

where f_{1} is a birational morphism and f_{2} and f_{3} are finite double covers. Hence X is a Kunev surface with an involution σ which is the covering transformation of $f_{2}: X \longrightarrow Y ' . \quad$ QED.

As a corollary, we have the following result, which will be , used in Sections 4 and 5:
(3.4.1) Corollary. We use the above notation and the notation in (2.7). For any $\left(\Sigma c_{j}, L\right) \in \ell^{*}$, the corresponding minimal model \hat{X} has $p_{g}(\hat{X})=1$.

9roof. We use the flat family of surfaces $f: \mathbb{X} \longrightarrow U$ constructed in (2.5). Take a small disk U^{\prime} in U with center 0 $=\left(\Sigma C_{j}, L\right) \in U$ such that $\left(\Sigma C_{j}\right) \cap L$ are six nodes for all $t \in U$, - $\{0\}$, and denote by $f_{U}, x_{U}, \longrightarrow U$ ' the restriction of the family f over U^{\prime}. Then, by construction and Proposition (3.4), the fibers of f_{U}, over all $t \in U^{\prime}-\{0\}$ are desingularizations of Kunev surfaces. Let $\hat{f}: \hat{X} \longrightarrow U_{r}$ be a semi-stable reduction with base extension $U_{r}^{\prime} \longrightarrow U^{\prime}$ of $f_{U},: X_{U}, \longrightarrow U^{\prime} \quad(c f .[M u])$ and let $\hat{f}^{-1}(0)=\Sigma \hat{\mathbf{V}}_{k}$ be the decomposition of the central fiber. Then we see

$$
1 \leq p_{g}(\hat{X}) \leq \sum p_{g}\left(\hat{v}_{k}\right) \leq p_{g}\left(\hat{f}^{-1}(\hat{t})\right)=1 \quad \text { for } \quad \hat{t} \neq 0
$$

For the first inequality, we use the fact that the minimal model \hat{X} carries a holomorphic 2 -form coming from one on a $K 3$ surface Y.

The second inequality follows from the fact that there is a component \hat{v}_{k} dominating x, and the third follows from (1.2.2). QED.
4. Elliptic fibrations in case $\quad(t)>0$ or $n(t)>0$.
(4.0) We continue to use the notation in the previous sections. Throughout this section we assume that $\Sigma C_{j} \in \mathbb{S}, i . e .$, the sum of two cubics ΣC_{j} on P^{2} which has at most simple singularities. In the case that the functions $m(t)>0$ or $n(t)>0$ (see (2.3)), the pencil of lines through a critical point on p^{2} induces elliptic fibrations both on the minimal $K 3$ surface Y and on the minimal model \hat{X}. We shall study these elliptic fibrations in this section. This together with Proposition (3.4) gives a proof of Theorem (2.6.3).
(4.1) We first treat the case $n(t)>0$ and $m(t)=0$.

Recall that in case $n(t)=1$ and $m(t)=0$ one of the cubics on P^{2}, say C_{1}, consists of three different lines passing through a common point Q_{1} and the line $L:=L_{t}$ also passes Q_{1} but L is not a component of C_{1} nor passes the triple point of C_{2} if exists. In case $n(t)=2$ each cubic C_{j} on P^{2} consists of three different lines passing through a common point $Q_{j} \quad(j=1,2), Q_{1} \neq$ $Q_{2}, L=L_{t}$ is the line joining these two points Q_{1} and Q_{2}, and the seven lines $\Sigma C_{j}+L$ are different.
(4.2) Proposition. In the notation in (4.1), if $n(t)=1$ and $m(t)=0$, the pencil of lines through Q_{1} on P^{2} induces an elliptic fibration both on the minimal K3 surface Y and on the minimal model \hat{X} with section. The section on Y is a(-2)-curve and that on \hat{X} is a smooth elliptic curve with self-intersection -1 . These elliptic fibrations have constant J-invariants if and only if the other cubic C_{2} has also a triple point. In any case, \hat{X} is
an elliptic surface with $k(\hat{X})=p_{g}(\hat{X})=q(\hat{X})=1$.

9100f. $\quad \mathrm{p}_{\mathrm{g}}(\hat{\mathrm{X}})=1$ is already known in Corollary (3.4.1).
\mathcal{Q}_{1} be the pencil of lines through the point Q_{1} on p^{2} Following the procedure of Diagram (3.1.2), we shall first prove that \hat{Q}_{i} induces elliptic fibrations on Y and on \hat{X}. Let $\Sigma \delta_{i} D_{i}^{\prime}$ be the exceptional curves on P^{*} over the point Q_{1} on P^{2} such that $D_{\ell} \cdot D_{i}^{\prime}=1 \quad(i=1,2,3)$. Then the branch locus B_{p} * on P^{*} becomes $B_{P^{*}}=D_{j}+q^{-1} C_{2}+D^{\prime \prime}$, where $q^{-1} C_{2}$ is the proper transform of C_{2} by $q: P^{*} \longrightarrow P^{2}$ and $D^{\prime \prime}$ is the effective divisor defined by the above equation. For a line $M \in \mathcal{Q}_{1}$, the proper transform $q^{-1} M$ intersects with B_{P} * at four distinct points provided that M is not contained in C_{1} nor passes a singular point of ΣC_{j} other than Q_{1} nor touches C_{2}. Hence these lines $M \in \mathbb{Q}_{1}$ become smooth irreducible elliptic curves on Y. This shows that the pencil of lines $\stackrel{V}{Q}_{1}$ on P^{2} induces an elliptic fibration on Y. This fibration has a section D which is the component of the ramification divisor on Y lying over $D \delta . \quad D$ is a (-2)-curve. Since the branch locus on Y is $B_{Y}=\left(\alpha_{1}^{*} L+\Sigma_{i}^{s} E_{i}\right)$ odd, red (see (3.1.3)), the branch locus on Y^{*} is contained in a finite number of fibers of the elliptic fibration on Y^{*}. Therefore the elliptic fibration on Y^{*} induces one on X^{*}. The canonical divisor K_{X} * of X^{*} is contained in $\varphi^{*} B_{Y} / 2$ (actually they coincide because B_{Y} has at most simple singularities, which is a consequence of the local classification in Section 3). Hence the
exceptional divisor for $\pi: X^{*} \longrightarrow \hat{X}$ is contained in a finite number of fibers on X^{*}. Thus we get an elliptic fibration on \hat{X}. Next we shall prove that the elliptic fibration on \hat{X} has a section which is a smooth elliptic curve. For this purpose, note that

$$
\begin{aligned}
& \alpha_{1}^{-1} L+2 D+\Sigma_{1}^{3} D_{i}+F=\alpha_{1}^{*} L \\
& 2\left(\alpha^{-1} C_{1}\right)_{r e d}+6 D+2 \Sigma_{1}^{3} D_{i}+\Sigma_{1}^{9} E_{i}+2 G=\alpha_{1}^{*} C_{1}
\end{aligned}
$$

where $\alpha_{1}^{-1}()$ means the proper transform, D_{i} is the pull-back of D_{i}^{\prime} on $Y(i=1,2,3)$ and F and G are the effective divisors defined by the above equations. From this we get

$$
\text { (4.2.1) } \begin{aligned}
B_{Y} & =\left(\alpha_{1}^{*} L+\Sigma_{1}^{9} E_{i}\right)_{\text {odd }, r e d}=\alpha_{1}^{-1} L+\Sigma_{1}^{3} D_{i}+F+\Sigma_{1}^{9} E_{i} \\
& =\alpha_{1}^{*}\left(L+C_{1}\right)-2\left(4 D+\left(\alpha_{1}^{-1} C_{1}\right)_{r e d}+\Sigma_{1}^{3} D_{i}+G\right)
\end{aligned}
$$

This shows that B_{Y} is linearly equivalent to twice of a divisor whose support is contained in a finite number of fibers on Y. This property is preserved on Y^{*} and we see that $X^{*}=\operatorname{spec}\left(\theta_{Y}^{*} \operatorname{H}^{-1}\right)$ for a line bundle \mathcal{F} on Y^{*} whose restriction to a fiber on Y^{*} is trivial. This implies that the pull-back of the fibers on Y^{*}, appart from $B_{Y} *$, divide into two disjoint copies on X^{*} hence D^{*} $:=\varphi^{*} D$ is a section and so is $\hat{D}:=\pi D^{*} . \quad \hat{D}$ is isomorphic to D^{*} and D^{*} is a smooth elliptic curve with self-intersection -4 on Y^{*} because D is a (-2)-curve on Y whose neighborhood is isomorphic to one on Y^{*} and $D^{*} \longrightarrow D$ is a double cover branched four different points $D \cap\left(\alpha_{1}^{-1} L+\sum_{1}^{3} D_{i}\right)$.

For the assertion on J-invariant on \hat{X}, it is enough to show it on Y because most of the fibers on Y divide into two copies on \hat{X}. We recall here an elementary fact that for a line $M \in \mathcal{Q}_{1}$
the cross-ratio of the branch points on $M, i . e$. the points $M \cap C_{2}$ and Q_{1}, gives the J-invariant of the elliptic curve on Y induced by M up to ordering of the four points (cf., e.g., [Cl.2]). It is easy to see that these cross-ratio upto ordering are constant if and only if C_{2} is concurrent three lines. Thus we get our assertion.

We shall now compute $q(\hat{X})$ by using a theorem of Ueno (1.3.2) and the Leray spectral sequence applying to the elliptic fibration $f: \hat{X} \longrightarrow \hat{D}$. In order to check the condition of the above theorem, the only thing we should do is that the elliptic fibration on \hat{X} has singular fibers other than m_{0} in the case that the two cubics C_{1} and C_{2} are pairs of concurrent three lines. But in this case we can perform easily the procedure of Diagram (3.1.2) and we see that there are two singular fibers of type I_{0}^{*} on \hat{X} coming from the line joining two triple points Q_{1} and Q_{2} on P^{2}.

Finally we shall prove that the section \hat{D} on \hat{X} has selfintersection -1 . By Observation (3.3.1), the canonical bundle $\mathbf{K}_{\hat{X}}$ is connected and not multiple. Hence $K_{\hat{X}}$ consists of one fiber by the canonical bundle formula (1.3.1), because we have already known that the base curve, i.e., the section \hat{D}, is an elliptic curve and $p_{g}(\hat{X})=q(\hat{X})=1$. Now $(\hat{D})^{2}=-1$ follows from the adjunction formula $\left(K_{\hat{X}}+\hat{D}\right) \cdot \hat{D}=\operatorname{deg} K_{\hat{D}}=0$.

QED.
(4.3) Remark. A smooth elliptic curve with self-intersection -1 on a minimal surface is the exceptional divisor of the minimal resolution of a simhle ellihtic sirgularity of tyhe \tilde{E}_{8} in the sense of K. Saito (cf. [Sa.K]).
(4.4) Proposition. In the notation in (4.1), if $n(t)=2$, the minimal model \hat{X} is isomorphic to a product $\hat{\mathrm{D}}_{1} \times \hat{\mathrm{D}}_{2}$ of two smooth elliptic curves $\hat{D}_{j} \quad(j=1,2)$, whose two trivial elliptic fibrations coincide with those induced by the pencils of lines through the point $Q_{j} \quad(j=1,2)$ on P^{2}.

9roof. In the present case, we can go on the same line as the proof of Proposition (4.2). Actually it is simpler than before because the configuration of the two cubics ΣC_{j} and the line L is unique. We do not repeat it here. Consequently the two pencils of lines $V_{j} Q_{j}$ through the triple point Q_{j} of C_{j} induce two elliptic fiber bundes with a section \hat{D}_{j} coming from the first order infinitely near point of Q_{j}, which becomes a fiber of the other elliptic fiber bundle $(j=1,2)$. Hence the projections induce an isomorphism $\hat{X} \xrightarrow{\sim} \hat{D}_{1} \times \hat{D}_{2}$. QED.
(4.5) Remark. Proposition (4.4) shows that if the two cubics C_{1} and C_{2} consist of two pairs of concurrent three lines and ΣC_{j} has at most simple singularities then the minimal K3 surface Y is an elliptic Kummer surface associated to the splitting abelian surface $\hat{X} \simeq \hat{D}_{1} \times \hat{D}_{2}$ obtained in that proposition.
(4.6) Next we deal with the case $m(t)>0$. In this case the sextic ΣC_{j} has at most simple singularities and the line $L=L_{t}$ passes through common points P_{i} of two cubics C_{1} and C_{2}. m(t) $=1$ if and only if the number $\#\left\{P_{i}\right\}=1$ and L is transversal to
one of $C_{j} \quad(j=1,2)$ at P_{1}.
(4.7) Proposition. In the notation in (4.6), if $m(t)=1$, the pencil of lines through P_{1} on P^{2} induces elliptic fibrations both on the minimal K3 surface Y and on the minimal model \hat{X} over a rational curve with non-constant J-invariant. The latter has one double fiber. Hence \hat{X} is a numerical K3 surface with one double fiber.

$$
\text { 9roof. } p_{g}(\hat{X})=1 \text { is already known in Corollary (3.4.1). }
$$

Let V_{1} be the pencil of lines through the point P_{1} on P^{2}. The argument in the present case is similar to that in the proof of Proposition (4.2) but there are some points essentially different, hence we shall write down a full proof.

As before, following the procedure of Diagram (3.1.2), we shall first prove that the pencil of lines $\quad{ }^{V} P_{1}$ induces elliptic fibrations both on Y and on \hat{X}. Let $\Sigma_{1} \longrightarrow P^{2}$ be the blowing-up at the point P_{1} and let D_{1} be the exceptional curve. Then the pencil of lines P_{1} induces the ruling of Σ_{1}. By construction we have a commutative diagram:

Because of the procedure of the canonical resolution, the proper transform $D^{\prime}:=q_{2}^{-1} D_{1}$ does not appear in the branch locus B_{P}^{*} on
$P^{*} \quad$ if P_{1} is a double point of ΣC_{j} on P^{2}, while D^{\prime} remains as a component of $B_{P} * \quad$ if P_{1} is a triple point of $\boldsymbol{\Sigma} C_{j}$. Set
(4.7.1) $\quad B_{P}{ }^{*}=\Sigma q^{-1} C_{j}+F^{\prime} \quad$ in double point case, and

$$
B_{p^{*}}=\Sigma q^{-1} C_{j}+D^{\prime}+F^{\prime \prime} \quad \text { in triple point case. }
$$

Then we see in both cases that, for a fiber M on $\Sigma_{1}, q_{2}^{-1} M$ intersects with $B_{p} *$ at four distinct points provided that M does not touch $\Sigma q^{-1} C_{j}$ nor passes a singular point of $\Sigma q^{-1} C_{j}$. Hence, for these fibers M on $\Sigma_{1}, \alpha_{1}^{*} M$ are smooth irreducible curve on Y. This shows that the pencil of lines $\quad P_{1}$ on P^{2} induces an elliptic fibration $Y \xrightarrow{\alpha i} \Sigma_{1} \xrightarrow{p r} D_{1}$. By the local classification (3.2.5), we can observe that $D:=\left(g^{-1} D^{\prime}\right)_{r e d}=\alpha i^{-1} D_{1}$, which is a component in the exceptional divisor for α_{1} meeting with $\alpha_{1}^{1} L$, does not appear in the branch locus $B_{Y}=\left(\alpha_{1}^{*} L+\Sigma E_{i}\right)$ odd, red on Y. Hence the support of B_{y} is contained in a finite number of fibers. Therefore the elliptic fibration on Y induces one on X^{*} then on \hat{X} by the same argument in the proof of Proposition (4.2).

Next we shall find out the base curve of the elliptic fibration on \hat{X}. We observe again the local classification (3.2.5) or its process to get the following:
$\alpha_{1}^{*} L=\alpha_{1}^{-1} L+g^{*} D^{\prime}+E$,
(4.7.2) $\alpha_{1}^{*} C_{2}=2\left(\alpha_{1}^{-1} C_{2}\right)_{\mathrm{red}}+\mathrm{g}^{*} \mathrm{D}^{\prime}+\mathrm{F}$,
$D \subset \Sigma_{1}^{S} E_{i}$ and $g^{*} D^{\prime}=D \quad$ if P_{1} is a double point of ΣC_{j}, $D \notin \Sigma_{1}^{9} E_{i}$ and $g^{*} D^{\prime}=2 D$ if P_{1} is a triple point.
Here E and F are effective divisors defined by the above equations. Notice that their supports are contained in a finite number of fibers on Y. From (4.7.2) we get:

$$
\begin{aligned}
\mathrm{B}_{\mathrm{Y}} & =\left(\alpha_{1}^{*} \mathrm{~L}+\Sigma_{1}^{5} \mathrm{E}_{\mathrm{i}}\right)_{\text {odd }, \text { red }} \\
& =\alpha_{1}^{*}\left(\mathrm{~L}+\mathrm{C}_{2}\right)-2\left(\left(\alpha_{1}^{-1} C_{2}\right)_{\mathrm{red}}+\mathrm{g}^{*} D^{\prime}+G\right) \\
& \equiv 2\left(2 \alpha_{1}^{*} H-\left(\alpha_{1}^{-1} C_{2}\right)_{\mathrm{red}}-\mathrm{g}^{*} D^{\prime}-G\right) \\
& \equiv 2\left(\alpha_{1}^{*} H-\left(\alpha_{1}^{-1} C_{2}\right)_{\text {red }}-\mathrm{G}^{\prime}\right),
\end{aligned}
$$

where H is a line on P^{2} and G and G are some divisors on Y whose supports are contained in a finite number of fibers. Set \boldsymbol{f}^{\prime} $:=\theta_{Y}\left(\alpha_{1}^{*} H-\left(\alpha_{1}^{-1} C_{2}\right)_{\text {red }}-G^{\prime}\right) . \quad B y(4.7 .1)$, we see that the restriction of the line bundle \mathcal{F}^{\prime} to a smooth fiber on Y is non-trivial 2-torsion in its Pic. This property is preserved by the line bundle \mathcal{F} with $\mathcal{F}^{\otimes 2}=\operatorname{O}_{\mathrm{Y}} *\left(\mathrm{~B}_{\mathrm{Y}}{ }^{*}\right)$ on Y^{*}. This implies that the pull-back of the fibers on \mathbf{Y}^{*} are still connected on \hat{X}. Thus we see that D_{1} is the base curve of the elliptic fibration on \hat{X}.

For the J-invariant, we use the argument of the cross-ratio as in the proof of Proposition (4.2). Note that a smooth fiber on \hat{X} are isogeneous to the corresponding fiber on Y. Hence it is enough to show that the J-invariant on Y is non-constant. If this is constant, then ΣC_{j} should contain concurrent four lines. But this contradicts to our assumption that $\Sigma \mathrm{C}_{\mathrm{j}}$ has at most simple singularities.

Now we see $q(\hat{X})=h^{1}\left(\theta_{D_{1}}\right)=0$ by the same reasoning in the proof of Proposition (4.2).

As for the multiple fibers of the elliptic fibration $f: \hat{X} \longrightarrow$ D_{1}, we use the canonical bundle formula (1.3.1)

$$
K_{\hat{X}}=f^{*} Z+\Sigma\left(m_{i}-1\right) F_{i}
$$

Since $\operatorname{deg} Z=x\left(\theta_{\hat{X}}\right)-2 x\left(\theta_{D_{1}}\right)=0, f$ has only one double fiber.
QED.
(4.8) Proposition. In the notation in (4.6), if m(t) 22 , the pencils of lines through P_{i} on P^{2} induces elliptic fibrations both on the minimal K3 surface Y and on the minimal model \hat{X} over a rational curve with non-constant J-invariant and without multiple fibers. The canonical divisor $K_{\hat{X}}=0$, hence \hat{X} is a K3, surface.

9roof. It is enough to show $K_{\hat{X}}=0$. In fact, we can prove the assertions on elliptic fibrations in the same way as the proof of Proposition (4.7) and the assertion on multiple fibers follow from $K_{\hat{X}}=0$ by the canonical bundle formula (1.3.1).

In order to see $K_{\hat{X}}=0$, we divide the cases:
(a) L is a component of ΣC_{j}.
(b) $m(t)=2$.
(c) $m(t)=3$ and not the case (a).

In case (a), $K_{\hat{X}}=0$ follows from the local classification in Section 3. By the local classification, we can observe that the proper transform $\alpha_{1}^{-1} L$ on Y is one (-2)-curve (resp. two (-2)-curves) in case (b) (resp. case (c)), and that in both cases B_{Y} $=\left(\alpha_{1}^{*} L+\Sigma E_{i}\right)_{\text {odd, red }}$ consists of disjoint (-2)-curves. From these observations, we get $K_{\hat{X}}=0$ in these cases. QED.
(4.9) Remark. A more sophisticated proof of Proposition (4.8) will be given by using Kulikov's list of degenerations of K3 surfaces ([Ku], [PP]), i.e., by virtue of this list it is enough to show that \hat{X} is a K3 surface in generic case with $m\left(\Sigma C_{j}, L\right)=2$ and in this case the verification is easy. We omit the details.

REFERENCES

[BPV] Barth, W., Peters, C. \& Van de Ven, A., Compact complex surfaces, Springer-Verlag (1984).
[Ca.1] Catanese, F., Surfaces with $K^{2}=p_{g}=1$ and their period mapping, Proc. Summer Meeting, Copenhagen 1978, Lect. Notes'in Math. No 732, Springer-Verlag (1979) pp.1-29.
[Ca.2] Catanese, F., The moduli and the global period mapping of the surfaces with $K^{2}=p_{g}=1$: a counter-example to the global Torelli problem, Comp. Math. 41-3 (1980) 401-414.
[Cl.1] Clemens, C. H., Degenerations of Kähler manifolds, Duke Math. J. 44 (1977) 215-290.
[Cl.2] Clemens, C. H., A scrapbook of complex curve theory, Plenum Press (1980).
[D] Deligne, P., Théorie de Hodge III, Publ. Math. IHES 44 (1974) 5-77.
[GS] Griffiths, P. \& Schmid, W., Recent develpments in Hodge theory: a discussion of techniques and results, Diecrete subgroups of Lie groups, Bombay, 1973, Oxford Univ. Press (1975) pp.31-127.
[H.1] Horikawa, E., On deformations of quintic surfaces, Invent. Math. 31 (1975) 43-85.
[H.2] Horikawa, E., Surjectivity of period map of K3 surfaces of degree 2, Math. Ann. 228 (1977) 113-146.
[Ko.1] Kodaira, K., On compact analytic surfaces II, Ann. of Math. 77 (1963) 563-626.
[Ko.2] Kodaira, K., On the structure of compact complex analytic surfaces I, Amer. J. Math. 86 (1964) 751-798.
[Ko.3] Kodaira, K., On homotopy K3 surface, Essays on topology and related topics, Mémoires dédiés à George de Rham, SpringerVerlag (1970) pp.58-69.
[Ku] Kulikov, V., Degenerations of K3 surfaces and Enriques surfaces, Math. USSR Izvestija 11 (1977) 957-989.
[L] Letizia, M., Intersections of a plane curve with a moving line and a generic global Torelli-type theorem for Kunev surfaces, Amer. J. Math. 106-5 (1984) 1135-1146.
[Mi] Milnor, J., On simply connected 4-manifolds, Symp. Internac. de Topologia Algebrica, Univ. de Mexico, 1958.
[Mo.1] Morrison, D., The Clemens-Schmid exact sequence and applications, Topics in transcendental algebraic geometry, ed. P. Griffiths, Ann. of Math. Studies 106, Princeton Univ. Press (1984) pp.101-120.
[Mo.2] Morrison, D., On the moduli of Todorov surfaces, Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, ed. H. Hironaka et al., Kinokuniya C. LTD (1987) pp.313-355.
[Mu] Mumford, D., Semi-stable reduction, Toroidal Embeddings I, Lect. Notes in Math. No 339 (1973) pp.53-108.
[P] Persson, U., Degeneration of algebraic surfaces, Mem. A.M.S. 189 (1977).
[PP] Persson, U. \& Pinkham, H., Degenerations of surfaces with trivial canonical bundle, Ann. of Math. 113 (1981) 45-66.
[Sa.K] Saito, K., Einfach elliptische Singularitäten, Invent. Math. 23 (1974) 289-325.
[Sa.M] Saito, M.-H., On the infinitesimal Torelli problem of elliptic surfaces, J. Math. Kyoto Univ. 23-3 (1983) 441-460.
[Sc] Schmid, W., Variation of Hodge structure: the singularities of the period mappings, Invent. Math. 22 (1973) 211-320.
[Se] Seiler, W. K., Quotentenprobleme in der Invariantentheorie, Diplomarbeit 1977, Univ. Karlsruhe.
[Sh] Shah, J., A complete moduli space for K3 surfaces of degree 2, Ann. of Math. 112 (1980) 485-510.
[SSU] Saito, M.-H., Shimizu, Y. \& Usui, S., Variation of mixed Hodge structure and Torelli problem, Algebraic Geometry, Sendai, 1985 , Advanced Study of Pure Math. 10, North-Holland Publ. C. \& Kinokuniya C. LTD (1987) pp.649-693.
[T.1] Todorov, A. N., Surfaces of general type with $p_{g}=1$ and (K,K) $=1: 1$, Ann. scient. Ec. Norm. Sup. 4-13 (1980) 1-21.
[T.2] Todorov, A. N., A construction of surfaces with $p_{g}=1, q=0$ and $2 \leq\left(K^{2}\right) \leq 8:$ Counterexamples of the global Torelli theorem, Invent. Math. 63 (1981) 287-304.
[Ue] Ueno, K., Kodaira dimensions for certain fibre spaces, Complex Analysis and Algebraic Geometry, A collection of papers dedicated to K. Kodaira, ed. W. L. Baily \& T. Shioda, IwanamiShoten (1977) pp.279-292.
[Us.l] Usui, S., Period map of surfaces with $p_{g}=c_{1}^{2}=1$ and K ample, Mem. Fac. Sci. Kochi Univ. (Math.) 3 (1981) 37-73.
[Us.2] Usui, S., Effect of automorphisms on variation of Hodge structure, J. Math. Kyoto Univ. 21-4 (1981) 645-672.
[Us. 3$]$ Usui, S., Variation of mixed Hodge structure arising from family of logarithmic deformations, Ann. scient. Ec. Norm. Sup. 4-16 (1983) 91-107; Id II: Classifying space, Duke Math. J. 51-4 (1984) 851-875.
[Us.4] Usui, S., Degeneration of Kunev surfaces I; II, Proc. Japan Acad. 63-A-4 (1987) 110-113; 63-A-5 (1987) 167-169.
[Us.5] Usui, S., Examples of semi-stable degenerations of Kunev surfaces, Proc. Algebraic Geometry Seminar, Singapore, 1987, ed. M. Nagata \& T. A. Peng, World Scientific (1988) pp.115-139.

Sampei USUI

Department of Mathematics
Faculty of Science
Kochi University
KOCHI, 780 Japan

