Gautami Bhowmik
 Divisor functions of integer matrices: evaluations, average orders and applications

Astérisque, tome 209 (1992), p. 169-177
http://www.numdam.org/item?id=AST_1992__209_169_0

© Société mathématique de France, 1992, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

DIVISOR FUNCTIONS OF INTEGER MATRICES: EVALUATIONS, AVERAGE ORDERS AND APPLICATIONS

Gautami BHOWMIK*

Divisor functions have been extensively studied in classical number theory. We examine the corresponding functions for matrices over the ring of integers. These functions not only are a natural generalisation of historically important concepts, but their study also yields applications and some new interpretations.

We deal only with $r \times r$ nonsingular matrices with entries from the ring of integers. Since there are an infinite number of unimodular matrices, it is necessary to identify canonical factorisations of matrices. In his study of arithmetic of matrices, Nanda [8] defines them as follows:

Definition 1. The decomposition of the matrix A as

$$
\begin{equation*}
A=A_{1} A_{2} \ldots A_{k} \tag{1}
\end{equation*}
$$

where $A_{k}, A_{k-1}, \ldots, A_{2}$ are matrices in nonsingular Hermite Normal Form (HNF), is said to be a k-order (canonical) factorisation of A.

Since an HNF matrix uniquely represents a class under one-sided equivalence, two factorisations defined as in (1) are inequivalent.

[^0]Definition 2. The function $\tau_{k}^{(r)}$ counts the number of k-order factorisations of an $r \times r$ matrix A, i.e.,

$$
\begin{equation*}
\tau_{k}^{(r)}(A)=\sum_{A=A_{1} A_{2} \ldots A_{k}} 1 \tag{2}
\end{equation*}
$$

When we restrict ourselves to the case $k=2, A_{2}$ above is called a divisor of A. As in classical theory, we define the functions $\sigma_{a}^{(r)}$.

DEFINITION 3. For a non-negative integer a, let $\sigma_{a}^{(r)}(A)$ be the sum of the $a^{\text {th }}$ powers of the determinants of divisors of a matrix A, i.e.,

$$
\begin{equation*}
\sigma_{a}^{(r)}(A)=\sum_{A=A_{1} A_{2}}\left(\operatorname{det} A_{2}\right)^{a} \tag{3}
\end{equation*}
$$

We notice that $\tau_{2}^{(r)}=\sigma_{0}^{(r)}$.

Evaluations

For evaluating divisor functions, it is enough to consider A to be in nonsingular Smith Normal Form (SNF) with prime-power determinant. We use the notation F_{r} for the matrix

$$
\left(\operatorname{diag}\left[p^{f_{1}}, p^{f_{1}+f_{2}}, \ldots, p^{f_{1}+f_{2}+\ldots+f_{r}}\right]\right)
$$

and may also denote it by $\left\langle f_{1}, f_{2}, \ldots, f_{r}\right\rangle$, where $f_{1} \geq 1, f_{i} \geq 0$ for $i>1$, and p is a prime number. We write G_{r} for the matrix $\left\langle f_{1}, f_{2}, \ldots, f_{r-1}, f_{r}-1\right\rangle$.

It is clear that the evaluation of $\sigma_{a}^{(r)}$ involves the solving of a system of diophantine equations with rather stringent side conditions and is therefore not easy.

In [4] we proved the result:

$$
\begin{equation*}
\tau_{2}\left(F_{r}\right)-\tau_{2}\left(G_{r}\right)=\sigma_{1}\left(F_{r-1}\right) \tag{4}
\end{equation*}
$$

which helped us evaluate $\tau_{2}^{(2)}$ and $\tau_{2}^{(3)}$. Here we generalise (4) and prove a recurrence between $\sigma_{a}^{(r)}$ and $\sigma_{a+1}^{(r-1)}$. Thus it becomes possible to reduce the problem to evaluations on F_{1} or on prime matrices $P_{r}=\langle 1,0, \ldots, 0\rangle$. We prove:

Theorem 1. $\quad \sigma_{a}\left(F_{r}\right)-p^{a} \sigma_{a}\left(G_{r}\right)=\sigma_{a+1}\left(F_{r-1}\right)$.
Proof. Let $\nu=f_{1}+f_{2}+\ldots+f_{r}$. Now

$$
\begin{align*}
F_{r} & =\left(\begin{array}{cc}
A_{r-1} & 0 \\
Y & p^{t}
\end{array}\right)\left(\begin{array}{cc}
B_{r-1} & 0 \\
X & p^{\nu-t}
\end{array}\right), \tag{5}\\
G_{r}=\left(\begin{array}{cc}
A_{r-1} & 0 \\
Y & p^{t}
\end{array}\right)\left(\begin{array}{cc}
B_{r-1} & 0 \\
X & p^{\nu-t-1}
\end{array}\right), & 0 \leq t<\nu \tag{6}
\end{align*}
$$

are factorisations of F_{r} and G_{r} whenever B_{r-1} is a divisor of F_{r-1} and $Y B_{r-1}+X p^{t}=0$. Then

$$
\begin{equation*}
\sigma_{a}\left(F_{r}\right)=\sum_{\substack{Y B_{r-1}+X p^{t}=0 \\ 0 \leq t<\nu}}\left(\operatorname{det} B_{r-1}\right)^{a} p^{(\nu-t) a}+\sum_{Y B_{r-1}+X^{\nu}=0}\left(\operatorname{det} B_{r-1}\right)^{a} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{a}\left(G_{r}\right)=\sum_{\substack{Y B_{r-1}+X^{t} \\ 0 \leq t<\nu}}\left(\operatorname{det} B_{r-1}\right)^{a} p^{(\nu-t-1) a} \tag{8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sigma_{a}\left(F_{r}\right)=p^{a} \sigma_{a}\left(G_{r}\right)+\sum_{Y B_{r-1}+X^{\nu}=0}\left(\operatorname{det} B_{r-1}\right)^{a} . \tag{9}
\end{equation*}
$$

But, as in the proof of (4), we can show that the equation $Y B_{r-1}+X p^{\nu}=0$ has solutions for all possible choices of X by considering the cases where the matrix

$$
\left(\begin{array}{cc}
B_{r-1}^{-1} F_{r-1} & 0 \\
-p^{\nu} X B_{r-1}^{-1} & p^{\nu}
\end{array}\right)
$$

is integral. Since X can be chosen in $\operatorname{det}\left(B_{r-1}\right)$ ways, we have:

$$
\sigma_{a}\left(F_{r}\right)=p^{a} \sigma_{a}\left(G_{r}\right)+\sum_{B_{r-1} \mid F_{r-1}}\left(\operatorname{det} B_{r-1}\right)^{a+1}
$$

It is easy to evaluate $\sigma_{a}\left(P_{r}\right)$ by generalising Nanda's result [7] for $a=0$:

THEOREM 2. $\sigma_{a}\left(P_{r}\right)=\sum_{j=0}^{r} p^{a j}\left[\begin{array}{l}r \\ j\end{array}\right]$, where $\left[\begin{array}{l}r \\ j\end{array}\right]$ are the Gaussian polynomials in p.

Proof. Nanda [7] gives a combinatorial argument to show that the number of divisors of P_{r} with p occurring exactly j times on the diagonal is given by $\left[\begin{array}{l}r \\ j\end{array}\right]$. The factor $p^{a j}$ is obviously the $a^{\text {th }}$ power of the determinant of the divisor.

The above theorems give us a method for evaluation, but the calculations involved are cumbersome, as the following example shows.

Example.

$$
\begin{aligned}
& \sigma_{1}\left(F_{3}\right)=\left(p^{f_{3}}+p^{f_{3}-1}+\ldots+1\right) \sigma_{2}\left(F_{2}\right) \\
& \quad+p^{f_{3}+1}(p+1)\left(\sigma_{2}\left\langle f_{1}, f_{2}-1\right\rangle+p^{2} \sigma_{2}\left\langle f_{1}, f_{2}-2\right\rangle+\ldots+p^{2 f_{2}-2} \sigma_{2}\left\langle f_{1}, 0\right\rangle\right) \\
& \quad+p^{f_{3}+2 f_{2}+1} \sigma_{2}\left\langle f_{1}-1,1\right\rangle+p^{f_{3}+2 f_{2}+2}(p+1) \sigma_{2}\left\langle f_{1}-1,0\right\rangle \\
& \quad+p^{f_{3}+2 f_{2}+4} \sigma_{2}\left\langle f_{1}-2,1\right\rangle+p^{f_{3}+2 f_{2}+5}(p+1) \sigma_{2}\left\langle f_{1}-2,0\right\rangle+\ldots \\
& \quad+p^{f_{3}+2 f_{2}+3 f_{1}+2}(p+1) \sigma_{2}\langle 1,0\rangle+p^{f_{3}+2 f_{2}+3 f_{1}+4} \sigma_{1}\langle 1,0\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
\sigma_{2}\left(F_{2}\right) & =\left(p^{2 f_{2}}+p^{2 f_{2}-2}+\ldots+1\right) \sigma_{3}\left\langle f_{1}\right\rangle+p^{2 f_{2}+2}\left(p^{2}+1\right) \sigma_{3}\left\langle f_{1}-1\right\rangle \\
& +p^{2 f_{2}+6}\left(p^{2}+1\right) \sigma_{3}\left\langle f_{1}-2\right\rangle+\ldots+p^{2 f_{2}+4 f_{1}-6}\left(p^{2}+1\right) \sigma_{3}\langle 1\rangle \\
& +p^{2 f_{2}+4 f_{1}-2} \sigma_{2}\langle 1\rangle
\end{aligned}
$$

Average orders

In [3] we evaluated $T(x)=\sum_{\operatorname{det} A \leq x} \tau_{2}^{(2)}(A)$, where A is in SNF. The absence of a zeta function does not allow satisfactory extension of this result.

Here we instead allow A to be in HNF and consider the following zeta function [5]:

$$
\begin{equation*}
Z_{r}(s)=\sum_{A \text { in HNF }, r \times r}(\operatorname{det} A)^{-s}=\sum \alpha_{r}(n) n^{-s}, \quad s=\sigma+i t, \quad \sigma>1 \tag{10}
\end{equation*}
$$

where $\alpha_{r}(n)$ is the HNF class-number, i.e., the number of $r \times r$ HNF matrices with determinant n.

Thus

$$
\begin{equation*}
Z_{r}(s)=\zeta(s) \zeta(s-1) \ldots \zeta(s-r+1) \tag{11}
\end{equation*}
$$

where $\zeta(s)$ is the Riemann zeta-function. $Z_{r}(s)$ is a holomorphic function with simple poles at $s=r, r-1, r-2$. It is, in fact, a special case of the Koecher zeta-function [10].

Authors (e.g. [9]) have evaluated $\alpha_{r}(n)$, and in [3] we obtained an average order for $\alpha_{r}(n)$ by using elementary methods.

Here we give a few asymptotic results for divisor functions obtained by using $Z_{r}(s)$ for

$$
A_{r}(x)=\sum_{n \leq x} \alpha_{r}(n), \quad T_{k}(x)=\sum_{A \text { in HNF, det } A \leq x} \tau_{k}(A)
$$

and $S_{a}^{(r)}(x)=\sum_{A \text { in HNF, det } A \leq x} \sigma_{a}^{(r)}(A)$. These are only first results. We should be able to prove sharper results in [5].

Theorem 3.

$$
A_{r}(x)=\frac{1}{r} L_{r} x^{r}-\frac{1}{2(r-1)} L_{r-1} x^{r-1}+o\left(x^{r-1}\right)
$$

where $\quad L_{k}=\prod_{j=2}^{k} \zeta(j)$.
Proof. From Perron's formula we have:

$$
A_{r}(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{Z_{r}(s) x^{s}}{s} d s
$$

The main terms can be obtained as residues at $s=r, r-1$.

Theorem 4. $\quad T_{k}(x) \sim P_{r}(x)$, where $P_{r}(x)$ is a polynomial in x of degree r.

Proof. Obvious.

Theorem 5.

$$
S_{a}^{(r)}(x)=\frac{1}{a+r} L_{r} M_{a, 0} x^{a+r}-\frac{1}{2(a+r-1)} L_{r-1} M_{a, 1} x^{a+r-1}+o\left(x^{a+r-1}\right),
$$

where

$$
M_{b, t}=\prod_{j=1}^{r} \zeta(b+j-t) .
$$

Proof. Similar to that of Theorem 3.

Restricted divisor functions

Here we consider factorisations on the subsets
(a) \mathcal{S}_{r}, of all $r \times r$ matrices in SNF, and
(b) \mathcal{D}_{r} of all $r \times r$ diagonal matrices,
and show their connection with average orders of functions of integers.
Definition 4. The decompositions

$$
\begin{array}{lll}
& S=S_{1} S_{2} \ldots S_{k}, & S, S_{i} \in \mathcal{S}_{r} \\
\text { and } & D=D_{1} D_{2} \ldots D_{k}, & D, D_{i} \in \mathcal{D}_{r}
\end{array}
$$

are said to be k-order SNF (resp., diagonal) factorisations of S (resp., D).
In [3] we have defined the SNF zeta function

$$
\begin{equation*}
\widehat{Z}_{r}(s)=\sum \beta_{r}(n) / n^{s}=\zeta(s) \zeta(2 s) \ldots \zeta(r s) \tag{12}
\end{equation*}
$$

and proved:
Theorem 6.

$$
\begin{aligned}
\sum_{\begin{array}{c}
S \in \mathcal{S}_{\mathcal{F}^{\prime}} \\
\operatorname{det} S \leq x
\end{array}} \widehat{\sigma}_{a}(r)(S)= & \frac{1}{a+1} L_{r}^{(1)} K_{1} x^{a+1}+\frac{1}{a+\frac{1}{2}} L_{r}^{(1 / 2)} K_{2} x^{a+\frac{1}{2}} \\
& +\frac{1}{a+\frac{1}{3}} L_{r}^{(1 / 3)} K_{3} x^{a+\frac{1}{3}}+O\left(x^{a+\varepsilon}\right) .
\end{aligned}
$$

where ε is the best known exponent in the error of the three-dimensional divisor problem, and the constants are defined as

$$
L_{r}^{(i)}=\prod_{\substack{j=1 \\ j i \neq 1}}^{r} \zeta(j i), \quad K_{i}=\prod_{j=1}^{r} \zeta(j(a+i)) .
$$

We can similarly define the diagonal zeta function as

$$
\begin{equation*}
Z_{\mathcal{D}}(s)=\sum_{D \in \mathcal{D}_{r}}(\operatorname{det} D)^{-s}=\zeta^{r}(s) \tag{13}
\end{equation*}
$$

and obtain the average order $B_{a}^{(r)}(x)$ for diagonal divisor functions. For example, when $a=r=2$, we get

Theorem 7.

$$
\begin{aligned}
B_{2}^{(2)}= & \frac{1}{6} x \log ^{3} x+\left(2 \gamma-\frac{1}{2}\right) x \log ^{2} x+\left(6 \gamma^{2}-4 \gamma+4 \gamma_{1}+1\right) x \log x \\
& +\left(-1+4\left(\gamma-\gamma_{1}+\gamma_{2}\right)-6 \gamma^{2}+4 \gamma^{3}+12 \gamma \gamma_{1}\right) x+O\left(x^{1 / 2}\right)
\end{aligned}
$$

where the γ 's are constants.
Proof. We use the classical estimate for $\zeta^{4}(s)$.

Applications

We can interpret some of the above results in different contexts. We give a few illustrations:
a) We consider the set $\Gamma=\mathrm{GL}(r, \mathbb{Z})$ of all $r \times r$ integer unimodular matrices as the unimodular group of degree r over the ring of integers [6]. The divisor functions of matrices then appear in the formal power series over the Hecke algebra, which is a polynomial ring over \mathbb{Z} in infinitely many independent indeterminates. Thus, formally,

$$
\begin{equation*}
\sum \Gamma A \Gamma(\operatorname{det} A)^{-s} \sum \Gamma A \Gamma(\operatorname{det} A)^{a-s}=\sum \Gamma A \Gamma \sigma_{a}(A)(\operatorname{det} A)^{-s} \tag{14}
\end{equation*}
$$

where $A \in \mathcal{S}_{r}$.
b) We consider Ramanujan's classical formula

$$
\frac{\zeta(s) \zeta(s-a) \zeta(s-b) \zeta(s-a-b)}{(2 s-a-b)}=\sum_{n=1}^{\infty} \frac{\sigma_{a}(n) \sigma_{b}(n)}{n^{s}}
$$

for the case $a=1, b=2$, to get

$$
\begin{equation*}
Z_{4}(s)=\zeta(2 s-3) \sum_{n=1}^{\infty} \sigma_{1}(n) \sigma_{2}(n) / n^{s} \tag{15}
\end{equation*}
$$

c) We can evaluate $\sigma_{a}\left(P_{r}\right)$ in terms of two different partition functions. We can show that to get the number of divisors of P_{r}, we may look at the number of $\underline{0}$'s to the right of each $\underline{1}$ in every string of length r with entries from $\{0,1\}$. This can be expressed in terms of the function $\hat{q}(n, k, r)$, which counts the number of partitions of n into at most k parts (not necessarily distinct) each at most r, i.e.,

$$
\begin{equation*}
\sigma_{a}\left(P_{r}\right)=\sum \sum q(n-k a, k, r-k) p^{n} . \tag{16}
\end{equation*}
$$

This, we note, agrees with Theorem 2 via Sylvester's generating function for $\hat{\sigma}$ (see, e.g. Andrews [1]). We can also evaluate $\sigma_{a}\left(P_{r}\right)$ using the function $q(n, k, r)$ which counts the number of partitions of n into exactly k distinct parts. In [2] we have shown that the number of divisors of P_{r} that are equivalent to $P_{k}, k \leq r$, is given by

$$
\begin{equation*}
\pi_{k, r}=\sum_{n=\frac{k(k+1)}{2}}^{k r-\frac{k(k-1)}{2}} q(n, k, r) p^{k r-\frac{k(k-1)}{2}-n} \tag{17}
\end{equation*}
$$

Thus we get

$$
\begin{equation*}
\sigma_{a}\left(P_{r}\right)=\sum \sum q\left(k r-\frac{k(k-1)}{2}-n-a k, k, r\right) p^{n} . \tag{18}
\end{equation*}
$$

We see that there is no contradiction between these two results, for we can independently show that

$$
\begin{equation*}
\hat{q}(n, k, r-k)=q\left(k r-\frac{k(k-1)}{2}-n, k, r\right) \tag{19}
\end{equation*}
$$

by writing n as a sum of parts $n_{1}, n_{2}, \ldots, n_{k} ; r-k \geq n_{i} \geq n_{i+j} \geq 0$ and replacing n_{i} by $m_{i}=r-n_{i}-i+1$.

As in [2], it is possible to obtain polynomial and partition identities from these results.

References

[1] G.E. Andrews, The Theory of Partitions, Encyclopedia of Math. and its Appl., vol. 2, Addison-Wesley Publishing Co., 1976.
[2] G. Bhowmik, Completely Multiplicative Arithmetical Functions of Matrices and Certain Partition Identities, Journal of Indian Mathematical Society, 56 (1991), 77-83.
[3] -, Average Orders of Certain Functions Connected with Arithmetic of Matrices (to appear in JIMS).
[4] -, The Divisor and Summatory Functions of Integer Matrices (to appear).
[5] - and A. Krieg, Manuscript.
[6] A. Krieg, Hecke Algebras, Memoirs of the AMS, no. 435, vol. 87, 1990.
[7] V.C. Nanda, Arithmetic Functions of Matrices and Polynomial Identities, Colloq. Math. Soc. Janos Bolyai, 34 (1982), 1107-1126.
[8] V.C. Nanda, Arithmetic of Matrices: Manuscript.
[9] M. Newman, Integer Matrices, Academic Press, New York-London, 1972.
[10] A. Terras, Harmonic Analysis on Symmetric Spaces and Applications II, Springer-Verlag, New York-Berlin-Heidelberg, 1988.

Gautami Bhowmik
Jesus \& Mary College
New Delhi - 110021
India

[^0]: * Research supported in part by the Deutscher Akademischer Austauschdienst.

