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SOME R E C E N T APPLICATIONS 

OF s-UNIT EQUATIONS 

Kalman GYORY * 

§ 1. Introduction 

In 1988, we published with Evertse, Stewart and Tijdeman [11] a long 
survey article on 5-unit equations and their applications. Since then much 
progress has been made in this fertile field. The purpose of this paper is to 
give a survey of some recent developments. In § 2, known finiteness theorems 
(cf. Theorems A, B) and some recent quantitative results (cf. Theorems 1, 2 
and 3) are presented for 5-unit equations. The proofs of Theorems A and 1 
to 3 depend on the Thue-Siegel-Roth-Schmidt method and its p-adic general­
ization. §§ 3 to 6 are devoted to recent applications of the mentioned results. 
In §3, finiteness theorems are established for certain arithmetic graphs (cf. 
Theorem 4) and irreducible polynomials of the form g(f(X)) (cf. Theorem 5). 
These are considerable improvements of earlier theorems obtained in this di­
rection, and furnish definitive results in a sense. The results of Schinzel and 
the author in § 4 (cf. Theorem 6) resolve a conjecture of Posner and Rum-
sey [28] on common polynomial divisors of trinomials. § 5 is concerned with 
generalizations for decomposable form equations (cf. Theorem 7, 8) of finite­
ness theorems of Schmidt [34], Schlickewei [30] and Laurent [25] on families of 
solutions of norm form equations. Uniform upper bounds are given for the 
number of families of solutions. As a consequence, bounds are derived for 
the number of solutions, provided that this number is finite (cf. Corollary 1). 

* Research supported in part by Grant 1641 from the Hungarian National Foun­
dation for Scientific Research. 
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K. GY6RY 

A further consequence is deduced in § 6 for some generalized systems of S-
unit equations (cf. Theorem 9). It provides, over number fields, a quantitative 
version of a more general result of Laurent [25]. 

The results treated in §§ 2 to 6 are all ineffective. Baker's effective method 
and its j>adic analogue made it possible to establish an effective finiteness 
theorem (cf. Theorem C in §7) for 5-unit equations in two unknowns. As a 
recent application of Theorem C, in §8 an effective finiteness theorem (cf. 
Theorem 10) of Evertse and the author is presented for decomposable forms 
of given discriminant. It makes effective in a more general form an ineffective 
theorem of Birch and Merriman [2] on binary forms. Apart from certain par­
ticular cases, no effective results are known for S-unit equations in more than 
two unknowns. In § 7 we state a generalization of Baker's type inequalities 
(cf. Proposition) whose effective resolution would imply effective versions of 
all results of this paper. 

Theorems A, B and C were already treated in [11], while Theorems 1 to 
10 have been obtained since 1988. The complete proofs of Theorems 4 to 8 
and 10 will be published in Gyory [18, Part II], [14, Part IV], [20], Gyory and 
Schinzel[21] and Evertse and Gyory [9], [10]. 

It is impossible to deal with all recent applications of unit equations 
within the frame of the present paper. Further applications have recently 
been obtained for instance to diophantine equations and irreducible polyno­
mials of other type, modular forms, pairs of polynomials and binary forms 
of given resultant, recurrence sequences, group theory, algebraic number the­
ory and transcendental number theory. Some generalizations and analogues 
have also been established over finitely generated domains and function fields, 
respectively. 

§ 2. S-unit equations; ineffective results 

We introduce some notation which will be used throughout this paper. 
Let K be an algebraic number field, OK the ring of integers of if, and 0*K 

the unit group 1 of OK- Further, let S = {p i , . . . ,pt} be a finite set of prime 
ideals in O/r, and put 

Os = {OL e K : ordp(a) > 0 for all prime ideals p of OK with p £ 5 } . 

Then Os is a subring of K which is called the ring of 5-integers. It contains OK 
as a subring. The units of O5, i.e. the invertible elements are called 5-units. 

1 In general, if R is an integral domain then R* will denote its group of units; 
thus if J? is a field then R* = R\ {0}. 
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SOME RECENT APPLICATIONS OF S-UNTT EQUATIONS 

They form a multiplicative group which is denoted by 0*s. Put d = [K : Q] 
and s = r + t + 1 where r denotes the unit rank of 0*K. Thus r < d — 1. 

Many problems of number theory can be reduced to equations of the form 

(1) «1X1+0:2X2=1 in X i , £ 2 £ 0 5 

or, more generally, 

(2) aixi H \-anxn = l in x u ... , x n G 0% 

where a 1 ? . . . , a n are elements of If*. Equation (2) is called an S-unit equa­
tion in n unknowns. For n > 2, it can happen that for a solution x i , . . . , x n , 
the left hand side of (2) has a vanishing subsum. In this case the solution 
is called degenerate, otherwise non-degenerate. If (2) has a degenerate solu­
tion and if Og is infinite then (2) has infinitely many solutions. Denote by 
/ x n ( a i , . . . , a n ) the number of non-degenerate solutions of (2). Several results 
have been obtained on / / n ( a i , ...,<*„); for references see [37] and [11]. Using 
the Thue-Siegel-Roth-Schmidt method, van der Poorten and Schlickewei [26] 
(see also [27]) and Evertse [3] proved independently of each other the following 

THEOREM A . For n>2 we have /xn(«i5 • • • 5«n) < °o-

The next quantitative result was established by Evertse [4]. 

THEOREM B. WeAave 

(3) /x 2(<*i><*2)<3x7 d + 2*. 

In 1988, we derived with Evertse [7] an upper bound for / i n ( a i , . . . , a n ) 
which is independent of c*i,..., a n . Recently this has been made explicit by 
Schlickewei [31] who proved 

THEOREM 1. For n > 2, we have 

(4) < exp{236^! .*6log(4eryeye< e x p { 2 3 6 ^ ! .* 6log(4*d!)}. 

Farther, if K is a normal extension of Q then d\ can be replaced by d. 

The proof is based on Schlickewei's p-adic generalization [32] of the quan­
titative Subspace Theorem of Schmidt [35]. Very recently Evertse (private 
communication) has improved (4) in terms of d to 
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(5) / z n ( o i , . . . , o n ) < exp{2: ,37nd .s 6log(8sd!)}. 

The dependence on d is much weaker in (4) and (5) than in (3). Probably s 6  

can be improved to s. 
We call two n-tuples ( o i , . . . , o n ) and (ot!u..., a'n) in (K*)n (and the 

corresponding S-unit equations) S-equivalent if o^/o; G 0£ for i = 1,... ,n. 
If ( « i , . . . , o n ) and (a[,..., o^) are 5-equivalent then / x n ( o i , . . . , o n ) = 
/ x n ( o i , . . . , o^). We showed with Evertse, Stewart and Tijdeman [12] (see also 
[11]) that /^ (^ l ) ^2) < 2 for all but finitely many 5-equivalence classes of pairs 
(0:1,(22) £ (iiT*)2. Further, we pointed out that if Og is infinite then there are 
infinitely many 5-equi valence classes of pairs (01,02) for which (1) has two 
solutions. The proof of the above estimate depends among other things on the 
fact that /xn := / x n ( l , l , . . . , l ) is finite for all n < 5. Following the proof of 
[12] it is easy to show that apart from at most //5 +12/^3 + 30/z2 ^-equivalence 
classes of pairs (01,02), we have /¿2(^1,02) < 2 (see e.g. [19] or [21]). Hence, 
in view of Theorem 1, the above-mentioned result of [12] can be stated in the 
following quantitative form. 

THEOREM 2. Apart from at most 

S-equivalence classes of pairs (01,02) G (K*)2, we have £¿2(01,02) < 2. Fur-
tier, if K is a normal extension of Q then d\ can be replaced by d. 

It was shown in [12] that for n > 2, there can exist infinitely many 
5-equivalence classes of equations (2) with "many" non-degenerate solutions. 
Hence Theorem 2 cannot be generalized in this sense to solutions of (2). There 
is, however, another possibility for generalization. Denote by f n ( o i , . . . , o n ) 
the minimal number of (n — l)-dimensional linear subspaces of Kn whose 
union contains all solutions of (2). Theorem 1 implies an upper bound for 
^n(^i) • • • ?<*n)- In 1988, we proved with Evertse [7] that apart from finitely 
many 5-equivalence classes of equations (2), i / n ( a i , . . . , a n ) < 2 ( n + 1 ) ! holds. 
Recently, Evertse [5] improved this bound to ( n ! ) 2 n + 2 , and applied his esti­
mate to decomposable form equations. 

Following the proof of [7], one can derive f^n+i)\-i a s a n upper bound 
for the number of exceptional 5-equivalence classes in question. Together with 
Theorem 1 this implies that the result of [7] under consideration can now be 
enunciated in the following quantitative form. 

exp{2 ,180d! • s 6 log(2(4sd!))} 
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THEOREM 3. Apart from at most 

exp{n2 3 6 ( n + 1 ) ! d ! . 5 6 l og (45d! ) } 

S-equivalence classes of n-tuples ( a i , . . . , a n ) € (K*)n> w e have 
i / n ( a i , . . . , a n ) < 2 ( n + 1 ) ! . Further, if K is a normal extension of Q then d\ 
can be replaced by d. 

For n = 2, 2̂(<*i? OL2) = A*2(<*i, «2) holds. Thus, for n — 2, Theorem 3 
gives a weaker version of Theorem 2. The proof of Theorem 3 will be published 
in a joint paper with Tijdeman, together with some generalizations and further 
related results. 

It is likely that combining the proof of [5] with Theorem 1, the bound 
2(n+i)! j n Theorem 3 can be improved to ( n ! ) 2 n + 2 . However, this bound 
( n ! ) 2 n + 2 is still probably far from being best possible. Theorem 3 and its 
possible improvements would have applications, e.g. to decomposable form 
equations (cf. [5]). 

§ 3. Applications to irreducible polynomials and arithmetic graphs 

Let A = { a i , . . . , <*m} be a finite subset of 0 # . For given N > 1, we 
denote by Q = GK(A,N) the simple graph whose vertex set is A and whose 
edges are the unordered pairs [a^aj] such that |N^/Q(at- — otj)\ > N. The 
ordered subsets A = { « 1 , . . . , a m } and A ! = {c*i,..., a ^ } of OK are called 
equivalent if a'{ = EOL{ + /3 for some e G 0*K and /3 6 OK, i = 1 , . . . , m. Then 
the graphs GK(A, N) and GK{<A!,N) are isomorphic. 

Many diophantine problems, for example related to reducibility of polyno­
mials, pairs of polynomials of given resultant, decomposable form equations 
or algebraic number theory lead to the study of connectedness properties 
of graphs GK(A, N) (see [17], [11], [18] and the references given there). Let 
m > 3. Using Theorem C of the present paper on 5-unit equations in two un­
knowns, we proved in [17] (see also [11]) in a more precise and effective form 
that for all but at most finitely many equivalence classes of ordered subsets 
A = {c*i,... , a m } of OK, the graph GK{A, N) has either 

(i) a connected component of order at least m — 1, 
or 

(ii) two connected components of order > 2 which are complete. 

This result and its various other variants have been used to solve the diophan­
tine problems mentioned. 

For certain applications, for instance to irreducible polynomials (see The­
orem 5 below) it is crucial to eliminate the possibility (ii) from the above 
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statement. Recently, we have proved in [18, Part II] (see also [18, Part I]) a 
more precise and quantitative version of the following theorem. 

THEOREM 4. Let m be a positive integer different from 4. Then for all but 
at most finitely many equivalence classes of ordered subsets A = { a i , . . . , a m } 
of OK, the graph GK(A, N) has a connected component of order at least m— 1. 

In the case m = 4, we described in [18] the exceptions having property (ii). 
In the proof, we used the above-mentioned result of Evertse and myself [7] 
on 5-unit equations. Further, to prove the quantitative version, we needed 
Theorem 1. 

For given m > 4, we shall now sketch the proof that apart from finitely 
many equivalence classes of ordered subsets A = {c*i,... , a m } of 0 # , the 
graph GK(A)N) cannot have property (ii). In contrast with [18, Part II], here 
Theorem 2 will be used in a qualitative form. Let A = {<*i,... , a m } be an 
arbitrary ordered subset of OK for which Q = GK(A, N) has two connected 
components, say Gi and Gi, with orders > 2 such that both Gi and Gi are 
complete. We may assume without loss of generality that {c*i,... , a:*.} and 
{afc+i,..., ctk+i} are the vertex sets of Gi and £?25 respectively. Then we have 

for each 2, j with 1 < z < fc, + 1 < j < k + I. Denote by 5 the set of all 
prime ideals in OK with norm at most N. Then all ot{ — otj satisfying (6) are 
5-units. For distinct with 1 < < fc, we have 

Now Theorem 2 implies that apart from an 5-unit factor £, OL{—OLV can assume 
only finitely many values, say /3. But using Theorem B for fixed /3, it follows 
from 

that (ai — aj)/s and (aj — a.ii)/e can assume only finitely many values. Hence 
the same holds for (ap — aq)/e for all distinct p,g with 1 < p,q < m. Thus 
A = eA' + ai for some ordered subset A! of OK whose elements can assume 
only finitely many values. This proves our claim. 

We present now an application of Theorem 4 to irreducible polynomials. 
I. Schur, A.Brauer, R. Brauer, H. Hopf, I. Seres and others investigated the 
reducibility of polynomials of the form f(g(X)), where are monic poly­
nomials with coefficients in Z , g is irreducible over Q and the roots of / are 

(6) i - aii = (ai - aj) + (aj 

ai - aii = (ai - aj) + (aj - a^) for j = k + 1 , . . . , k + /. 

/3 = (ai - aj)/e + (aj - a^/e, j = k + 1 , . . . , k + I 
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distinct rational integers. For a survey of results obtained in this direction, 
see [14]. In [14] I extended these investigations to the case when the roots of 
/ are distinct elements of an arbitrary but fixed totally real algebraic number 
field K of degree d. Let A = { a i , . . . , c*m} be the set of roots of such a monic 
polynomial / G Z[X]. Further, suppose that g G Z[X] is an irreducible monic 
polynomial whose splitting field over Q is a CM-field, i.e. a totally imaginary 
quadratic extension of a totally real algebraic number field. In this case we say 
that g(X) is of CM-type. If g(f(X)) is reducible then so are g(f(X+a)) for all 
a G Z. Such polynomials f(X), f(X + a) are called equivalent. I showed that 
if the graph GK(A,N) for N = 2d\g(0)\d/degid) has a connected component 
with v vertices, then the number of irreducible factors of g(f(X)) over Q is 
at most deg(f)/v. Further, this estimate is in general best possible (cf. [14, 
Part II]). Hence it is easy to deduce from Theorem 4 the following 

THEOREM 5. Let g G Z[X] be an irreducible monic polynomial of CM-
type. There are only finitely many pairwise inequivalent monic polynomials 
f G Z[X] with degree greater than 4 and with distinct roots in K such that 
g(f(X)) is reducible over Q. 

This theorem is in a certain sense a considerable refinement of Theorem 1 
of [14, Part III]. We should, however, remark that this theorem of [14] was 
established in an effective way and over an arbitrary totally real ground field 
instead of Q. 

Recently, we have obtained in [14, Part IV] a more precise version of 
Theorem 5. There can exist infinitely many pairwise inequivalent exceptions 
f(X) of degree 4 for which g(f(X)) is reducible for a suitable g(X). We give 
in [14, Part IV] a precise description of these exceptions. Further, we show 
that Theorem 5 does not remain valid for any irreducible monic polynomial 
g G Z[X] and for any number field K. 

§ 4. Applications to common polynomial divisors of trinomials 

Using the terminology of [28], for i > 2 we shall mean by a monic z-nomial 
over Q a polynomial of the form X m i + a2Xrri2 + • • • + a ^ i l ^ - 1 + a{ over 
Q with mi > nt2 > • • • > 7TCi_i > 0. If p(X) and s(X) are polynomials over 
Q with deg(s) < i - 1 such that p(X) \ s(Xr) over <Q) for some integer r > 1 
then p(X) divides infinitely many z-nomials over Q. Indeed, the vector space 
of polynomials in Q[X] modulo s(X) is at most (i — l)-dimensional, and hence 
s(X) divides infinitely many i-nomials T(X) over Q. But then s(Xr) | T(Xr) 
and so p(X) | T(Xr) over Q. Conversely, Posner and Rumsey [28] made in 
1965 the following conjecture: If a polynomial with rational coefficients divides 
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infinitely талу monic i-nomials over Q, then it divides a non-zero polynomial 
in Q[X] with degree less than i in Xr for some r > 1. 

For i = 2 the conjecture is obvious. For i = 3, Posner and Rumsey [28] 
proved a weaker version of their conjecture. Recently, we have proved with 
Schinzel [21] that the conjecture is true for i = 3 and false for every i > 4. 
The disproof for the case i > 4 is elementary. For i = 3, we obtained with 
Schinzel the following stronger assertion. 

THEOREM 6. Let p e Q[X] \ Q , k the number of distinct roots of p(X), 
К the splitting field of p(X) over <Q), d = [K : Q], 8 the set of places of К 
consisting of all infinite places and all valuations induced by the prime ideal 
divisors of the non-zero roots ofp(X), and s = Card(S). Ifp(X) divides more 
than 

exp{(s 6 . 2 1 8 0 d + 8sk) log(4sd)} 

monic trinomials over Q, then it divides a linear or quadratic polynomial in 
Xr over Q for some integer r > 1. 

The proof depends on Theorems В and 2 on 5-unit equations. We sketch 
the basic idea of the proof. The details will be published in [21]. 

Let T(X) = Xm + aXn + b be a trinomial over <Q> which is divisible by 
p(X). If p(X) is divisible by X or if ab = 0, the assertion easily follows. Hence 
it suffices to deal with the case when X \ p(X) and ab ф 0. It is easy to 
show that p(X) can be written in the form p(X) = Pi(X) -p^X) where pi,P2 
are relatively prime squarefree polynomials in Q[X]. Denote by fx , . . . the 
distinct roots of pi(x) -p2(#), and by S the set of all prime ideal divisors of 
£i • • in OK* Then, for j = 1 , . . . ,fc, is a solution of the 5-unit 
equation 

(7) (-<*/b)*2 gdg+ (-<*/b)*2 = 1 i n * ь * 2 € OJ. 

If (7) has at most 2 solutions, then the assertion can be proved by means 
of some elementary arguments from algebraic number theory. On the other 
hand, if p(X) divides trinomials T(X) over Q for which the corresponding 
equation (7) has more than 2 solutions, then one can use Theorem 2 to derive 
an upper bound for the number of iS-equivalence classes of these equations 
(7). If now there are sufficiently many trinomials T(X) over <Q> for which the 
corresponding equations (7) are 5-equivalent, then one can show by means 
of Theorem В that there is an integer r > 1 such that f J assumes the same 
value, say c, for j = 1 , . . . , k. Here с £ Q* and p(X) \ (Xr - c) 2 over Q, which 
proves the assertion of Theorem 6. 
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§ 5. Applications to decomposable form equations 

In this section, we present some generalizations to decomposable form 
equations of well-known finiteness theorems of Schmidt, Schlickewei and Lau­
rent concerning families of solutions of norm form equations. 

Let 9JI be an Os-lattice, i.e. a finitely generated Os-submodule of some 
if-vector space. Consider a decomposable form F(x) on 

KTl := {Ax : A G if, x G 971} 

over if, i.e. a function F: KWl —• if for which there are an a G if*, a finite 
and normal field extension G/K and if-linear functions / 1 , . . . , / / : K9JI —• G 

such that F(x) = a nf=i^( x ) for all x G KWl (for this general definition, 
see e.g. [9]). We may assume that G is the splitting field of F , i.e the smallest 
extension of if over which F factorizes into linear functions. Suppose that 
n := dimirK9JI > 2 and that { /1 , . . . , / /} contains n linearly independent 
functions over G. If in particular K9JI = if n and ei = (1 ,0 , . . . , 0 ) T , . . . , 
e n = ( 0 , . . . , 0, l ) r is the standard basis of if n , we identify F(x) on if n with 
the homogeneous polynomial .F(X) = F(X\ei~\ \-Xnen) G if . . . , X n ] . 
This homogeneous polynomial is also called a decomposable form. 

Let /3 G O5 \ {0} and consider the decomposable form equation 

(8) F(x) G (30*s in x G 93T. 

Put 3 = {!)•••)/}• We may assume that l{ = lj if l{ and lj are linearly 
dependent over G and that <r(lj) = la(j) for all j G 3 and a G Gal(G/if), 
where (cr( l) , . . . , <r{f)) is a permutation of ( 1 , . . . , / ) . In the special case when 
F(x) = a n<7€Gai(G//f) ^ ( ' IWIJ - ^ ( X ) 1S m fact a norm form over if, and (8) is 
a norm form equation. Denote by M the set of tuples A = (Ai , . . . , A/) G Gf 

for which X{ = Xj if li = Zj, i, j G 3 and a(Xi) = A^-j for all i G 3 and 
cr G Gal(G/if), Defining the product of A, /x G M componentwise, M becomes 
a if-subalgebra of G* with unit element 1 = ( 1 , . . . , 1). We denote by M* the 
multiplicative group of invertible elements of M, and by N(\) the product of 
components of A G M. This function N: M —• if is clearly multiplicative. The 
linear mapping K9JI Gf: x h-» ( / i (x) , . . . , / /(x)) is injective. Further, 
tf (if9Jl) is contained in M. Put M = *(9Jl). Then M is an Os-lattice in 
M and * induces an isomorphism betweer ^ — J M (as well as between 
KWl and KM). We say that M is fuJI (in L. , _ « w tf = M. It will be more 
convenient to consider (8) in the form 

(9) aN(n) G (30*s in ¡1 G M. 

If in particular F(x) is a norm form then (9) becomes the norm form equation 
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(10) <*NM / ir(/x) e(30*s in /xGM, 

where JVC denotes now the Os-module {/i(x) : x E 9JI} and M is a suitable 
subfield of G containing K and lif JVC. 

A partition I = { A i , . . . , ^4^} of # is called symmetric if i,j E 3 be­
long to the same subset if l{ = Zj, and if a(Ai),... ,a(Ah) is a permu­
tation of Ai,...,Ah for every a E Gal(G/if). For a symmetric partition 
I = { A i , . . . , Ah} of J, we denote by L = L(I) the subset of M consisting of 
those elements A = (Xi)ieg of M for which A; = Xj whenever i and j belong 
to the same subset in the partition I. Then L is a iT-subalgebra of M with 
1. If in particular I = {#} then we write K for L(0). Further, M = L(I 0) for 
the partition Io for which ijed belong to the same subset if and only if 
li = lj. The subrings of M with 1 are precisely the subalgebras L(I) where I 
is a svmmetric partition of fl. 

Let L = L(I) with a symmetric partition I of 0, and denote by OS,L 
the set of those elements A = (\i)ied °f ^ f ° r which all components Â  are 
integral over O5. Then OS,L is a subring of L with unit element 1. Its unit 
group is denoted by O J L . Let JVCL denote the set of all elements /x E JVC 
for which A • fx E KM for every A E L. One can show that in this case 
A • fjt E KML, that ML is an Os-sublattice of JVC, that MK = JVC, and that 
JVCM = JVC if JVC is full. We say that L is admissible with respect to JVC or 
simply admissible if JVCL f l M* 7^ 0 and if there is no subalgebra L' with 1 
in M such that L ' D L and KML> = KML. We note that if JVC is full then 
M is admissible. For an admissible subalgebra L of M, denote by the set 
of those A E L for which A • fx E JVCL for all /x E JVCL. Then is a subring 
of O 5 L with 1 which contains O5 as a subring (identifying the elements A 
of Os with A = (A,.. . ,A)). Further, KV^ = L. Denote by D ^ * the unit 
group of One can show that J L •= [OJ L : 2)^*] is finite. If fi E JVCL is a 
solution of (9) then so is every element of / /2)^*. Then the set /¿2)^* l s c a l led 
a family of solutions or more precisely an (JVC, L)-famiiy of solutions of (9). 
Further, a family of solutions is called maximal if it is not properly contained 
in another family of solutions. Every solution is contained in a maximal family 
of solutions. 
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We shall state our results in a quantitative form. Hence we need some 
further notation. Denote by D the degree of the normal closure of G over Q. 
Let m — n or m = n + 1 according as 9JT is free or not. One can show that 
m is the minimum of the cardinalities of the sets of generators of 93T. Assume 
that F is integral on 9JT, i.e. that for some set of generators { a i , . . . , a m } of 
9JT, the polynomial <*NM/ir(/x) e(30*s i n ^ j ' a i ) ̂ a s their coefficients in O5. This notion of 
integrality is independent of the choice of a x , . . . , a m . For /3 E O5 \ {0}, (/3) 
denotes the Os-ideal generated by /3, rm(/3) is the number of factorizations 


