@incollection{AST_1990__191__87_0, author = {Dror Farjoun, Emmanuel and Smith, J.}, title = {A geometric interpretation of {Lannes'} functor $T$}, booktitle = {Th\'eorie de l'homotopie}, editor = {Miller H.-R. and Lemaire J.-M. and Schwartz L.}, series = {Ast\'erisque}, pages = {87--95}, publisher = {Soci\'et\'e math\'ematique de France}, number = {191}, year = {1990}, mrnumber = {1098968}, zbl = {0723.55006}, language = {en}, url = {http://archive.numdam.org/item/AST_1990__191__87_0/} }
TY - CHAP AU - Dror Farjoun, Emmanuel AU - Smith, J. TI - A geometric interpretation of Lannes' functor $T$ BT - Théorie de l'homotopie AU - Collectif ED - Miller H.-R. ED - Lemaire J.-M. ED - Schwartz L. T3 - Astérisque PY - 1990 SP - 87 EP - 95 IS - 191 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1990__191__87_0/ LA - en ID - AST_1990__191__87_0 ER -
%0 Book Section %A Dror Farjoun, Emmanuel %A Smith, J. %T A geometric interpretation of Lannes' functor $T$ %B Théorie de l'homotopie %A Collectif %E Miller H.-R. %E Lemaire J.-M. %E Schwartz L. %S Astérisque %D 1990 %P 87-95 %N 191 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1990__191__87_0/ %G en %F AST_1990__191__87_0
Dror Farjoun, Emmanuel; Smith, J. A geometric interpretation of Lannes' functor $T$, dans Théorie de l'homotopie, Astérisque, no. 191 (1990), pp. 87-95. http://archive.numdam.org/item/AST_1990__191__87_0/
1. One the homology spectral sequence of a cosimplicial space. American J. of Math., vol. 109 (1987), pp. 361-394. | DOI | MR | Zbl
,2. The pro-nilpotent completion of a space. Proc. AMS, vol. 38 (1973).
,3. Strong convergence of the Eilenberg-Moore Spectral Sequence. Topology, vol. 13 (1974). | DOI | MR | Zbl
,4. Sur la cohomologie modulo des -groupes abéliens élémentaires, Homotopy theory Ed. E. Rees and J.D.S. Jones, London Math. Series #117 p. 112. (1987). | MR | Zbl
,5. The Sullivan Conjecture on maps from classifying spaces. Ann. of Math. 120 (1984) p. 39-87, Corrigendum Annals of Math. 121. | DOI | MR | Zbl
,