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VANISHING AND NON-VANISHING THEOREMS 

Helene Esnault1 and Eckart Viehweg 

Max-Planck-Institut flir Mathematik 
Gottfried-Claren-Str. 26 
5300 Bonn 3 
Federal Republic of Germany 

At the C.I.R.M. conference in Luminy the first author gave a re
port on "Logarithmic DeRham complexes" and sketched the vanishing 
theorems as well as the applications included in [4] and [5]. The 
Kodaira-Nakano vanishing theorem can often be improved by regarding 
the "logarithmic version" of the vanishing theorem for invertible 
sheaves directly. Following this theme we discuss in this note some 
applications already indicated but not worked out in [4] and [5]. 

In particular, using remark 2.3.6 in [4], we prove A. Sommese's 
vanishing theorem for k-ample invertible sheaves , with an improve
ment oh the bounds if k is larger than the Iitaka dimensiong< ̂$*$$)) 
(§2). 

§ 1 contains some remarks concerning cohomology of local constant 
systems. We recall methods from [4] as far as they are needed in kk§2k 
and § 3. 

In §3 we just extend [5] to local constant systems of rank one 
without imposing conditions on the monodromy. This part was motivated 
by a talk by A.N. Varchenko at the International Conference on Topo
logy at Baku (October 1987) on "Combinatoric and Topology of Configu
rations of Hyperplanes" where he used an explicit description by dif-

N 
ferential forms of a base of Hn(IRn, ) A. ;C) for N hyperplanes 

i=l 1 
A^ in general position [10]. We reformulate the content of [5] in 

1 Supported by "Deutsche Forschungsgemeinschaft, Heisenberg Programm" 

97 



H. ESNAULT. E. VIEHWEG 

such a way that the main result, the non-vanishing of cohomology clas
ses given by certain differential forms, can be applied to constant 
coefficients as well. 

Recently several authors studied vanishing theorems for logarith
mic differential forms (for example D. Arapura [1] and K. Maehara 
[7]). Some of the results described here may overlap with some con
tained explicitly or implicitly in their papers. 

Throughout this note we use the notations introduced in [4]. 

X will always denote a connected complex compact manifold of di
mension n, bimeromorphically dominated by a Kahler manifold and 

s 
D = 

i=l Di 
a normal crossina divisor on X. We write U = X - D and 

j E u —> X for the inclusion. 
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VANISHING AND NON-VANISHING THEOREMS 

§ 1 Local constant systems and logarithmic DeRham complexes 

Definition 1.1. Let g : Y —• Z be a moronism of analytic varieties. 

We define r(g) = Max{dim T - dim q(T) - codim T; T closed subvariety 

of Y}. 

Of course we can write as well r(g) = Max{dim (generic fibre of 

g|r) - codim T; T closed subvariety of Y}. If b denotes the maximal 

fibre dimension of g and K = dim Z one has r(g) i Max {dim Y - K; 

b - 1). 

Let i be a local constant system on U. 

Lemma 1.2. (see [4], 2.3.6). Assume that there exists a proper surjec-

tive morphism g from U to an affine variety W. 

Then Hk (u,r < 0 for k > n + r (g). 

Proof. By [9], 2.3.1 the sheaves R^g** are analytically construc-

tible and m^$ = Support $<<x,m must be a Stein space. Since 

2 • (dim g 
-l 

:Sq] ̂:! dim !*^$ i q one has $, <$^^ R ^ ̂^nb b 0 for 

p + q > n + r g) 1 2 dim g"1 bwx dim Sq 1 q + dim V 
By the Leray 

spectral sequence 

x^$ 
w<: 

:xv vn,k Rqg l!ù* $^^p +q p<wvn 

one obtains 1.2. 

Corollary 1.3. If in addition none of the monodromies of 1 around 

Di has one as an eigenvalue then H (U,f) = 0 for k < n - r(g) as 

well. 

Proof. The condition on the monodromy is equivalent to 

(see [4], 1.6). By Poincaré duality one has 
Rj xw mRj 

Hk <,,;:! !w wvn 
(x, nw<< <k 

jlù* 
(X, *<we 

«e" 
eq qs 

< H2n -k 
:u, Honiç s<<!ùù 
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H. ESNAULT. E. VIEHWEG 

and by 1.2 all the cohomology groups are zero for 2n - k > n + r(g). 

1 .4 . From now on we fix a locally free 0x-module M and a logarith

mic holomorphic integrable connection 

V : J >nx< (log D) * J 

with f = KerfVlj j) . 

By the Riemann-Hilbert correspondence of P. Deligne, [2], such a pair 

(J,V) exists. V gives rise to a logarithmic DeRham complex 

n^(log D) 3 J, quasi isomorphic to f on U. Let € End(0D 3 J) 

be the residue of V along D^, i.e. the endomorphism 

J V VX 
L¨¨£ log D; 0 J £W< 

I¨¨a<< 
0 J. 

If none of the eigenvalues of lies in Z>Q, for i = l,...,s, the 

complexes O^(log D) 0 J and Rj** are quasi isomorphic (see [2]). 

By duality ( [ 4 ] , Appendix A, for example) fi^flog D) 0 J is quasi 

isomorphic to j,t if none of the eigenvalues of theh cwm$$ lies in 

More generally, let us assume that we can write D <w D + wxv 

such that none of the eigenvalues of lies in Z>0' if Di 
xwù^^ 

and none in k^=) if ) ̂^ ==i D* . Writing 

U=X-D 
<wx 

X-D ̂
^ 

o' w< 

I 
X-D- u 

X 

we have 

Lemma 1.5. The three complexes 8¿(log D) 0 J, Ra^ujt and v^'^K 

are quasi isomorphic. 

wxvbn; 
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VANISHING AND NON-VANISHING THEOREMS 

Proof. By [4 ] , A.2 and 1.2,e, the Verdier duality exchanges the role 

of D* and D*. Therefore it is sufficient to prove that the first 

two complexes are quasi isomorphic. Ro^u,t is quasi isomorphic to 

Ra^i <°¿-D* log D! 0 J) . To show that the map 

^:: log D) 0 • :bn nmù 
^^ù* -D* 

(log 
I 

D' 0 J) 

is a quasi isomorphism as well we may reduce the statement to poly-

disks and then to rank one sheaves M (following the proof of 11,3.13 

in [2], as we did in [4 ] , A.8). In this case one may assume (<l,V) to 

be the product of rank one sheaves with connections obtained by pull-

back from those living on disks. Since Ra is compatible with this 

construction we are reduced to the one-dimensional case, where the 

statement is a consequence of the quotations made above. 

1.6 The main lemma (T41. 2.2 and 2.3) 

Assume that g is a proper surjective morphism from U to an affine 

variety W. Let J be a locally free 0x-module and V a holomorphic 

integrable connection of J with logarithmic poles along D. Assume 

that none of the eigenvalues of the residues is an integer. If 

the spectral sequence 

Epq mù$ cnk 
^^cv x .n xw 

^^ 
log D 0 Â] => IH p+q kw<< bv log D) 0 Â) 

degenerates at then 

H*. (X, x' [log D) 9 Â) = 0 for 

p + q > n + r (g) and for P + lx < n - r [g) 

Proof. The assumptions just imply Hk UfKer V| 
u> 

xx x< 
p+q=k 

m • I . Then 

1.2 and 1.3 finish the proof. 

Remark 1.7. Under the monodromy assumptions of 1.6 it is sometimes 

useful to introduce additional divisors C and E such that 

C + E + D has still normal crossings and to study the complex 
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H. ESNAULT. E. VIEHWEG 

° x [log (D + C + E] 0 J 0 0 xww (-E). 

If one denotes the inclusions by 

U- (C+E vvt U-C t<w x - c 

a' a w< 
U-E u U —I— 

3 
X 

the above complex is quasi isomorphic to each of: 

R j o a \ <xxnl (j O V) l<xtyyw< or 
RT>* j ' o u ' <vcn where f' = f U- C+E) 

[use 1.5). 

Assume that the spectral sequence 

cxb fx. blk 
log 

[log I D+E+C; )0 J 0 0. x ggd ^$lxwn, x,n^< log [D+E+C] 0 J 0 0 -E)) 

degenerates at E1- Then again, geometric properties of (X,D,E,C) 
imply the vanishing of some of the cohomology groups occuring as 
E^terms in the spectral sequence (see 2.1). 

The following lemma is, for E = one example which will be 
needed in 2.6. 

Lemma 1.8. Assume in addition that g : U —> W is smooth and that 
c l y has relative normal crossings. Then Hq(X,fl£(log(D+C))0J) = ( 
for p + q < dim W. 

Proof. The pair (U,C) is locally topological trivial over W. 
Therefore - keeping the notations from (1.7) - the cohomology of 
R [q o o ,cxv is locally constant. Then 

Hk U,RCT * ' v 
$ 
^ ;U,Ra^' g 

g^ 
$ W,R| g o a ̂ ^vx = o for k < dim W. 
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VANISHING AND NON-VANISHING THEOREMS 

§2 Vanishing theorems for k-ample invertible sheaves 

2.1. The main example. Even if the statements obtained in [4] or §1 

are more general, many applications follow from the example [4]. 2.7: 

Let <£ be an invertible sheaf such that wxvv 
wx ,^$ 

S 

ifcl 
Di> with 

N > u¿ 1 0. Then p -1 has a holomorphic integrable connection V 

with logarithmic poles along D, whose residues f. are the multipli

cation with u^/N and the spectral sequence pcxx x -1 degenerates at 

E1« In fact the complex xw< [log D) 0 w -1 is a direct summand of a 

complex wvmù^$ (log IT * D) where TT : Y —> X is the desinaularization of 

the cyclic cover obtained by taking the N-th root of the section with 

zero divisor 
vx 

i=l 
ui Di The xkj ^^ 

-1 
-degeneration is implied by P. 

Deligne's theorem, that the logarithmic Hodge-DeRham spectral sequence 

degenerates at E ^ If X is algebraic, P. Deligne and L. Illusie 

gave recently a beautiful purely algebraic proof by reduction modulo 

p of this theorem ([3]). There one also finds a proof of the degene

ration of the spectral sequence given by ny(log(**D)) 0 0y(-B) for 

any reduced subdivisor B of D. Interpreted in the same way we ob

tain the degeneration of 

vx [X, xkl 
klm 

:iog( D ^hj E + C) 0 c - i 
0 0 JX (-E1 jxw 

wv vx +q (X, xjik log i D + k + c 0 k .-1 0 0, X -E) 

for all reduced divisors C and E such that D + C + E has normal 

crossings. If 0 < u. < N, for all i. and if ?' = Ker (V 
X- D+C+E ) 

we obtain (notations as in 1.7): 

wk (X,R (j ° °] xbnbn cc Hk (X, wvc c,lm ^^ m 

mk [x. cx (j' 0 v' ; xnbi ix 9 

p+q=k 
^^ 

a 
xww log I D + E + C) 0 -1 0 0. X -E)). 

Several vanishing theorems for differential forms (as well as for mor-

phisms between cohomology groups, as in [4] §3) can be so obtained. 
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Some are stated and discussed in [1] and [7]. We return to the 

simple case where C = E = 

Corollary 2.2. Assume there exists a proper surjective morphism g 

from U = X - D to an affine variety W. Let S£ be an invertible 

sheaf on X and assume that 
wb 

b *x< 
<< 

i^i 
< 3 1 for 0 < u. < N. 

then < (X, °x" log D) 0 < 
- 1 = 0 for p + q > n + r cv and for 

p + q < n ri [g). 

Notations 2.3. An invert ible sheaf is semiample if some of its powers 

are generated by global sections. A. Sommese (see [8]) defined £ to 

be b-amole if for some N > 0 wcc is generated by its global sections 

and if the corresponding morphism w<< 
^olk 

: X —» IP kcx (X,tfN) has at most 

b-dimensional fibres. We write for a semiample invertible sheaf 

r (<£) vx r( x 
N' where N is any positive number such that S£N is 

generated by its global sections. It is easy to see that r(S£) is 

well defined. 

Using those notations we obtain an improvement of A. Sommese's vani

shing theorem (see [8], Chapter III): 

Theorem 2.4. Let £ be a semiample invertible sheaf on x. Then 

xff X, 
fw<^ 
klmp 

,-1 = 0 for P + q < n r fpjl . Especially, if 2 is 

b-ample of Iitaka dimension *(#)# this holds for 

p + q < Mini pn fn - b + 1}. 

Proof. If ic(tf) = 0, there is nothing to show. For ic(S£) > 0 we 

choose N > 1 such that £N is generated by its sections and write 

• -n;;ml 
lmùiop 

: X —* Z = pxww 
hjklp< 

(X) . Let D be the zero divisor of a general 

section of 
<vc D is non singular and Z - • (D) affine. By 2.2 

c<< X, 
<hty 
xwll log D) 0 -1 I = 0 for p + q < n - r(*) . For those p and q 

the exact sequence 

0 X 
BV7 
klx log D] °D 

"I 0 
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gives rise to a surjection 

vcc 
^ù$$ 

$w<< 
lko)= 

-1 
« 0 X 

a"1 =xw :x, v<<zt 
nnbjkl 

9 
cw 

se"1- w< 

Since ic(^|D) = K (tf) - 1 and since £|D is again semiample with 

r(tf|D) £ r(tf) + 1 the lefthand side is zero by induction on ic(S£) (In 

fact, since D is in general position we even have r(tf|D) £ r(tf)). 

Remarks 2.5. a) If + M is equidimensional the bound for p + q 

given in 2.4 is the same one as in A. Sommese's original theorem. If 

is b-ample and ic(<£) £ n - b + 1 then n - r(tf) = n - b + 1 if 

and only if the union of all b-dimensional fibres of • M has codi-

mension one. In this case the bound is just improved by one. On the 

other hand, C P . Ramanujam gave an example (see [8], 3.23) of a three

fold X and a 2-ample sheaf of Iitaka dimension 3, such that 

l l - l 

H (X,0X 8 <£ ) * 0. Therefore, as long as the "bad locus" consists of 

divisors one can not expect further improvements. 

b) It should be possible to replace the assumption "b-ample of Iitaka 

dimension ic(i£)" in 2.4 by some numerical condition. But anything we 

could imagine looked quite unnatural. However for applications it is 

often sufficient to use 2.2 for a suitable divisor D as illustrated 

in part ii) of the following lemma: 

Lemma 2.6. Let S£ be an invertible sheaf on X and C C x be a 

normal crossing divisor. Assume that one of the following assumptions 

holds: 

i cw is semi-ampie 

ii) X is Moisezon and <£ is numerically good. Then there exists a 

bimeromorphic morphism T : X' —» X of compact complex manifolds and 

a normal crossing divisor D' on Xr containing (T*c)rea such that 

klp :x'# ̂ w<ty 
lm^$$ 

(log D' % T V (-l = 0 for p + q < »c(tf). 

Before sketching the proof (similar to [4], 2.11 and 2.12), let 

us recall the definition and some properties of numerically good in

vertible sheaves, both due to Y. Kawamata, [6]. 
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Definition 2.7. An invertible sheaf £ is called numerically good if 

it is numerically effective (i.e. if deg *£\T £ 0 for all curves 

r ç X) and if ic xw c Min{ [k,c1 h k+l 
numerically trivial}. 

Lemma 2.8. (see [6]) Let X be the Moisezon and £ be numerically 

good. Then there are projective manifolds X' and Z, a birational 

morphism T : X' —> X, a surjective morphism g : X' —• Z and an in-

vertible numerically effective sheaf M on Z, such that g M = r 2 

for some a > 0 and dim Z = K ( £ ) = ic (^) . 

It is easy to see that all numerically effective sheaves £ with 

ic(S£) £ dim X - 1 are numerically good. 

The proof of 2.6. Under either one of the assumptions made we can 

find X' ,Z,M,z,q and a as in 2.8. (For i) we take X' = X and 

g x ^$ 
bn,; 

. Let C = * , 
T c; red 

h 

k 

j^l 
c . . We can find - blowing up X' , 

if necessary - a divisor r on Z such that B = g*r as well as 

C + B are normal crossing divisors, such that g l x ' - B * s smootn and 

C'x'-B a relat*ve normal crossing divisor. K,(M) is maximal and for 

u » 0 Mv 0 0_(-r) will contain an ample invertible sheaf. Replacing 

r by a larger divisor and blowing up X' a little bit more we may as 

well assume Mv 8 0^{-T) to be ample. M is numerically effective, 

which allows to enlarge u until N = a * v > Multiplicities of the 

components of B. This inequality remains true if we replace v and 

r by the same multiple and we may assume that Mv % 0z(-r) is very 

ample. Pulling back a general section we get a nonsingular divisor H 

on X' such that D = H + B and D' = H + B + C are both normal 

crossing divisors. For <£' = T £ we have $£' = 0^, (D) and the as

sumptions of 2.2 are satisfied. 1.8 allows to add the divisor C to 

the boundary and we obtain the vanishing of Hq(X',n£,(log D') 0 H'"1) 

for P + q < n - ri (g| 'X'-D b dim Z = K xij 
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§3 Cohomology classes represented bv logarithmic differential forms 

3,1. Let J be an invertible 0x-module with a holomorphic integra

ble connection V with logarithmic poles along D and f = Ker V|u# 

The residues T^ of V along are given by multiplication with 

constants and - as in 1.4 - we write D = D* + D*, where for 

Di xc * 
D *i C z ">0 and for 

cww fd D1 dv T g^^$ 
*vvx 

As in 1.5 we fix one of those decompositions and 

write U xbv X D a X. By 1.5 we have 

IH i [x ,o¿ log D) 0 J) xv IHk (X,Ra xwui 

which is (by definition) 

Hk( X - D 
i 

D-
n xwip D ; * ) . 

Theorem 3.2. For (J,V) as above we assume that either X is 

Moisezon and J-1 is numerically good or that J-1 is semiample. 

Then for K. — ie cx;^$ 
lmù^$ 

the morphism 

H° ^^ v 
^w< (log D: <cxy 

>cl 
8 yj fX.Rff. j<<wt 

is injective. 

Remark 3.3. a) For the sheaf w<^$ 
lmuy 

log D: e J) »cl of closed J-valued 

p-forms we have 

yv 
^^ :x , ôlkk 

l<<< 
log D) <n,l 

ClJ 
cx n,< (X,FP, (0¿| [log D) <;;lmù 

where pP denotes the Hodge filtration. 0 is given by the inclusion 

FP| x<m^ù [log D 9 J nx« log D; 0 J . 
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b) By F. Bogomolov's vanishing theorem one knows that for p < K 

H°(X,o£(log D) % J) = 0. In fact, this can be obtained from 2.2 by 

using the arguments given in [4], 2.11. 

Proof of 3.2. (see also [5]) 

By 2.6 there is a bimeromorphic morphism T : X' —» X and a normal 

crossing divisor D' containing ^T*D^red such that 

xv (X' v<< 
xww 

log D' 0 T J) = 0 for p + q < ic. Then 

w<<, 
: x ' . °X< 

!»c-l (log D' 0 T J) = 0 

and the morphism P' in the following diagram is injective: 

,wx [X, vgh 
jkl 

xc 
^^$ 

log D) • *)) 
ß lmkj (x ,nx log D « J) 

* 
T 

wwkm :x* ùbv (nx, (log D'] • T *J) v<w 
EEll ( x \ o ^ . [log D'] 0 T*J; 

As remarked in 3.3 a) the groups on the left hand side are those of 

global closed forms and T* is injective as well. 

3.4. Let x<< (t 0 C <bn n<< J 0 0 7x< <bvt be the regular meromorphic 

extension of t< 
Vu< to X, which is unique up to isomorphism ([2]). 

We call » € H° <xw wbbt meromorphic along D if w lies in 

H° : x , j t< er » <bbg 
«6 

X ,°5< log D)). 

The canonical extension is an invertible subsheaf of 
can 

Jm (f 0 c^u) which is determined by the property that V induces a 

connection on *can with logarithmic poles along d such that the 

real part of the residues I\ lies in [0,1[ for all i. We say that 

a) swallows Dj, if the monodromy of f around Dj is one and if 

for some € Z 

g<<x H° (X, ,oJ( log D) 0 H 
can • °x< xw< "iDi 

- D j ) ) . 
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Corollary 3.5. Let ü) € H°( xww wcnn 
^^$$ 

be meromorphic along D. Let 

I 
D" 

be the union of all components of D which are swallowed by w 

and D = n I 
- D- Let Z be the closure of the zero divisor of w 

on U. If <£ = WX log D; $w<< - z ) is numerically effective and 

K bn - n then w defines a non vanishing cohomology class in 

Hn X < D r'D1 d X - D );?) 

Proof. Let J be the smallest extension of ? 8 JDR. in j f • 0̂TT 

such that w € H°(X,fi£(log D) 8 M 8 0X(-Z)). Then 

oj : 0X —• Qx(log D) 0 J 8 0X(-Z) is an isomorphism and J"1 = 

Moreover M C * 8 0V(-D.) 8 0v(*(D-D.)) if and only if w swal-can A j A j 

lows Dj. Therefore the choice of D* and D* satisfies the assump

tions made in 3.1 and by 3.2 we have an injection 

H° (X, , o ; . log D; <bnjk k<<ty (X,Ka y<<op 
^jklmù 

3.6. We write again D = D~ + D;. The relative cohomology 

H (X - D ,D° H (X-D ) ;C) is given by the n-th hypercohomology of the 

complex Q^(log D) 8 0X(~D!) 8 0X(*D*). If X - D * is affine (other

wise we should replace the holomorphic forms by <€°<>-forms) we can as 

well take the n-th cohomology of the complex of vector spaces 

^xw X wv D fi " 
fWX-D* 

(log D! v<^^ 
$$xctt 

t-D!)). 

3.2 says that in this complex no non zero form out of 

H° (x,n^i (log D) 
• °X' 

I 
-D* + u • D*)) = 

tdd H° [x,n^ 0 °X' [V + 1 • D*)) 

is exact, provided 0„ I 
- u-D ) is numerically effective and of 

maximal Iitaka dimension. 

We heard the following example (over K) form A.N. Varchenko 

c[10]). 
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Corollary 3.7. Let A1,...,AN be hyperplanes in C in general 

position, n i N, and let Y.,...,Y be the coordinate functions. 

Then a base of Hn g^^ ,AX U cxbvll^$$ 
<<il^ùmmv 

is given by the differential 

forms 
m 
,;: vc 

m 
n dY1A . AdY 

n 
for m. 1 0 and 

n 

i^l 
mi i N - n - 1. 

Proof. On IP we write D# = A U xwp^$$$ and D for the hyper-

plane at ». The differential forms given form a base of 

H° (pn 
<ww A 
n>" 

0 ;N • D ) = H° w< <p^$ 
kj<< 

(log D] I) % Â for 

J = 0 <cv 
t 
+ (N - 1 • D = 0 klp^$ ;-i 

I. Obviously, if we take for V 

the usual differential on 0 n 
I 
+ (N - 1 • D the assumptions of 

3.2 are all satisfied and we have an injection 

H° (lpn xcvn 
tlmp flog D 0 M Hn (Cn ,AX U .U An;C] cx 

^xww (0>n ,0" 
bnt 

(log D) 0 J) . 

The cokernel is contained in xw< 0Pn, <x 
xx 
*n-l [log D 0 Ä and 3.7 fol

lows from the presumably well known 

Lemma 3.8. Let cxv 
jkip 

^^xwf be hyperplanes in Pn in general posi

tion, n i N. Then fw< (B»N <vn 
nw< 
klm^$ 

(log D) 0 0 $w 
wvc ) = o for q > 0. 

Proof. c<<nl 
klstty 'Dn 

form a complete coordinate system. If N = n then 

Q1 il 
n>n 

(log D; v 
n 
e o c<<,l 

and the cohomology group considered is 
n 
0 cxnn (Pn ,0 pn (-1)\. 

For N > n we write D' = 
nn 

ifeo 
xww and consider the long exact sequence 
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0 
^bv 
$^^ log D' 9 0 

^^ 
mùl 

lx xw 
P11 

log D) 0 0 wx -1 xn 

n,^m 
x<< 
ml^$ 

(log DN fl D' )) 0 0. vvx ( - D ) —> o 

By induction on N the left hand side has no higher cohomology and by 

induction on n neither does the right hand side. 

Remark: Of course, Lemma 3.8. implies as well that the kernel of 

H°(IPn,nn (log D) 9 0 (-1)) lies in the image of 

H°(IPn,nn"1(log D) ® 0 (-1)). Therefore in this special example 3.2. 
IP IP 

can as well be replaced by Bogomolov's vanishing theorem stated in 

3.3f b). 
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